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ABSTRACT

The accurate repair of chromosomal double-strand
breaks (DSBs) arising from exposure to exogenous
agents, such as ionizing radiation (IR) and radiomi-
metic drugs is crucial in maintaining genomic integ-
rity, cellular viability and the prevention of
tumorigenesis. Eukaryotic cells have evolved effi-
cient mechanisms that sense and respond to
DSBs. The DNA DSB response is facilitated by hier-
archical signaling networks that orchestrate chro-
matin structural changes, cell-cycle checkpoints
and multiple enzymatic activities to repair the
broken DNA ends. Sensors and transducers signal
to numerous downstream cellular effectors which
function primarily by substrate posttranslational
modifications including phosphorylation, acetyla-
tion, methylation and ubiquitylation. In particular,
the past several years have provided important
insight into the role of chromatin remodeling and
histones-specific modifications to control DNA
damage detection, signaling and repair. This
review summarizes recently identified factors that
influence this complex process and the repair of
DNA DSBs in eukaryotic cells.

INTRODUCTION

Cellular DNA can be damaged by physiological processes
and environmental agents, resulting in a variety of lesions,
including DNA base modifications, crosslinks and single-
and double-strand breaks (SSBs and DSBs). Ionizing radi-
ation (IR) as well as radiomimetic drugs create reactive
forms of oxygen, which in turn attack DNA and lead to
strand breakage in all phases of the cell cycle (1,2). DSBs
produced by IR can be complex often resulting in end
modifications, attachment of bulky adducts or some loss
of DNA in the vicinity of the damage. At low doses of IR,
single-strand nicks predominate although nearby nicks on

two complementary strands of the DNA double helix can
be converted into DSBs. The exact mechanism of
IR-induced DNA DSB formation is not yet clear; how-
ever, both free radicals and direct ionizations are involved.
The number of DNA DSBs per mammalian cell detected
immediately after 1Gy (100 rads) exposure is approxi-
mately 40, whereas the same IR dose results in approxi-
mately 1000 SSBs and 1000 damaged bases. DNA DSBs
are considered the critical primary lesions in the formation
of chromosomal rearrangements associated with disease
and tumorigenesis.
DSBs are also generated in a programmed manner

to initiate recombination between homologous chromo-
somes during meiosis (3) and as intermediates during
V(D)J recombination and immunoglobulin (Ig) class-
switch recombination (4,5). While programmed rearrange-
ments are initiated by specific enzymes that generate DNA
DSBs in the target locus, e.g. RAG1 and RAG2 in V(D)J
recombination, the recombination intermediates seem
to be resolved by the same pathways used to repair
IR-induced DNA DSBs (4). DNA DSBs can arise also
at sites of DNA replication when replication forks
encounter DNA SSBs or other lesions, either interstitial
or at the ends of chromosomes due to defective telomere
metabolism (6,7).
IR-induced DSBs are repaired by either homologous

recombination (HR) or non-homologous end joining
(NHEJ) (8–13). NHEJ requires little or no DNA sequence
homology at the damaged ends, and the proteins impli-
cated in NHEJ generally act to maintain physical proxim-
ity of the two broken ends on one DNA duplex during
minimal processing followed by ligation. In contrast, HR
requires a sister chromatid, homolog or homologous
sequence on a heterolog to be used as a template for
repair. This pathway requires more significant chromatin
remodeling and access to DNA bases to facilitate DNA
unwinding, strand invasion and DNA replication-based
repair mechanisms. Initial insights into HR came from
the characterization of the yeast RAD52 epistasis group
of genes, first isolated from yeast mutants hypersensitive
to X-rays. The mammalian homologs have been identified
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and their genetic and biochemical roles in DNA repair
mechanisms are well described (14–17).
It is now appreciated that chromatin structure has an

integral role in DNA DSB repair (18) and that the chro-
matin response, in general, may precede DNA end resec-
tion (19). DNA DSBs lead to redistribution of DNA
damage response (DDR) proteins into dynamic, higher
order multi-protein assemblies on chromatin surrounding
the break. Adaptor proteins are crucial to build these
assemblies in a spatial and temporal manner, in part, by
hierarchical phosphorylations that are selectively recog-
nized by downstream DDR proteins. The inability to
respond properly to DNA DSBs or to repair them has
the potential to lead to cell death, genomic instability or
malignant transformation. There are a number of human
disorders characterized by defects in proteins that function
in DSB repair or that are characterized by an altered
ability to interact with chromatin to modulate the repair
process. The study of these disorders has provided impor-
tant insight into the cellular response to DSBs.

INITIAL DETECTION OF DNA DSBS

The DDR operates through the hierarchical action of sen-
sors, transducers and effectors that orchestrate the repair
of DNA DSBs. Detection of a lesion is the first essential
step in the cellular response to DSBs. The Mre11 complex
has been implicated as having an early role in the detec-
tion of DSBs (20,21). Recruitment of the Mre11 complex
and activation of ataxia-telangiectasia mutated (ATM)
protein are both rapid events and interdependent in both
recognition and signaling of DNA DSBs (22). Additional
proteins assemble within the entire regions of modified
chromatin up to 2 Mb from the DSB (23) suggesting the
potential significance of modifications in chromatin struc-
ture also acting as DSB sensors.
DNA DSBs lead to redistribution of proteins into

dynamic, higher order multi-protein assemblies on chro-
matin, often detected by IR-induced immunofluorescent
foci (IRIF). Proteins can be categorized on the basis of
spatial redistribution: (i) proteins associated with DSB-
flanking chromatin (Mre11, ATM, Nbs1, Rad50, DNA-
PKcs, Ku70/80, XRCC4, Mdc1, 53BP1 and BRCA1); (ii)
proteins associated with single-stranded DNA (ssDNA)
micro-compartments [ATM- and Rad3-related protein
(ATR), ATRIP, RPA, Rad9, Rad17, Rad51, Rad52,
BRCA2, FANCD2, Nbs1, Mre11, Rad50, BRCA1]; and
(iii) proteins that do not form cytologically detectable
IRIF (Smc1, Smc3, Chk1, Chk2, p53, Cdc25A).
Chromatin marked by the phosphorylated form of
H2AX (g-H2AX) becomes occupied by ATM, Mdc1
and 53BP1, whereas proteins involved in repair (Rad51,
Rad52, BRCA2 and FANCD2, ATR and RPA) and the
DNA clamp proteins, such as Rad17 and Rad9 accumu-
late in chromatin micro-compartments delineated by
ssDNA (24). BRCA1 and the MRN complex interact
with both of these compartments. Smc1 and Smc3 associ-
ate with chromatin as preassembled complexes, but
become locally modified after DNA damage. p53 and

Cdc25A are involved in cell-cycle checkpoint activation
but do not accumulate at DNA DSB sites (24).

