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ABSTRACT

Disease gene identification is still a challenge
despite modern high-throughput methods. Many
diseases are very rare or lethal and thus cannot be
investigated with traditional methods. Several in
silico methods have been developed but they have
some limitations. We introduce a new method that
combines information about protein-interaction net-
work properties and Gene Ontology terms. Genes
with high-calculated network scores and statisti-
cally significant gene ontology terms based on
known diseases are prioritized as candidate
genes. The method was applied to identify novel pri-
mary immunodeficiency-related genes, 26 of which
were found. The investigation uses the protein-
interaction network for all essential immunome
human genes available in the Immunome
Knowledge Base and an analysis of their enriched
gene ontology annotations. The identified disease
gene candidates are mainly involved in cellular sig-
naling including receptors, protein kinases and
adaptor and binding proteins as well as enzymes.
The method can be generalized for any disease
group with sufficient information.

INTRODUCTION

Although genes related to diseases have already been
determined over several decades and thousands of such
genes are already known, it is still very difficult to find
genes underlying a specific disorder. Traditionally, most
studies have been based on linkage analysis of several
affected families, which generally results a large locus
or a few loci with numerous, even hundreds, of genes.
Still, the identification of the disease gene is difficult and

laborious as several difficulties can impede this approach.
Many diseases are so rare that it is impossible to find
enough families for linkage analysis. For example, in the
recently discovered primary immunodeficiency (PID)
caused by defective endosomal adaptor protein p14, only
a single patient is known (1). A similar case arises when
the symptoms of the disease are so severe that hardly any
patients have siblings, such as in severe combined immu-
nodeficiencies (SCIDs) (2).

Even if the disease-related locus is identified, the gene
identification can fail, especially if the genomic region is
large. Similar problems also impede modern genome-wide
association studies (3). Due to all these challenges, several
attempts have been made to identify candidate genes using
in silico methods (4–6). These approaches have been
grouped in three categories (7). Some of the methods are
sequence-based or they use other intrinsic properties of the
genes like functional annotations (8). Others are based on
gene expression patterns or other phenotypic properties
(9). In the third category, the methods use some kind of
interaction between the genes or their products as the basis
of the predictions (10). The individual disease gene predic-
tions usually apply one or two of these approaches, such
as in the PhenoPred system (11) or SUSPECTS (12).

Most of the algorithms have been implemented locally,
but there are also Internet-based services dedicated to dis-
ease gene predictions, and some are parts of more general
servers that can help the process. For example,
GFINDER works on a user-defined gene list (13).
Among the results are overrepresented gene ontology
(GO) terms and diseases, which have significant related-
ness to the provided genes. Many of the disease gene pre-
diction tools are denoted for prioritization, i.e. they try to
identify genes in a starter set, which has a higher likeli-
hood of being related to the target disease(s) than the rest
of the set. Certain systems are open for the scientific com-
munity (14) and have been applied to cancers (15) and
fetal alcohol syndrome (5), for example.
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Primary immunodeficiencies impair the function of the
immune system. Patients with these intrinsic defects have
increased susceptibility to recurrent and persistent infec-
tions and may also have autoimmune and cancer-related
symptoms (16–18). Most PIDs are rare and the diagnosed
patients for a condition are often randomly spread around
the world, and thus linkage or genome-wide association
studies analysis in these rare diseases is barely possible.

There are numerous different mechanisms behind PIDs.
Several PIDs affect T- or B-cell functions and, when both
cell types are affected, lead to SCIDs. Other PIDs affect
the major histocompatibility complex (MHC), antibody
production, lymphocyte apoptosis, phagocytosis, the com-
plement cascade or the innate immune system. Detailed
information about PIDs is available from the
ImmunoDeficiency Resource (IDR, http://bioinf.uta.fi/
idr; 19). Altogether, there are over 200 PIDs (16) and
144 PID genes listed in the IDR.

With an exhaustive analysis of literature and databases,
we identified altogether 847 genes and proteins that are
crucial for the immune system and thus form the essential
human immunome (20). These genes and proteins are
involved in numerous functions, including cell surface
recognition, transcription factors, DNA processing and
adaptor proteins. System level analysis has been per-
formed, e.g. for the evolutionary history of these genes
(21), the emergence of immunity-related domains and
gene ontologies (21), and the development of the interac-
tion network of the immunome proteins during the evolu-
tion of the immune system (22,23).

