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ABSTRACT

The Transporter Classification Database (TCDB),
freely accessible at http://www.tcdb.org, is a rela-
tional database containing sequence, structural,
functional and evolutionary information about trans-
port systems from a variety of living organisms,
based on the International Union of Biochemistry
and Molecular Biology-approved transporter classi-
fication (TC) system. It is a curated repository for
factual information compiled largely from published
references. It uses a functional/phylogenetic system
of classification, and currently encompasses about
5000 representative transporters and putative trans-
porters in more than 500 families. We here describe
novel software designed to support and extend the
usefulness of TCDB. Our recent efforts render it
more user friendly, incorporate machine learning
to input novel data in a semiautomatic fashion,
and allow analyses that are more accurate and
less time consuming. The availability of these tools
has resulted in recognition of distant phylogenetic
relationships and tremendous expansion of the
information available to TCDB users.

INTRODUCTION: THE TRANSPORTER
CLASSIFICATION DATABASE (TCDB)

The transporter classification (TC) system (1), formally
adopted by the International Union of Biochemistry and
Molecular Biology (IUBMB) in June 2001, provides a
guide to the known types of transport proteins present
in living organisms on earth. The development of a classi-
fication system for transport proteins has allowed us to
comprehensively view transport systems in a coherent and
unified fashion from structural, functional and evolution-
ary standpoints, and to trace pathways taken for their
evolutionary appearance (1,2). This development has

been strongly influenced by recent progress in computa-
tional biology and genome sequencing.

Since our last comprehensive description of TCDB (3),
we have expanded the transporter classification system by
(1) introducing new classes and families of transporters,
(i1) increasing the memberships of pre-existing families,
(ii1) providing more detailed annotations of these families
and proteins, (iv) updating relevant reference citations,
(v) creating a more interactive database and (vi) employ-
ing machine learning approaches that allow the semiauto-
mated input of published information. The results of our
analyses, made possible by these updates, are summarized
here. We also describe briefly some of the most important
software developed to support TCDB.

More than 500 protein families are currently in the TC
system, classified according to transporter class and sub-
class as presented in Table 1. Affiliation with a family
requires satisfying rigorous statistical criteria of homol-
ogy. Whereas the classes and subclasses distinguish func-
tionally distinct types of transporters, the families and
subfamilies provide a phylogenetic basis for classification.
The TC system is thus a functional/phylogenetic system.
Families sometimes, but rarely, cross class or subclass
lines. Hyperlinks have been constructed to identify super-
families, disease-related transporters, and sources of high
resolution 3D structural data. Several types of search tools
facilitate protein identification and characterization.

Recognition of a phylogenetic relationship based on
sequence similarity allows certain conclusions to be
drawn regarding 3D structural features. Any two proteins
that can be shown to be homologous (i.e. that exhibit
sufficient sequence similarity to establish that they arose
from a common evolutionary ancestor) can be expected to
exhibit strikingly similar topological features and 3D
structures, although a few exceptions have been noted
(4). Therefore, extrapolation from one member of a
family of known structure to other members becomes jus-
tifiable, and the degree of confidence in such an extrapola-
tion is inversely related to the degree of sequence
divergence. However, extrapolation of structural data to
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Table 1. Classes and subclasses of transport systems included in TCDB
(8 August 2008)

1 Channels/pores
LA o-Type channels
B-Barrel porins
Pore-forming toxins (proteins and peptides)
Non-ribosomally synthesized channels
Holins
Vesicle fusion pores
1.G  Paracellular channels

1.
1.
1.
1.
1.

mTmobow

2 Electrochemical potential-driven transporters
2.A  Porters (uniporters, symporters, antiporters)
2.B Nonribosomally synthesized porters
2.C  lon-gradient-driven energizers

3 Primary active transporters
3. A P-P-bond-hydrolysis-driven transporters
3.B  Decarboxylation-driven transporters
3.C  Methyltransfer-driven transporters
3.D  Oxidoreduction-driven transporters
3.E  Light absorption-driven transporters