Mre11 complex

A significant amount of data suggests that Mre11, Rad50
and Xrs2/Nbs1 (Xrs2 in Saccharomyces cerevisiae; Nbs1
in mammalian cells) comprise a nuclease complex (also
termed the Mre11- or MRN complex) with multiple
roles in signaling and repair in meiotic and mitotic DSB
response networks, as well as in telomere maintenance
(14). The Mre11 complex is involved in early steps of
DSB end processing prior to repair by multiple pathways
and may maintain sister chromatids or broken ends in
close proximity. These proteins bind DNA quickly after
DSB induction, and influence the rate of 50 to 30 resection
along with the yeast Sae2/Com1 (25). While all evidence
indicates that a heteroduplex is required for the initial
processing of broken DNA ends, the nature of the proces-
sing is unclear. The nuclease activity of Mre11 degrades
DNA 30–50, leading one group to hypothesize that the
complex recruits an unidentified nuclease of the correct
polarity or that the helicase activity of the complex pro-
vides a substrate for the endonuclease activity of Mre11
(26–29). Exo1 can partially compensate for loss of Mre11
activity in mitotic cells but not in meiotic cells suggesting
that Mre11 acts differently in the context of
Spo11-mediated DSBs (27,30). Initial studies showed a
requirement for the Mre11 complex after IR exposure,
which produces multiple types of DNA ends, raising the
possibility that processing is limited to an initial ‘cleaning’
or removal of damaged ends rather than extensive nucle-
ase activity. Interestingly, the proposed activity of Mre11
in meiosis is to assist in removal of Spo11 from DNA after
cleavage [reviewed in (3)], analogous to removal of a bulky
adduct from a DNA end in somatic cells. Recent studies
have further revealed that CtIP (mammalian homolog of
Sae2/Com, also termed RBBP8) confers resistance to
DSB-inducing agents, physically and functionally inter-
acts with the Mre11 complex and BRCA1, and both
CtIP and Mre11 are required for efficient DNA-end resec-
tion, recruitment of the ssDNA binding protein RPA and
HR in a cell-cycle-dependent manner (29,31,32). Similar
results have been obtained with Schizosaccharomyces
pombe Ctp1, a protein that shares conserved domains
with CtIP (31).

Besides a role for initial processing of broken ends, the
Mre11 complex has been postulated to tether broken
DNA ends together to inhibit aberrant joining to hetero-
logous chromosome sequences that would lead to genome
rearrangements, such as translocations. The crystal struc-
ture of the Mre11 complex revealed strong similarities to
the Smc proteins that tether replicated homologs together
until anaphase signaling initiates chromosome separation.
When complexed as a trimer, the N- and C-termini of
Rad50 associate together separated by a long flexible
arm with zinc hook at the tip (33–35). This structure
along with initial genetic studies conducted with
MRE11S and RAD50S yeast mutants led to the sugges-
tion that heterotrimers associate at the zinc hooks during
S phase to tether two chromatids together (26).
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Furthermore, electron microscopic studies in mammalian
cells suggest that multiple complexes associate to hold
together the two ends of a broken DNA duplex (33,36).
However, this may be an oversimplified model.
Fluorescent tagging of individual DSBs in living mamma-
lian cells has revealed that the positional stability of DSB
ends is not affected by siRNA knockdown of H2AX, any
member of the Mre11 complex or Smc1, but is signifi-
cantly impaired by loss of Ku80 suggesting a key role
for this protein in tethering ends in mitotic mammalian
cells at least in some contexts (37). The relative stability of
mammalian DSB ends contrasts with studies in S. cerevi-
siae in which ends are more mobile and coalesce into
repair foci at a high frequency (38). Given that several
genetic studies have demonstrated that DSBs stimulate
interchromosomal HR and NHEJ repair mechanisms
(39–41), these studies highlight our lack of understanding
about what circumstances allow for the physical interac-
tions necessary to facilitate interchromosomal repair of
DNA damage.

Although null mutants of each of the three proteins of
the Mre11 complex are embryonic lethal in mice, several
hypomorphic strains have been engineered that are viable
(42,43). As expected, these mice exhibit meiotic defects, as
well as IR sensitivity and predisposition to cancer similar
to the cognate human syndromes. Interestingly, the
Rad50S-mutant mice display a distinct hematopoietic
cell defect and bone marrow failure (43). The reason for
the defect remains unclear, and possibilities include a spe-
cific role for Rad50 in tissue-specific stem cell proliferation
or differentiation, or alternatively, a role in anti-apoptotic
signaling. Since hematopoietic cells are particularly sus-
ceptible to apoptosis after DNA damage, partial loss of
Rad50 function may be sufficient to demonstrate this phe-
notype. Taken together with elevated levels of apoptosis in
other DDR mutants, such as mammalian Spo11�/� sper-
matocytes and oocytes, ATM�/� human neural cells and
MEI304 Drosophila mutants, unrepaired DSBs in both
meiotic and mitotic systems are sufficient to lead to apop-
tosis (44,45).

CHROMATIN MODIFICATION IN RESPONSE
TO DNA DSBS

Chromatin creates a natural barrier against access to
DNA during transcription, damage repair and recombina-
tion. There is an increasing body of evidence about the
role of histone modifications in DDR (46–49) and DSB
repair (50–52). Following DNA damage, chromatin struc-
ture is altered by (i) ATP-dependent chromatin remodel-
ing, (ii) incorporation of histone variants into
nucleosomes and (iii) covalent histone modifications
(53,54). Among the different histone modifications, phos-
phorylation of all four histones as well as the variant
H2AX plays a primary role in DDR by facilitating
access of repair proteins to DNA breaks. There is also a
strong correlation between defective DSB repair, genomic
instability and telomere dysfunction, and further investi-
gation into this area would determine whether telomere
stability is based on the same paradigms (49,55,56).

The histone modifications and associations related to the
DDR are summarized in Table 1.