GO terms (24) are used for systematic annotation of
genes on three levels, namely biological processes (BP),
cellular components (CC) and molecular functions
(MF). GOs have been used, e.g. for grouping genes by
their common properties and for elucidating the biological
meaning of results in high-throughput experiments (25),
such as with microarrays (26,27).

Protein-interaction networks have been reconstructed
for several organisms by using modern high-throughput
methods (28–30). Analyses of these networks have
revealed functionally important proteins (31,32).
Different networks, ranging from social interactions
(33,34) via protein–protein interactions (35,36) to the
spreading of epidemics (37) as well as human made net-
works like the Internet (38,39), have been shown to share
similar characteristics, which suggests common organizing
principles for their emergence (40).

Here, we present a novel method for disease gene iden-
tification and prioritization. Our approach combines
information about protein-interaction networks and GO
terms. The method was applied to PIDs and human
immunome data to suggest new genes that might have
relevance to primary immunodeficiencies.

MATERIALS AND METHODS

Immunome genes and their interactions

Information about PID genes and immunodeficiencies
was taken from the IDR (19). Human immune system-
related proteins were collected from the Immunome

database, a reference set of human immune system-related
genes and proteins (21) recently integrated with our other
immunome registries in the Immunome Knowledge Base
(Ortutay and Vihinen, submitted for publication). Protein
interactions were associated with the immunome proteins
according to the Human Protein Reference Database
(HPRD) (41). As only interactions between the immu-
nome proteins were taken into account, no new nodes
were added, but proteins without interactions were elimi-
nated from the dataset. The final network contained 584
nodes of the 847 original ones, forming altogether 1349
interactions (22). Interactions that appeared more than
once were simplified to single edges.

Degree, vulnerability and closeness centrality of the immu-
nome proteins

Network property characteristics, vulnerability, closeness
centrality and degree of the nodes were calculated using
the igraph R library (42). The degree specifies the number
of interactions of a protein.
Vulnerability is calculated using the global efficiency of

the network. Efficiency quantifies the efficiency of the net-
work in sending information between nodes, assuming
that the efficiency between two nodes is proportional to
the reciprocal of their distance (43). Global efficiency was
calculated as follows:

E ¼
1

NðN� 1Þ

X

i 6¼j

1

dij
,

where dij is the distance between the ith and jth nodes as
the minimal number of edges on the shortest path between
them and N is the total number of nodes in the network.
The vulnerability of a network was calculated using

efficiency characteristics (44). The vulnerability, Vi, of
a network associated with the ith node is
Vi ¼ ðE� EiÞ=E, where E is the global efficiency of the
network while Ei is the global efficiency of the network
without the node i and all of its interactions. The overall
vulnerability of the network is the value of the most vul-
nerable node, i.e. the largest loss in performance when a
node is deleted from the network.
Closeness centrality marks how far or close a certain

node is to all the others, so that it can be interpreted as
how central the position of the protein is in the network
(45). It is defined by the inverse of the average length of
the shortest paths to/from all the other vertices in the
graph:

CCi ¼
Vij j � 1P
i6¼j

dij
,

where |Vi| is the size of the reachable subnetwork from
node i and dij is the distance between the ith and jth nodes.
To test the biological significance of these scores, we

compared their distribution in essential immunome genes
and for all the proteins of the immunome-interaction net-
work. We used Mammalian Phenotype Ontologies (46) to
define genes as essential when they caused embryonic,
perinatal or neonatal lethality in mouse models (47)
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according to the Mouse Genome Database (48). The
human orthologs of murine genes were considered as
essential, when the murine gene was annotated with
one of the following phenotypes: neonatal lethality
(MP:0002058), embryonic lethality (MP:0002080), perina-
tal lethality (MP:0002081), postnatal lethality
(MP:0002082), lethality-postnatal (MP:0005373), lethal-
ity-embryonic/perinatal (MP:0005374), embryonic lethal-
ity before implantation (MP:0006204), embryonic lethality
before somite formation (MP:0006205) or embryonic
lethality before turning of embryo (MP:0006206).