4 Group translocators
4.A  Phosphotransfer-driven group translocators
4B  Nicotinamide ribonucleoside uptake transporters
4.C  Acyl CoA ligase-coupled transporters

5 Transport electron carriers
5.A  Transmembrane 2-electron transfer carriers
5.B  Transmembrane l-electron transfer carriers

8  Accessory factors involved in transport
8.A  Auxiliary transport proteins
8.B  Ribosomally synthesized protein/peptide toxins that target
channels and carriers
8.C  Non-ribosomally synthesized toxins that target channels
and carriers

9  Incompletely characterized transport systems
9.A°  Recognized transporters of unknown biochemical
mechanism
9.B  Putative transport proteins
9.C  Functionally characterized transporters lacking identified
sequences

other proteins is never justified if homology has not been
established.

Similar arguments apply to mechanistic considerations.
Thus, the mechanism of solute transport is likely to be
similar for all members of a permease family with varia-
tions on a specific mechanistic theme being greatest when
the sequence divergence is greatest (5,6). By contrast, for
members of any two independently evolving permease
families, the transport mechanisms may be entirely differ-
ent. Extensive experimental work has established that
phylogenetic data can also be used to predict substrate
specificity, polarity of transport and even intracellular
localization, depending on the family and degree of
sequence divergence observed (1,4).

Since our last description of TCDB (3), this database
has expanded with the introduction of six new subclasses
(increase of 33%), 143 novel families (increase of 34%),
2009 novel proteins (increase of 67%) and 167 novel sub-
families in the five largest superfamilies (increase of 30%).
The number of references cited in TCDB is now 4595,
a 40% increase since January 2006. In the last 12
months, the number of visits to TCDB has increased
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40%. Thus TCDB is a rapidly growing database which
is increasingly useful to the international scientific
community.

ESTABLISHING HOMOLOGY BETWEEN PROTEINS

Statistical algorithms are used to establish homology
between two proteins, two families of proteins, or two
repeat sequences within the proteins of a single family
(7,8). In general, these depend on the ‘Superfamily
Principle’ (9,10). This principle simply states that if A is
homologous to B, and B is homologous to C, then A is
homologous to C (9). Care must be taken, however, that
in establishing homology, corresponding domains or
regions of the protein are being compared (11,12).
Moreover, a reliable program must take into account unu-
sual residue compositions, as, for example, occur with
membrane proteins that have a disproportionate percen-
tage of hydrophobic residues, or proteins with multiple
short repeat sequences that comprise a substantial fraction
of the proteins or protein segments compared (7,12).

An average protein domain is roughly 60 residues long,
so we have set the minimal length of sequences to be
compared for purposes of establishing homology as 60
residues (10). We use the following rigorous criteria for
the purpose of establishing common ancestry. To be
homologous, two proteins, when correctly aligned to max-
imize identities and similarities and minimize gaps, must
give a comparison score of 9 SD. This value corresponds
to a probability of 10 '” that this degree of sequence simi-
larity could have occurred by chance (13). These criteria
eliminate the possibility that convergent sequence evolu-
tion accounts for the degree of similarity observed (10,14).

The GAP program (15) randomly shuffles the two
sequences being compared 100 times and compares the
actual aligned sequences with the shuffled sequences.
This method eliminates artifacts due to unusual amino
acid compositions, but 100 random shuffles are insufficient
to give reliable values. We designed a modified program
[the InterCompare program (IC); (7) and unpublished
modifications], which has several advantages over GAP.
First, it automatically conducts five 100-shuffle runs and
averages the results, and second, it can take any number
of sequences known to be homologous to protein or pro-
tein domain A, and compares them to any number of
sequences known to be homologous to protein or
domain B. If protein/domain C (homologous to A)
shows over 9 standard deviations with protein/domain D
(homologous to B), then by the Superfamily Principle, A
must be homologous to B. The IC program can compare
100 homologues of A with 100 homologues of B to give
10000 comparison scores. The third advantage is that the
program presents the results as specified by the user, most
usefully according to the values of the comparison scores.
This allows the investigator to quickly identify the best
comparisons for further examination (16).