ATMand histone phosphorylation

One immediate target of the ATM kinase following DNA
damage is the histone H2A-variant H2AX (57). Histone
H2AX, the major isoform in yeast and a minor H2A spe-
cies in mammals, is phosphorylated at the carboxy-
terminal serine 139 in somatic cells in response to
damage-induced DSBs (58), following Spo11-induced
DSB formation (59,60), and following Rag-mediated
cleavage (61). Phosphorylated H2AX (g-H2AX) appears
within minutes of damage over large adjacent chromatin
regions extending tens of kilobase in yeast and up to 2 Mb
in mammalian cells (23). Analysis of H2AX-deficient mice
has demonstrated a role for the protein in a variety
of responses to DSBs, including DNA repair, checkpoint
signaling and Ig gene class switching (62–66). H2AX�/�

mice exhibit male-specific sterility, likely due to defects in
chromatin remodeling during meiosis (65). g-H2AX
immunostaining of mouse spermatocytes is detected in
leptotene and zygotene, and co-localizes with Rad51/
Dmc1 foci. In contrast, staining is nearly absent at all
times in SPO11�/� mutants that do not form DSBs.
Coating of large chromatin regions by g-H2AX may act
as a structural signal to recruit recombination and repair
proteins, as well as the structural proteins involved in
chromatid pairing and synaptonemal complex (SC) for-
mation in pachytene. Although g-H2AX is central to the
DDR, mutation of the H2AX phosphorylation site con-
fers only a moderate sensitivity to DNA damage in com-
parison to alterations of DNA damage checkpoint
proteins (67,68). This suggests that g-H2AX contributes
to the process of DNA DSB repair; however, it is not
essential since it is not required for the initial recognition
of DNA breaks (67).
In addition to damage-induced H2AX phosphorylation,

histone H4 phosphorylation at serine 1 by casein kinase 2
(ck2) occurs in response to DSBs, and serine 1 phosphor-
ylation is reported to inhibit histone H4 acetylation by
NuA4 acetyltransferase (69,70). These events may regulate
restoration of chromatin structure following repair (70).

Table 1. Histone modifications and associations in DSB response

Histone Modification or association

H1 Phosphorylation by DNA-PK

H2A Acetylation by TIP60

H2AX Phosphorylation S139 by ATM
Ubiquitylation S139 by RNF8

H3 Acetylation by TIP60
Methylation K79 by DOT1L
Association of 53BP1 to H3K79me
Association of RAG2 to H3K4me3

H4 Phosphorylation of S1 by ck2
Acetylation by NuA4/TIP60-TRAPP
Acetylation K16 by hMOF
Association of HP1b to H4K20me3
Association of 53BP1 to H4K20me2
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Interestingly, chromatin immunoprecipitation experi-
ments have shown that H4 phosphorylation is also abun-
dant near endonuclease-induced DSBs (69,70). There are
several other chromatin modifying factors with chromo-
domains, e.g. isoforms of heterochromatin protein 1
(HP1), which have been linked with the repair of IR-
induced DNA damage (49). Consistent with the observa-
tions that overexpression of HP1b effects DNA DSB
repair, Goodarzi and coworkers (71) demonstrated that
heterochromatic DSBs are generally repaired more
slowly than euchromatic DSBs, and ATM signaling is spe-
cifically required for DSB repair within heterochromatin.
The isoforms of HP1 have potential ATM phosphoryla-
tion sites but it remains to be determined if these isoforms
interact with ATM or other DDR elements.
Our studies suggested that ATM deficient A–T cells are

more proficient in translating IR-induced DNA damage
into chromosome damage possibly due to an underlying
alteration in chromatin structure (1,5,72). In undamaged
cells, ATM is held in an inactive form as a dimer or higher
order multimer, with the kinase domain bound to a region
surrounding serine 1981. Upon IR exposure ATM
becomes rapidly autophosphorylated at serine 1981 caus-
ing dimer dissociation and initiating cellular ATM kinase
activity (73). Recent studies have shown that DSB forma-
tion is followed by ATM-dependent chromatin relaxation.
Following IR exposure, KRAB-associated protein
(KAP-1, also known as TIF1b, KRIP-1 or TRIM28) at
the damage sites is immediately phosphorylated in an
ATM-dependent manner on serine 824, and phosphory-
lated KAP-1 then spreads rapidly throughout the chroma-
tin. Ablation of the KAP-1 phosphorylation site leads
to loss of DSB-induced chromatin decondensation and
renders the cells hypersensitive to DSB-inducing agents
(74). KAP-1 also recruits HP1 proteins to form small
HP1-containing heterochromatin domains that repress
gene activity (75,76), and expression of mutant HP1b
results in abrogation of damage-induced H2AX phos-
phorylation (77). Further studies have shown that DNA
damage influences the chromatin-associated movement of
HP1b, supporting the relationship between HP1b and
DDR (77). HP1b co-localizes with trimethylated lysine
20 of histone H4 (H4K20me3) which is also a binding
motif for 53BP1 (78). Thus, these studies strongly argue
that cells deficient in ATM have defective chromatin
relaxation, an essential initial step for the recognition
and repair of DNA DSBs (74).

hMOF influences ATM function

hMOF, the human ortholog of the Drosophila MOF
(males absent on the first), encodes a histone acetyltrans-
ferase (HAT) that interacts with ATM (79). Expression of
a dominant negative hMOF mutant or RNAi-mediated
hMOF knockdown blocked IR-induced increases in his-
tone H4 acetylation at lysine 16 and resulted in decreased
ATM autophosphorylation, ATM kinase activity, phos-
phorylation of downstream effectors of ATM and
DNA repair, while increasing sensitivity to IR-induced
cell killing. Ablation of MOF by gene targeting resulted
in early embryonic lethality and cell death in mice (80).

Lethality correlated with the loss of H4K16 acetylation
and could not be rescued by concomitant inactivation
of ATM or p53 (80). In addition, decreased hMOF
activity was associated with loss of the cell-cycle check-
point response to DSBs. Taken together, these results sug-
gest that hMOF functions upstream of ATM and its
modification of histone H4 may contribute to DSB
sensing.

Histone acetylation and chromatin remodeling complexes

Recent studies have demonstrated that HAT complexes act
in concert with the ATP-dependent SWI/SNF and RSC
(remodels the structure of chromatin)-containing chroma-
tin remodeling complexes to facilitate DNA repair. The
HAT TIP60 has been shown to acetylate core histones
H2A, H3 and H4 (81,82), and cells expressing catalytically
inactive TIP60 accumulate DSBs (83). Further, TIP60 and
its cofactor Trapp directly bind to chromatin near DSBs
and depletion of Trapp impairs DNA damage-induced H4
acetylation and impairs repair of DSBs by HR (84). Similar
results were obtained with NuA4, a yeast homolog of
TIP60, following HO endonuclease-induced DSBs (85).
The NuA4 HAT complex binds directly to sites of DSBs
and occur concomitantly with appearance of g-H2AX (85).
TIP60 forms a stable complex with ATM, and activates
ATM by acetylation (86). The catalytic activity of TIP60
is stimulated in response to DNA damage, but does not
appear to be regulated by ATM. As is the case with hMOF,
it has been suggested that TIP60 functions upstream of
ATM, possibly by sensing DNA damage-induced chroma-
tin changes with subsequent signaling to ATM. Overall,
histone acetylation appears to both unwind chromatin
and create a binding platform to promote recruitment of
remodeling complexes.