GO analysis

GO terms (24) were collected from the Immunome data-
base for all the 847 genes in the essential immunome.
Using topGO R library (49), we identified three sets of
50 genes from the immunome protein-interaction net-
work, which had the highest degree, vulnerability or close-
ness centrality. These sets were compared to the whole
dataset. We made independent analyses for vulnerability,
closeness centrality and degree scores in combination with
the ‘biological process’, ‘cellular component’ and ‘molec-
ular function’ ontology terms, thus performing altogether
nine analyses. We used Fisher’s exact test for statistics and
three methods for enrichment analysis of the GO terms in
the significant group. The methods called ‘classic’, ‘elim’
and ‘weight’ have been described and compared in ref.
(49). The ‘classic’ method tends to rank general terms
highly, whereas methods ‘elim’ and ‘weight’ are more
balanced and prefer more specific terms. This is especially
true for the ‘weight’ method; therefore, in subsequent ana-
lyses, we used the P values from this method to evaluate
the significance of the terms.
We also performed the analysis so that the 144 known

PID genes from the IDR were considered as significant
and were compared to all the immunome genes. We also
identified the significant BP, CC and MF ontology terms
for the PID-related genes.

Predicting PID-related candidate genes

The significant PID-related GO terms were combined with
the results for the protein-interaction network-related
scores in order to predict new PID-related genes. The
lists of genes with the 50 highest vulnerability, closeness
centrality or degree values were created. When combined,
these lists contained 84 genes.
Another list was generated for genes containing signif-

icant PID-related GO terms. Significant GO terms
(P< 0.05), which were annotated for at least three but
not for more than 50 immunome genes, were chosen.
This way, we managed to exclude too general and there-
fore uninformative terms like ‘cell part’ (GO:0044464) and
terms that appeared to be significant just by chance
because of their low frequency, like ‘cyclosporin A bind-
ing’ (GO:0016018), which was annotated for a single gene.
The weight method was applied for enrichment analysis.
This way, 54 significant GO terms were chosen from the
three GO term categories. In total, 231 genes had these
annotations.

To combine all the results, a Venn graph was drawn for
the high-network score genes, the significant GO term-
related genes and the known PID genes. Those genes
that appeared among both the high score and the GO-
related lists, but were not among the known PID-causing
genes, were defined as PID candidate genes.

Performance evaluation of the method

To assess the performance of our approach to find PID
genes, we have done the leave-one-out test. We rerun the
method for 144 times (the number of known PID genes)
by leaving one known PID gene out at time. First, the
effect of the left out gene on the GO parameters was
checked. Then, we tested whether the left out known
PID gene was predicted to be disease-related. The perfor-
mance test was implemented using the R statistical
environment.

RESULTS

We developed a novel method for candidate disease gene
identification. The method combines information about
an interaction network describing the relations of proteins
under study with their GO annotations to prioritize dis-
ease gene candidates. The method, which can be used for
any disease gene group provided there is sufficient protein
interaction and GO data available, was applied to the
human immunome to search for novel PID candidates.

Protein-interaction network-related scores

Several parameters can be used to describe interaction
networks. General but descriptive scores, degree, vulnera-
bility and closeness centrality were calculated for 584 pro-
teins present in the immunome protein-interaction
network. Degree values, as expected, show a power-law
distribution with a power-law exponent of 1.6. All three
parameters show strong correlation, their pairwise
Spearman’s rank correlation coefficients are between
0.67 and 0.785. FYN oncogene related to SRC (FYN),
lymphocyte-specific protein tyrosine kinase (LCK),
Janus kinase 1 (JAK1), signal transducer and activator
of transcription 1 (STAT1), receptor type protein tyrosine
phosphatase C (PTPRC), CD4 antigen (CD4) and com-
plement component 3 (C3) were among the top 15 pro-
teins in all the three scorings.

The scores were used to describe the importance of the
proteins in the interaction network. To test this hypoth-
esis, we identified the genes in which mutations lead to
early lethality in mouse models. We called these ‘essential
genes’. Values for the three tested parameters are signifi-
cantly higher for essential genes compared to other immu-
nome genes (Figure 1). Of the 144 PID-related genes, 84
were among the top 50 genes when results for the individ-
ual scores were combined. Known PID-related proteins
LCK, STAT1, PTPRC and C3 appeared in the top 15 in
all three score lists. The PID-related proteins have signifi-
cantly higher degrees compared to the whole dataset
(P=2.57� 10�4).
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Significant GO terms for the genes with the top 50 network
scores

The enrichment of GO annotations for the immunome
genes with the top 50 scores was identified. Signaling-
related ontology terms dominated the ‘biological process’
ontologies. ‘Protein amino acid phosphorylation’
(GO:0006468) was the most significant in the case of all
three scorings. Fifty-two genes in the protein-interaction
network have this annotation. The calculated P values for
those terms are between 4.6� 10�4 and 8.2� 10�9. Also, a
high number of regulation-related ontology terms, such as
‘regulation of T-cell activation’ (GO:0050863) or ‘positive
regulation of interleukin-12 biosynthetic process’
(GO:0045084) appear in the dataset.