The IC program can take a few hours to compare multi-
ple sequences. Consequently, the number of proteins that
can be inputted is limited. If BLAST searches of proteins
A and B yield 500 sequences each, this number must be
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reduced. This becomes possible due to availability of the
CD-Hit program (17). This program eliminates all redun-
dancies and all sequences with a percent identity greater
than some specified value. The default setting is 90%.
Thus, with this setting, only one protein of all the retrieved
sequences with greater than 90% identity will be retained.
If too many sequences are still retained, a lower cut-off
value can be used. In this way, the desired number of
sequences can be fed into the IC program.

A problem with the CD-Hit program is that the
retained sequences may be fragments of complete protein
sequences rather than the full length sequences. We have
therefore modified CD-Hit so that only sequences of
‘normal’ length are retained. The program works as fol-
lows: the script summarizes the sizes of all the proteins
obtained in a BLAST search, and a decision is made to
exclude presumed fragmentary sequences. This is done by
selecting a size range. All smaller sequences are eliminated.

When two sets of proteins are to be compared, two
programs can be used: IC and GS (Get Score). The IC
program is described above; the GS program functions
as follows: The two lists of proteins are compared by
(1) BLAST (18) and (ii) SSearch (19). In the latter pro-
gram, for any binary comparison, the two bit scores
are averaged, and based on a standard curve, they are
converted to a comparison score expressed in standard
deviations. Because SSearch compares the binary align-
ment with 500 randomly shuffled sequences, this program,
like GAP and IC, corrects for abnormal amino acid com-
positions. An advantage of GS over IC is that it takes only
about 1% as much computer time. Using programs to
estimate integral membrane protein topologies (WHAT
and AveHAS; 20,21), the parts of the proteins compared
can be visualized.

ESTABLISHING SUPERFAMILY RELATIONSHIPS
BETWEEN DISTANTLY RELATED FAMILIES

A major problem for phylogenetic tree construction arises
when the sequences are so divergent that accurate multiple
alignments cannot be generated. A novel program is there-
fore required for quantitating increasingly distant rela-
tionships. We have designed such a program and call it
‘Supertree’. This program is based on BLAST searches
and the resultant bit scores. There are several steps in its
use. First, the query protein sequences (one for each
family within the superfamily) are BLASTED against
the NCBI protein database. Redundancies and sequences
of greater than 70% identity (another cut off point can be
used) are eliminated using the modified CD-Hit program
described above. A small number of sequences (typically
five) from each set are randomly selected by the program.
All resultant sequences are compared with all other
sequences using the Blastall program. The Blastall scores
for all comparisons (e.g. if five sequences are selected, this
is 5 x5, or 25) are averaged, so a mean score is obtained
for each family comparison. The resultant matrix is then
used to generate a neighbor-joining tree. This process is
conducted 100 times, and a consensus tree is generated
using the program Consense (source code for both
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neighbor-joining and Consense are available at http://evo-
lution.genetics.washington.edu/phylip.html). Finally, the
tree is drawn using the TreeView program (22).

In some cases, when sequence divergence is not great,
the Supertree method can be compared with approaches
using traditional programs based on multiple alignments
(CLUSTALX, T-COFFEE, ectc.). In all such cases, the
correlations have proven to be excellent.

DATA INPUT USING MACHINE LEARNING

A major improvement to TCDB has involved the devel-
opment and implementation of state-of-the-art machine
learning techniques. Machine learning is the field of arti-
ficial intelligence in computer science that uses computer
programs to read specific data and use them to create a
generalization called a model. We use proteins and cited
articles present in TCDB (and therefore known to be rele-
vant to transport) and create models that can identify
novel proteins and articles that should be included in
TCDB. Since our training sets come from general protein
databases such as Swiss-Prot and TrEMBL, or Medline
articles available in PubMed, our techniques are general
purpose and directly applicable to many of the databases
listed in this issue.