The INO80 complex, including the INO80 conserved
member of the SWI/SNF family, has long been known
to regulate transcription at RNA Pol II promoters
through chromatin remodeling. More recently, it was
observed that INO80 is recruited to g-H2AX near DNA
DSBs, and yeast mutants of INO80 are hypersensitive to
damaging agents and HO endonuclease, providing one of
the first examples of SWI/SNF ATPase participation in
DNA repair (87,88). Interestingly, the actin-related pro-
tein Arp4 in yeast participates in both the NuA4 HAT
complex and the INO80/SWR1 complex providing further
support for the concerted action of histone modification
and chromatin remodeling in the DSB response (85). The
exact role of INO80 has yet to be clearly defined. Trapp-
TIP60-INO80 activity may be limited to local chromatin
unwinding since chromatin relaxation alone is sufficient to
rescue the defects of Trapp deficiency (84). However, there
is also evidence that INO80 could promote removal or
sliding of histones proximal to the DSB to allow 50 to 30

strand resection and generation of a 30-ssDNA overhang
available for binding by Rad51 and homologous
strand invasion (89,90). Finally, it is possible that TIP60
acetylation may create specific protein binding sites.
In support of this, bromodomain proteins and some tran-
scription factors bind preferentially to acetylated histones
(91–94).

1366 Nucleic Acids Research, 2009, Vol. 37, No. 5



ASSEMBLY OF ADAPTOR PROTEINS ON
CHROMATIN: ROLES FOR UBIQUITYLATION
AND METHYLATION

DNA DSBs induce a local decrease in the density of the
chromatin fiber, thus providing access for the damage
sensor and adaptor proteins required for repair. MDC1
has been termed a master regulator in restructuring higher
order chromatin in response to DSBs. MDC1 is one of
the initial proteins to accumulate at the site of DSBs in a
g-H2AX-dependent manner (95) where it is phosphory-
lated by ATM. The MDC1/g-H2AX association is
required for retention of multiple DDR proteins at the
sites of damage, including NBS1, ATM, 53BP1 and
BRCA1 (95–97). A positive feedback loop concentrates
ATM at g-H2AX molecules near DSBs via its interaction
with MDC1, thus facilitating additional phosphorylation
of adjacent H2AX molecules and amplification of the
damage signal (96,97). It is not yet clear whether binding
of MDC1 to g-H2AX is sufficient to promote chromatin
restructuring to increase accessibility of histone residues to
adaptor proteins, or if the MDC1/g-H2AX complex facil-
itates intermediate modifications of the flanking chroma-
tin to increase affinity for adaptor proteins. MDC1 also
plays a role in regulating termination of repair as binding
of MDC1 to g-H2AX leads to shielding of the g-H2AX
C-terminal tail from dephosphorylation that would pro-
mote dissociation of chromatin repair complexes (97).

RNF8 binding provides an important link between the
assembly of ‘early’ factors (NBS1, ATM and MDC1) and
‘late’ factors (53BP1, BRCA1) to g-H2AX chromatin
flanking DSBs (19,98–100). Depletion of RNF8 leads to
an impaired IR-induced G2/M checkpoint and IR hyper-
sensitivity, as well as disrupting BRCA1, 53BP1 and
RAP80 IRIF (19,98,101). RNF8 contains a RING-finger
domain suggestive of E3 ligase activity, and Fork-head
associated (FHA) domain that recognize amino acid resi-
dues flanking a central phosphorylated residue. Two
groups reported that RNF8 is responsible for IR-induced
diubiquitylation of g-H2AX and presented a model for
chromatin reorganization and the sequential binding of
adaptor proteins in response to DSBs (19,98). In the over-
all model, RNF8 is recruited to breaks by ATM phosphor-
ylation of MDC1. Consistent with this, the RNF8 FHA
domain interacts directly with a cluster of TQXF ATM
phosphorylation target sites on MDC1, and MDC1 defi-
cient cells lack IR-induced foci of RNF8 (98). RNF8 is
then responsible for IR-induced H2AX ubiquitylation
but not phosphorylation. Ubiquitylation likely occurs at
serine 139 since H2AX-deficient MEFs reconstituted with
wild-type H2AX, but not a H2AX S139A mutant, thus
show IR-induced H2AX ubiquitylation (98). In contrast,
reconstitution of H2AX-deficient mouse embryonic fibro-
blasts (MEFs) with a K119R or K120R mutant disrupts
endogenous monoubiquitylation, but not IR-induced ubi-
quitylation (98). RNF8 interacts with the E2 ubiquitin
conjugating enzyme UBC13 that has also been implicated
in ubiquitylation following DNA damage (102) and DDR
(98,100,103). Ubiquitylation of H2AX facilitates recruit-
ment and retention of BRCA1 via the ubiquitin interaction
motif of RAP80 and the mediator protein ABRA1 (104).

Yeast two hybrid assays also suggest that RAP80 interacts
with Ubc9 (105), a SUMOylation enzyme that is required
for damage tolerance and damage-induced recombination
in S. cerevisiae (106).
Botuyan and coworkers (107) reported that lysinemethy-

lation on histone H4 recruits mammalian DNA repair
factor 53BP1, and its putative fission yeast homolog
Crb2, to DNA DSBs through direct binding. Using X-ray
crystallography and nuclear magnetic resonance spectro-
scopy, they showed that 53BP1 and Crb2 contain tandem
tudor domains that interact with histone H4 specifically
dimethylated at lysine 20 (H4-K20me2). The structure
of the 53BP1/H4-K20me2 complex revealed a unique five-
residue binding cage in 53BP1 that is remarkably
conserved in the structure of Crb2, and that best accommo-
dates a dimethyllysine but excludes a trimethyllysine, thus
explaining the methylation state-specific recognition of
H4-K20. Thus, these studies revealed an evolutionarily
conserved molecular mechanism of targeting DNA repair
proteins to DSBs by direct recognition of H4-K20me2
(107). Although the related S. cerevisiaeRad9 also contains
a tandem tudor domain, structural and charge differ-
ences prevent a similar histone interaction but instead
favor DNA binding through the second tudor fold (99).
Botuyan and coworkers (107) also reported that Crb2 inter-
acts with both histones and DNA suggesting that the tudor
folds enable multi-contact interactions with chromatin.
Although RNF8-mediated H2AX ubiquitylation