Most of the significant ‘molecular function’ ontology
terms were related to kinase activity and receptor activity.
Significant ‘cellular component’ terms were less informa-
tive, being either too general or annotated for just a few
proteins. Sometimes, they were obviously important for
immunology, like ‘immunological synapse’ (GO:0001772)
or ‘interleukin-1 receptor complex’ (GO:0045323).

Significant GO terms for the PID-related genes

GO enrichment analysis was performed for the known
PID genes. The most significant terms had close relation-
ships with immunology. In the case of MF, proteolysis-
related terms, like ‘chymotrypsin activity’ (GO:0004263)
and ‘endopeptidase inhibitor activity’ (GO:0004866) are
dominant. The significant CC ontology terms point to
structures important for immunology, such as ‘membrane
attack complex’ (GO:0005579), where all seven proteins
annotated with this term are PID genes, and thus the sig-
nificance of this term is high (P value 3.6� 10�7 with the
weight method).

Genes with high-network scores and significant GO terms as
predicted disease genes

We combined the gene lists for the high-network score
genes and the significant PID-related GO terms in order
to identify new potential PID genes (Figure 2). Altogether,
84 genes were among the 50 highest scores, when
results for degree, closeness centrality and vulnerability
were combined. Twenty-two of these genes were

already-known PID genes. Two hundred and thirty-one
genes had GO terms significantly related to PID genes,
and 74 of them were PID genes. Altogether, 83 of the
144 PID-related genes were selected either by the GO
terms or high-network scores. Thirty-nine genes had
both high scores and significant terms, 13 of which were
PID-related. So, finally, we have a list of 26 suspected PID
candidate genes (Table 1).
We addressed the performance of the method by a sta-

tistical test. By using the leave-one-out method, all the 13
known PID genes with high-GO scores and network
scores were identified as disease-related. The result is
100% correct for the high-score network and GO-enriched
PID genes in Figure 2. Thus, it is very likely that also the

Figure 1. Protein-interaction network-related scores for essential and immunome genes. An immunome gene was considered essential if mutation in
the mouse ortholog causes early lethality. P values for the Kruskal–Wallis rank sum test are shown on the plots. (A) Degree; (B) vulnerability; (C)
connectivity.

Figure 2. Identification of novel PID candidate genes by using infor-
mation about the network properties, GO terms and known immuno-
deficiency genes. The grey area indicates the 26 candidate genes that
have high-protein network scores and GO terms enriched in PID genes
and which are not among already known PID genes.
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26 predicted PID genes, which have high-network and GO
scores, have relevance to immunodeficiencies.

DISCUSSION

Protein-interaction networks have been recently used in
several studies targeting diseases (47,50,51). The theory
of scale-free networks and graph theoretical approaches
has been applied to several areas including biological and
medical networks. Networks for 867 human diseases and
1377 disease genes were constructed to study essential and
disease genes and their role in the human interactome (47).
Only 15 immunodeficiencies were included in this analysis.
In another study based on a protein-interaction network
(50), the clustering of disease genes was noticed in the
interactome. A recent review (51) steps even further and
discusses four possible areas where protein networks can
be used in relationship with diseases, including identifica-
tion of disease-related subnetworks and prediction of new
disease genes.

In some studies, disease gene prioritization has been
targeted by in silico methods. Protein-interaction networks
have formed the basis for certain techniques. In these stud-
ies, the location of proteins in the interaction network has
been revealed to determine if they are in a significant posi-
tion in the network (10,52). Important proteins are essen-
tial and therefore frequently found among disease genes
(47). Other approaches have integrated protein-interaction
information with other data sources to select candidate
disease genes (53–55). Our method combines the scores
describing properties of a protein interaction network
with GO terms, which provide information for protein
functions, processes and localization.

We have shown that there is a relationship between the
importance of proteins in the immunome-interaction net-
work, as indicated by centrality scores, and GO terms. The
vulnerability, closeness centrality and degree values were
calculated for all 584 immunome proteins in the interac-
tion network. The scores show strong correlations with
each other. The scores were used as measures for the
importance of proteins in the immunome network.