In order to keep TCDB constantly up-to-date, we
need to identify new data that are relevant to transport
but not already in TCDB. We consider two types of data,
(i) UniProt protein records and (ii) Medline documents.
Our techniques for working with each of these sources are
largely similar, so we focus on Medline documents here.
For a detailed description of our research involving
UniProt records, see (23). The process of updating
TCDB with new documents is as follows:

(1) Choose the training set of documents.
(i1) Identify the features of those documents to be used
to make classifications.
(iii) Train a model.
(iv) Use the model to identify new documents.
(v) Verify that the predictions are correct.
(vi) Import the data into TCDB.

As noted above, the positive instances in our training set
are the documents currently referenced in TCDB. We do
not, however, have a corresponding reliably labeled nega-
tive set which is typically also provided as part of the input
to a learning algorithm. However, we recently showed why
we were able to do almost as well by using unlabeled
Medline documents (24).

The features that we use are words that are associated
with each document, either by appearing in the document
itself, or by being part of a set of keywords associated with
the document. That is, each word is a numerical feature,
and its value is proportional to the number of times it
appears. This representation is sometimes called a ‘bag
of words’, since the multiplicity of each word is consid-
ered, but not the order in which it appears. We also sepa-
rate out different sources of these words. For instance, we
consider the word ‘transport’ as appearing in the title of
an article to be a different feature than if this word were to



appear in the document’s abstract. In fact, we do not
typically consider words in the body of a document but
limit our representation to words in the document’s title
and abstract. We also weigh author names, affiliations,
and keywords associated with the documents.

To accomplish the third and fourth steps (training a
model and using it to identify novel documents), we use
a classifier model called a support vector machine (25) and
a standard associated learning algorithm. We use our
derived models to rank a set of candidate articles accord-
ing to a score that is proportional to the likelihood that
the new article is related to membrane transport, given its
features (i.e. words). We then examine each article in
order, starting with the most likely transport article
according to our model. For each, we identify the appro-
priate proteins and associated information and insert these
into TCDB. We continue this process until we determine
that the frequencies of relevant articles are insufficient to
be of use.

In a period of less than 9 months, we have identified
1255 articles that are related to transport, 742 of which
have been added to TCDB (an increase of 21%). The
remaining 513 articles were not added to TCDB because
they described proteins that are very similar in sequence
and function to proteins that were already in TCDB or
because they were not important enough for some other
reason. For further details about our learning approach
and deployment statistics, see (26).

We focus on a set of about 100 journals that are the
most cited in TCDB. In a month, we typically have about
6000 articles to consider as potential sources of transport
information. We cannot examine them all, but we expect
about 2-3% of them to be relevant. The accuracy of our
models depends on how many articles we examine. For
instance, if we look at the 10 highest-scoring articles, we
observe an accuracy of nearly 100%. When we examine
the top 100, we observe about 48% accuracy, and if we
look at the top 300, we observe about 28% accuracy. This
approach gives us a recall comparable to that of a human
expert, but the human expert needs only to examine a
relatively small number of false positives to find the rele-
vant ones.

CONCLUSIONS AND PERSPECTIVES

We are currently developing a few additional methods to
facilitate the introduction of new proteins and families
into TCDB. In the next version of the database, we plan
to allow users to submit their own sequenced proteins and
descriptions for inclusion. We are also experimenting with
novel ways to automatically identify proteins that are
associated with our document examples. One source is
NCBTI’s curated databases, but these are incomplete and
need to be supplemented with named entity recognition
(NER) techniques. NER involves automatically parsing
text, such as document abstracts, into categories. Once
protein names and other identifiers are found, one can
look them up in general databases and extract the neces-
sary information.
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Associating articles with proteins helps us in two impor-
tant ways. First, it provides our learning algorithms with
key additional features which should increase the accuracy
of the models. Second, it will help us identify and organize
the data associated with a protein (sequence, protein
family, etc.) that go into TCDB. This can help automate
the process of importing new data.

The vast amount of protein sequence data now avail-
able renders data mining essential for maximizing output.
TCDB development often depends on preexisting pro-
grams, but we must also design and update software in
order to refine and optimize data input concerned with the
functions, mechanisms, topologies, structures, phyloge-
netic relationship and evolutionary origins of transport
proteins. TCDB can serve as a model system for the
expansion of database technologies useful for many
purposes.
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