appears required for 53BP1 recruitment, the exact mech-
anism remains unclear. In particular, the link between
ubiquitylation and direct tudor domain binding of
53BP1 to methylated H4 is not well defined. Further, sup-
pression of DOT1L, the enzyme that methylates lysine 79
of histone H3, inhibits recruitment of 53BP1 to DSBs
(108) suggesting that this residue also acts as a target of
53BP1. It is possible that histone ubiquitylation, acetyla-
tion and methylation all contribute to a local relaxation
of the DSB flanking region thus allowing for complete
retention of BRCA1 and 53BP1. Alternatively, ubiquity-
lation and acetylation may stimulate Trapp-TIP60 HAT
activity resulting in exposure of methyl residues important
in 53BP1 recruitment. Further 53BP1 can function in
DSB repair in XRCC4-dependent pathways of DSB
repair requiring interaction with H4K20me2 but not
H2AX (109).

DSB SIGNALING THROUGH THE PIKK KINASES

In response to DNA DSBs, a complex network of cell-
cycle checkpoint proteins is activated, resulting in
cell-cycle arrest at all three DNA damage cell-cycle check-
points (G1-S, intra-S and G2-M). The signaling molecules
that orchestrate the DDR, are the phosphatidylinositol-3
kinase-related (PIKK) class of protein kinases; ATM,
ATR and DNA-PK.

ATM

The ATM protein belongs to a growing family of PIKK
kinases and functions as an intrinsic part of the cell-
cycle machinery that surveys genomic integrity, cell-cycle
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progression and processing of DNA damage (6,48). ATM
protein kinase is primarily activated in response to DNA
DSBs caused by IR or radiomimetic drugs, and also
detects DSBs during meiosis or mitosis, or breaks conse-
quent to damage by free radicals (Figure 1) (110). It shows
similarity to several yeast and mammalian proteins
involved in meiotic recombination and cell-cycle progres-
sion, namely, the products of MEC1 in the budding yeast
S. cerevisiae and RAD3 in the fission yeast S. pombe
(111,112) and the Tor proteins found in yeasts and mam-
mals (113,114). Cells deficient in ATM have been shown
to have a high frequency of spontaneous chromosomal
aberrations, high rates of intrachromosomal recombina-
tion and error-prone recombination (6,48). Such cells have
higher initial and residual chromosomal aberrations in the
G1- and G2-phases after IR exposure as determined by
premature chromosome condensation (1,2,72). Cells
defective in ATM function also display higher frequencies
of chromosomal aberrations after IR exposure (72). Mice
mutated in the Atm gene display similar pleiotropic defects
(115–117).
ATM is observed at the sites of DNA damage, where it

is autophosphorylated (73,118) and is dissociated from its
nonactive dimeric form into the active monomeric form
(73,118). Lee and Paul (20) reported that ATM stimula-
tion appeared to be primarily through an increase in sub-
strate recruitment by ATM. From these findings, we
proposed that the Mre11 complex binds to ATM,

inducing conformational changes that facilitate an
increase in the affinity of ATM toward its substrates.

Detection and signaling of DNA damage are mediated
through downstream targets of ATM (Figure 1) (48).
ATM is a ‘hierarchical kinase’, capable of initiating mul-
tiple pathways simultaneously (48). After recruitment to
sites of DNA damage, ATM directly phosphorylates
numerous substrates including p53, Chk1 and Chk2
which in turn target other proteins to induce cell-cycle
arrest and facilitate DNA repair (Figure 2). Although
ATM is known to be a central transducer of DNA
damage signals, studies have also demonstrated that
ATM stabilizes chromosomal V(D)J recombination DSB
intermediates, facilitates DNA-end joining and prevents
broken ends from participating in chromosomal deletions,
inversions and translocations (4,5). Furthermore, it has
been reported that ATM-mediated checkpoints block the
persistence and transmission of un-repaired DSBs in
developing lymphocytes (119). We reported that ATM
phosphorylates ssDNA-binding proteins (SSBs) hSSB1
in response to DNA DSBs (120). This phosphorylation
event is required for DNA damage-induced stabilization
of hSSB1. Upon induction of DNA damage, hSSB1 accu-
mulates in the nucleus and co-localizes with other known
repair proteins. In contrast to RPA, hSSB1 does not local-
ize to replication foci in S-phase cells and hSSB1 defi-
ciency does not influence S-phase progression. Depletion
of hSSB1 abrogates the cellular response to DSBs,