Table 1. Identified PID candidate genes

Symbol Full name GeneID Known diseases

CD4 CD4 antigen (p55) 920 186 940 CD4+

lymphocyte
deficiency

CD9 CD9 antigen (p24) 928
CTSG cathepsin G 1511
FADD Fas-associating protein

with death domain
8772

FYN Protein-tyrosine kinase
fyn

2534

GZMB Granzyme B 3002
IGF1R Insulin-like growth factor

1 receptor
3480 147 370 Intrauterine and

postnatal growth
retardation

IL2RB Interleukin 2 receptor, b 3560
INSR Insulin receptor 3643 610 549 Diabetes melli-

tus, insulin-resistant,
with acanthosis
nigricans

609 968
Hyperinsulinemic
hypoglycemia

246 200 Leprechaunism
262 190 Rabson–

Mendenhall
syndrome

IRAK1 Interleukin-1 receptor-
associated kinase 1

3654

ITGB1 b 1 integrin 3688
JAK1 Janus kinase 1 3716
JAK2 Janus kinase 2 3717 600 880 Budd–Chiari

syndrome
601 626 Leukemia,

acute myelogenous
254 450 Myelofibrosis,

idiopathic
263 300

Myeloproliferative
disorder with
erythrocytosis—
polycythemia vera

187 950
Thrombocythemia,
essential

KIT v-Kit Hardy-Zuckerman
4 feline sarcoma viral
oncogene homolog

3815 606 764 Gastrointestinal
stromal tumor,
somatic

273 300 Germ cell
tumors

273 300 Mast cell
leukemia—mastocy-
tosis with associated
hematologic
disorder—piebaldism

LRP1 Low-density lipoprotein-
related protein 1

4035

MAPK14 Mitogen-activated protein
kinase 14

1432

PDGFRB Platelet-derived growth
factor receptor,
b-polypeptide

5159 131 440
Myelomonocytic
leukemia, chronic—
myeloproliferative
disorder with
eosinophilia

RELA v-Rel reticuloendothelio-
sis viral oncogene
homolog A

5970

RIPK1 Receptor (TNFRSF)-
interacting serine-
threonine kinase 1

8737

(continued)

Table 1. Continued

Symbol Full name GeneID Known diseases

SOCS1 Suppressor of cytokine
signaling 1

8651

STAT3 Signal transducer and
activator of
transcription 3

6774

THY1 Thy-1 cell surface antigen 7070
TRAF1 TNF receptor-associated

factor 1
7185

TRAF2 TNF receptor-associated
factor 2

7186

TYK2 Tyrosine kinase 2 7297
XRCC5 X-ray repair comple-

menting defective
repair in Chinese
hamster cells 5

7520

For each genes, the HGNC approved symbol, full name, Entrez
GeneID and OMIM code for known diseases is provided.
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As previously indicated (47), many important proteins
have a high-degree value, their vulnerability is high and
they also have high closeness centrality.

To test the biological relevance of the scores, we used
them to analyze essential genes. Mutations in essential
genes cause embryonic, perinatal or neonatal lethality in
mouse models. Mutations in certain PID genes also cause
lethality and, in some other PID genes, lead to very severe
conditions (SCIDs). The three network scores were signif-
icantly higher for essential genes than for immunome
genes in general.

In the next step, we identified GO terms that were
enriched in the known PID genes. Many of these terms
were related to signaling or regulation. In this analysis, we
applied a recently introduced method (49), which has been
shown to be capable of estimating the significance of over-
represented GO terms and was used to analyze microarray
experiment data (56).

New PID candidate genes were defined as having ontol-
ogy terms significantly associated with disease genes and
the encoded proteins as having high-network scores. We
identified 26 such genes that could lead to immunodefi-
ciencies when mutated. Many of the detected candidate
genes have numerous functions and several interaction
partners. The biological functions and the relevance of
the candidate genes for immunology are discussed in
detail in Supplementary Data.

The power of our method became more apparent when
two of the predicted candidate genes turned out to be
known PID genes, but not yet annotated in the IDR ver-
sion we used to identify known disease genes. The signal
transducer and activator of transcription 3 (STAT3) (57)
and tyrosine kinase 2 (TYK2) (58) are responsible for
PIDs and involved in IL-6R-related responses to infec-
tions (59). In addition, genome-wide association studies
have uncovered susceptibility genes (60). Among these is
the TRAF1-C5 region (61), which contains one of our
OID candidate genes TRAF1. Thus, experimental evi-
dence supports our in silico predictions.

Our method uses information about interactions among
the proteins of the human immunome and also their func-
tional annotation. The immunome charts the genes and
their products for immunological responses and thus
includes the PID genes. In a similar way, this method
can be generalized to any group of diseases and the related
genes and proteins for which sufficient information is
available.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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