Figure 1. ATM activation in response to DNA DSBs. ATM kinase activity increases immediately after DSBs occur in DNA following exposure to
IR. ATM mediates the early stages of the rapid induction of several signaling pathways, which include activation of the DNA-DSB pathway,
regulation of the cell-cycle checkpoint controls, activation of stress responses and maintenance of telomeres. ‘P’ with solid arrows indicates reported
phosphorylation events; dashed arrows represent possible signaling steps and do not imply direct interaction between proteins; ‘C’ indicates
sequestering in cytoplasm; ‘R’ indicates repair complexes; and ‘T’ indicates a role for the protein in telomere metabolism. BRCA1, breast cancer
susceptibility gene product 1; c-Abl, Abelson protein tyrosine kinase; CDK, cyclin-dependent kinase; CHK, checkpoint kinase; FANCD2, Fanconi
anaemia protein; JNK, Jun N-terminal protein kinase; MRE11, meiotic recombination 11 gene product; MDM2, ‘mouse double minute 2’ (p53-
binding protein); NBS1, Nijmegen breakage syndrome 1 protein (p95); SMC1, ‘structural maintenance of chromosome’ 1; RAD50, a radiation-
damage-repair-associated protein; TRF1, telomere-repeat-finding factor 1; hTERT, human catalytic unit of telomerase; hMOF, the human ortholog
of the Drosophila MOF gene (males absent on the first); hSSB1, the human ssDNA-binding protein 1; KAP1, KRAB-associated protein.
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Figure 2. Major regulatory steps in DSB repair. DNA damage repair is accompanied by recognition of damage, modification of chromatin at the site
of DNA damage, recruitment of repair factors and cell-cycle checkpoints. Multiple proteins with different activity for posttranslational modifications
of histones present at the DNA DSB allow to open the chromatin in order to make the DNA accessible to DNA repair machinery. Histone
modifications are necessary to remodel the nucleosomes during the repair process. Several proteins have been reported to have multiple functions that
are involved in the regulation of the DNA DSB repair, whether the damage requires to be repaired by NHEJ or HR. A two-ended DNA DSB
induced by IR are substrates for binding of the Ku70/Ku80 heterodimer. Ku70/Ku80 bound to DNA ends recruits DNA-PKcs to the ends and
promotes their juxtaposition. If no further processing of the ends is required, the additional core components of nonhomologous DNA end-joining,
XRCC4, DNA ligase IV and XLF (XRCC4-like factor also known as Cernunnos) can promote the rejoining reaction. If the two-end DNA DSB
require end processing, then such processing may require the activities of the nuclease Artemis and/or the DNA polymerase TdT, pol lambda and pol
mu. The Ku heterodimer likely plays a central role in orchestrating the activities of the proteins involved in NHEJ. The exact nature of the active
complex is currently undefined, but the transient reversible interaction of the processing factors with the core components provides great flexibility in
the combination of broken ends that can be rejoined because the process does not require strict order in which the processing factors engage or in
which the four strands will be processed. In general, the final stage of NHEJ is the ligation of DNA ends catalyzed by XRCC4-ligase IV, and this
process is promoted by Cernunnos-XLF in an unknown way. DNA DSBs repaired by HR involve various steps. For the promotion of invasion,
several proteins like Rad51, Dmc1 are loaded on the replicated DNA of the intact homolog by a single-strand tail of the resected DSB. The close
pair of parallel lines represent the two strands of duplex DNA. The left-hand side of the top most strand has 30 polarity. One of the two sister
chromatids has damage-induced DSB. Processing results in single-stranded tails at the break with 30-hydroxyl ends. The tails are substrates for
nucleoprotein filament formation, which are directed for homology recognition and DNA strand exchange lead to joint molecule formation between
the broken DNA and the intact sister chromatid.
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including activation of ATM and phosphorylation of
ATM targets after IR.
DNA-damage checkpoint pathways in S. cerevisiae are

governed by the ATM homolog Tel1 and the Mre11 com-
plex (121). In mitotic cells, the Tel1–Mre11 complex path-
way triggers Rad53 activation and its interaction with
Rad9, whereas in meiosis it activates Rad9 and the
Rad53 paralog Mre4/Mek1. Activation of the Tel1–
Mre11 complex checkpoint appears to depend upon the
Mre11 complex as a damage sensor and, at least in meiotic
cells, to depend on unprocessed DNA DSBs. The DSB
repair functions of the Mre11 complex are enhanced by
the pathway, suggesting that the complex both initiates
and is regulated by the Tel1-dependent DSB signal.
These findings suggest that the Mre11 complex has a
role in the meiotic recombination as well (121).

ATR

While ATM is involved in damage-induced DSB response,
the ATR (ATM- and Rad3-related) protein kinase pri-
marily responds to replication stress and other forms of
DNA damage, such as UV. ATR is recruited by ATR-
interacting protein (ATR-IP) to the sites of DNA
damage, in particular to RPA-coated ssDNA that accu-
mulates at stalled DNA replication forks or is generated
by the processing of the initial DNA damage. Once at the
break, like ATM, ATR phosphorylates Chk1 and Chk2,
thus inducing cell-cycle arrest.
It was previously thought that ATM and ATR had

overlapping but distinct roles in the response to DNA
damage. However, Trenz and coworkers (122) demon-
strated that both ATM and ATR work in a coordinated
manner by promoting Mre11-dependent restart of col-
lapsed replication forks and prevent accumulation of
DNA DSBs. One study showed that ATR is activated
rapidly by IR and both ATM and Mre11 enhance ATR
signaling (123). These investigators postulate that ATM
and Mre11 may stimulate the ATR signaling pathway
by converting DNA damage generated by IR into struc-
tures that recruit and activate ATR.
ATM and ATR have been regarded as important

components in the machinery monitoring progression
of meiotic recombination, DSB repair and homolog pair-
ing (124), in agreement with the location of murine
Atm throughout meiotic chromatin (125,126). Meiotic
chromosomes from Atm-deficient mice show aberrant
synapsis with unpaired axial cores, nonhomologous
synapsis and fragmented SCs (44,45). Consistent with a
role for Atm in meiosis, individuals with ataxia-telangiec-
tasia display gonadal atrophy and spermatogenetic failure,
a phenotype mirrored by Atm-deficient mice (48).
Furthermore, the yeast ATR ortholog Mec1 is known to
exert checkpoint function in the mitotic and meiotic cell
cycle, and its absence mediates a defect in synapsis
(112,127). Mec1 is required for phosphorylation of repli-
cation protein A (RPA) in response to IR-induced DNA
damage (128), and in turn RPA has been shown to interact
with Rad51, which plays an important role in mitotic and
meiotic recombination (129,130) and localizes to meiotic
recombination complexes (131–133).

DNA-dependent protein kinase

The DNA-dependent protein kinase (DNA-PK) is a
multi-component complex consisting of the DNA-PK cat-
alytic subunit (DNA-PKcs) and the Ku heterodimer
(Ku80 and Ku70). The DNA-dependent protein kinase
catalytic subunit (DNA-PKcs) is critical for DNA repair
via the nonhomologous end joining pathway and
is mutated in SCID mice. DNA-PKcs also plays a
role in the signaling response. DNA-PKcs is able to phos-
phorlyate several targets of ATM, although redundancy
in function is not absolute. In ATM null or ATM kinase-
dead cells, DNA-PKcs can phosphorylate H2AX, but
this phosphorylation is not observed in the presence
of wild-type ATM (134). In addition, histone H1 phos-
phorylation by DNA-PK promotes efficient DNA
repair (135).

Data support a role for DNA-PK in apoptotic suppres-
sion either through its role in DNA repair or damage
response signaling. A DNA-PKcs null mutation in mice
exhibit blocked V(D)J coding joining but not recombina-
tional signal (RS)-end joining or growth retardation. In
SCID mice the spermatogonia are radiosensitive (136).
Spermatogonial apoptosis occurs faster in irradiated
DNA-PKcs-deficient SCID testis compared with their
wild-type counterparts. However, p53 induction is unaf-
fected in SCID cells (136). Similarly, intestinal crypt cells
from p53 nullizygous mice are resistant to radiation-
induced apoptosis, whereas apoptosis in DNA-PK(cs)/
p53 double-null mice is equivalent to that seen in wild-
type mice (137). These studies suggest a p53-independent
apoptotic response to DNA damage utilized in the absence
of DNA-PK. It should be noted, however, that mice
null for DNA-PKcs do not exhibit the overall growth
retardation that SCID mice do, and although null fibro-
blasts are radiosensitive, null embryonic stem (ES) cells are
not (138).

Spontaneous apoptosis of spermatocytes occurred in
the SCID testis suggesting that DNA-PKcs functions
independently of the Ku proteins to promote DNA
repair in these cells. The majority of these apoptotic sper-
matocytes are found at stage IV of the seminiferous epi-
thelium where a meiotic checkpoint has been suggested to
exist. DSBs are less accurately repaired in SCID sperma-
tocytes that then fail to pass the meiotic checkpoint. Thus,
the role for DNA-PKcs during the meiotic prophase dif-
fers from that in mitotic cells since it is not influenced by
IR and is independent of the Ku heterodimer.

RECOGNITION OF DSBS IN NONDAMAGED CELLS

In addition to the random introduction of DSBs
that occur as a result of cellular exposure to DNA-dama-
ging agents, DNA DSBs are also formed in a program-
med manner during development. They are generated
to initiate recombination between homologous chromo-
somes during meiosis (3) and occur as intermediates
during developmentally regulated rearrangements,
such as V(D)J recombination and Ig class-switch
recombination.
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Initiation of meiotic recombination by DSBs

At the beginning of meiosis, each chromosome must rec-
ognize its homolog, then the two become intimately
aligned along their entire lengths forming the SC, which
allows for the exchange of DNA strands between homol-
ogous sequences. Meiotic recombination is initiated by
DNA DSBs in a variety of organisms. Numerous
studies have identified both the genomic loci of the
initiating DSBs and the proteins involved in their
formation.

Meiotic recombination initiates with DSBs formed by
Spo11, a topoisomerase II-like protein (Spo11 in S. cere-
visiae and vertebrates, Rec12 in S. pombe, Mei-W68 in
Drosophila) (139–144). DSB formation also requires the
products of at least nine other genes that act by stabiliza-
tion or recruitment mechanisms. These include meiotic-
specific Mei4 (145), Mer2 (146), Rec102, Rec104, Rec114
(Rec7 in S. pombe) (147,148), Rec103 (Ski8; Rec14 in
S. pombe) (149) as well as the Mre11 complex (150–152).
Sae2/Com1 (CtIP in mammals), discussed above, is
required for DSB processing. The localized
Spo11-induced DSBs appear before the formation of
joint molecules, and their frequency correlates with the
frequency of gene conversion and crossing-over. Meiotic
DSBs also initiate DSB response checkpoints that ensure
the completion of recombination before the exit from
pachytene.

As expected, the lack of DSBs in yeast SPO11�/�

mutants blocks recombination initiation, synapsis and
sporulation. Similarly, although viable, SPO11�/� mice
are infertile and display multiple meiotic pairing, synapsis
and recombination defects (153,154). Mammalian
SPO11�/� spermatocytes and oocytes undergo elevated
levels of apoptosis. Consistent with the interdependence
of meiotic recombination and synapsis, DSBs may
serve as the initial regulatory or structural signal required
for progression through meiosis without which apoptosis
occurs (60). Conversely, it is possible that the lack of
DSBs in SPO11�/� mice induces cell arrest and produces
a pro-apoptotic signal (153). Spo11 could also serve a
structural role secondary to DSB formation (154) leading
to the prediction that separation of functional mutants
will demonstrate independent catalytic and structural
roles as well as an understanding of apoptotic signaling
in the absence of Spo11 function. Although highest
in testis and ovary, the expression of mammalian
Spo11 and alternative transcripts are also detected in
several somatic tissues including lymphocytes (153,154),
suggesting a possible role of these gene products in
other DSB-mediated developmental programs, such
as somatic hypermutation or class switching (155,156).
However, analysis of SPO11�/� mice to date has
not revealed any role of Spo11 outside of meiosis (157).

In mammals, many of the RAD52 epistasis group
(Figure 2) homologs are expressed in multiple tissue
types, but with higher levels of expression seen in the
testis and proliferating cells, indicating their involvement
in both meiotic and mitotic recombination. The protein–
protein interactions among various members of the
RAD52 epistasis group suggest that two different

complexes are involved in DSB-induced recombination;
the first is involved in presynaptic functions including
the processing of the DSB ends, and the second involved
is in synaptic functions for invasion, creation of repair
intermediates and resolution (158).

V(D)J recombination

During early B- and T-cell development, the exons that
encode Ig and T-cell receptor (TCR) variable regions are
assembled from germline variable (V), diversity (D) and
joining (J) segments via V(D)J recombination. The reac-
tion is initiated when the RAG1 and RAG2 protein com-
plex introduces DNA DSBs at specific sites within the
border of two gene segments and their flanking recombi-
nation signals. RAG2 serves not only an enzymatic role in
the reaction but also a chromatin stabilizing role RAG2
(aa 414–487) contains a noncanonical plant homeodomain
(PHD) finger that specifically binds trimethylated lysine 4
of histone H3 (H3K4me3). Abrogation of this interaction
by either mutation of RAG2 or reduction of H3K4me3
levels impairs V(D)J recombination in vivo. Importantly a
set of patients with the immunodeficiency Omenn’s syn-
drome are mutant for a conserved tryptophan (W453) in
this region (159,160). Although it was known that
H3K4me3 functions in modulating transcription, this is
the first demonstration for a H3K4me3 role in recombi-
nation and suggests that this type of linkage may exist in
other DNA repair pathways as well. A recent study by
Bredemeyer and coworkers (4) elegantly demonstrated
that ATM functions directly in the repair of Rag-induced
chromosomal DNA DSBs by maintaining DNA ends in
their repair complexes generated during lymphocyte anti-
gen receptor gene assembly. This study explains the
increase in lymphoid tumors that carry translocations
involving antigen receptor loci associated with ataxia-
telangiectasia.

HUMAN DNA DSB DISORDERS

Within the past decade, a large amount of new informa-
tion has contributed to the understanding of DNA DSBs
sensing and processing and its relationship to human dis-
eases (13). Such studies profoundly altered the conceptual
model of DNA DSB repair. Until 1995, the majority of
information about the induction and repair of DNA DSBs
came from budding and fission yeast (161). Since then, the
focus has shifted to the study of a number of human
genetic disorders that are characterized by a defective
DSB responses (162) (Table 2). These disorders exhibit a
number of common characteristics such as developmental
defects, immunodeficiency, neurological degeneration and
cancer predisposition. The use of cell lines and mouse
models of these DSB-disorders has greatly enhanced our
understanding of the cellular processes that regulate the
maintenance and processing of DSBs.
Mutations in Mre11 and Nbs1 of the Mre11 complex

result in ataxia-telangiectasia-like disorder (ATLD) and
Nijmegen breakage syndrome (NBS), respectively. As
yet, no human condition has been identified for mutated
Rad50. Knockout mouse models of all three genes are
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embryonic lethal, highlighting the significance of this com-
plex in normal cellular functions (42,163,164). Mutations
in proteins which belong to the PIKK protein family,
ATM and ATR, result in ataxia-telangiectasia and
Seckel syndrome (Table 2). In addition, there are several
syndromes associated with proteins that are involved
directly in the DSB repair process. Defective LIG4 and
Artemis result in LIG4 syndrome and severe combined
immunodeficiency (SCID), respectively. Both proteins
function in the NHEJ pathway. Specific BRCA2 muta-
tions give rise to Fanconi anemia (complementation
group FANCD1) (Table 2), which results in defective
HR. The broad spectrum of clinical features of these
DSB disorders clearly highlights the importance in regu-
lating this type of DNA lesion.

FUTURE STUDIES AND DIRECTIONS

Considerable advances have been made in recent years in
elucidating the mechanisms and pathways by which cells
regulate the repair of DSBs. However, what can we expect
in the coming decade about the repair of DNA DSBs?
It is becoming increasingly evident that the higher order

nuclear organization of chromatin (Figure 2) plays a key
role in a cell’s ability to initiate signaling cascades in
response to DSBs. Certainly, we will learn more about
the function of chromatin modifying factors including
the interdependence of chromatin modification and
DDR signaling pathways, and their enzymatic activities
and mechanisms of regulation for DNA DSB repair by
both NHEJ and HR. Further, we know little about the
interdependence between chromatin remodeling, signaling
and DDR in euchromatin versus heterochromatin and
transcribed versus untranscribed regions.
Although individual repair HR and NHEJ pathways

have been well defined, it still remains unclear that the
mechanism by which cells regulate DNA repair process,
will be utilized to repair a specific DSB. Further investi-
gation is needed to determine if specific types of damage,
i.e. IR, UV or radiomimetic drug-induced DSBs, trigger
either NHEJ or HR pathways. It is clear that during cer-
tain phases (G1) of the cell cycle that NHEJ is the pre-
dominant mode of repair. However, during late S and G2
phases both HR and NHEJ can contribute to DSB repair.
It is interesting to speculate that the nature of the broken
ends of the DNA and their initial end processing may
ultimately determine whether the DSB is repaired by HR
or NHEJ. Recent studies demonstrated that CtIP and the

related yeast Ctp1 are recruited to DSBs exclusively in S
and G2 phases (29,31). Furthermore, transcription of ctp1
is periodic with expression coinciding with the start of
DNA replication (31). A role for DNA-PK in both H1
phosphorylation and efficient NHEJ suggests that specific
chromatin alterations may create structures that favor
recruitment or retention of a specific subset of DNA
repair proteins and thus favor a particular DNA repair
pathways. In addition, recruitment of the RSC chromatin
remodeling complex to promote removal of histones from
chromatin at HO-induced breaks is dependent on MRE11
and Ku70, and mutants in two components of RSC, Rsc8
and Rsc30, impair NHEJ but not HR or damage-induced
checkpoint activation (165,166). Further support for this
idea comes from the link between INO80 activity and
removal of histone proximal to DSBs to allow for resec-
tion and generation of ssDNA tails for Rad51-medicated
initiation of HR (89,90). These are some of the first data to
emerge that provide insight into the cell-cycle control of
HR and NHEJ, and more data in this area are sure to
emerge in the next few years.

We currently have a reasonably good understanding of
how cells activate the DDR. However, little is known
about how cells downregulate the DSB response and
restore normal chromatin structure once damage is
repaired. It is becoming increasingly evident that just as
proteins are activated by phosphorylation and acetylation
in response to the DSBs, they are also subjected to other
modifications to return them to a ready but inactive state.
The Pph3 phosphatase in yeast and PP2A in mammalian
cells have been shown to directly dephosphorylate
g-H2AX but whether dephosphorylation is of chroma-
tin-associated g-H2AX or after displacement or turnover
occurs is unclear (167,168). Histone deacetylases are also
associated with sites of DSBs and may promote efficient
repair of DSBs by HR (169). These results raise the ques-
tion of the balance between removal of histone modifica-
tions in chromatin and exchange of modified histones for
unmodified ones. Just as the DDR entails a complex coor-
dination of signaling, adaptor, and effector proteins along
with chromatin modifications, there is surely an equally
complex and coordinated sequence of events regulating
the restoration of chromatin structure and cell-cycle pro-
gression following repair.

Greater insight into the cellular control of DNA DSBs
will be important not only for increased understanding
of cellular responses to stress in general, but also for
the etiology of some cancers and development of new

Table 2. DNA DSB disorders

Syndrome Gene Phenotype

AT ATM Immunodeficiency, neurodegeneration, cancer predisposition
ATLD Mre11 Milder form of AT, no reported cancer phenotype
NBS Nbs1 Immunodeficiency, developmental defects, cancer predisposition
Seckel syndrome ATR Developmental defects, no reported cancer phenotype
Fanconi anaemia BRCA2 (FANCD1) Immunodeficiency, developmental defects, cancer predisposition
RS-SCID Artemis Immunodeficiency, no reported cancer phenotype
LIG4 syndrome LIG4 Immunodeficiency, developmental defects, cancer predisposition
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therapeutic treatments for individuals with dysfunctional
DSB repair pathways. Proteins involved in chromatin
structural alterations to facilitate DNA repair may be
altered in disease and some cancers. It is now appreciated
that chromatin modifying proteins play a role in DDR,
but some also interact with multiple known oncogenes.
Trapp interacts with c-Myc, E2F and E1A, and Trapp
antisense RNA blocks c-Myc- and E1A-mediated onco-
genic transformation. As with other areas of basic
research, the understanding of the significance of these
interactions to tumor development will be of increasing
interest in the coming years and may enable the design
and application of novel therapies.
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