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ABSTRACT

A synthetic genetic array was used to identify lethal
and slow-growth phenotypes produced when a
mutation in TRM6, which encodes a tRNA modifica-
tion enzyme subunit, was combined with the dele-
tion of any non-essential gene in Saccharomyces
cerevisiae. We found that deletion of the REX1
gene resulted in a slow-growth phenotype in the
trm6-504 strain. Previously, REX1 was shown to be
involved in processing the 3’ ends of 5S rRNA and
the dimeric tRNAArg-tRNAAsp. In this study, we have
discovered a requirement for Rex1p in processing
the 3’ end of tRNAi

Met precursors and show that pre-
cursor tRNAi

Met accumulates in a trm6-504 rex1D

strain. Loss of Rex1p results in polyadenylation of
its substrates, including tRNAi

Met, suggesting that
defects in 3’ end processing can activate the
nuclear surveillance pathway. Finally, purified
Rex1p displays Mg2+-dependent ribonuclease
activity in vitro, and the enzyme is inactivated
by mutation of two highly conserved amino acids.

INTRODUCTION

The production of mature non-coding RNA, such as
tRNA and rRNA, does not result from transcription
alone, but also requires a number of post-transcriptional
processing and modification reactions. For example,
tRNAs are transcribed as precursors that have extra
nucleotides at both the 50 and 30 ends—and sometimes
introns as well—that need to be removed (1). Further-
more, tRNAs acquire abundant nucleoside modifications,
including base and ribose methylations, base isomeriza-
tions and base deaminations, that are introduced post-
transcriptionally by numerous enzymes (2).

While 50 leader removal, carried out by RNase P, is a
conserved process among diverse organisms, 30 end pro-
cessing has been found to be a more complex and varied
process, with differences not only between organisms, but
also between the different tRNAs in a single organism
(3,4). In Saccharomyces cerevisiae, both endonucleases
and exonucleases that process the 30 ends of tRNA
in vitro have been found (5). A model for tRNA 30 end
processing has been proposed in which the Lhp1 protein
binds the 30 end of a precursor tRNA and promotes pro-
cessing by endonucleolytic cleavage, while in the absence
of Lhp1p, precursors are instead processed by exonu-
cleases (6). However, for some tRNA precursors, no
change in 30 end processing is seen in strains lacking
Lhp1p (6,7). This observation, and the fact that LHP1 is
not an essential gene, suggests tRNA 30 end processing in
yeast can occur through multiple pathways (8).

The nucleases involved in tRNA 30 processing in
S. cerevisiae are generally unknown, including the endo-
nuclease that cleaves tRNAs bound by Lhp1, or have been
identified but not fully characterized. Several exo- and
endonucleases that process the 30 ends of tRNAs in vitro
have been purified from yeast, but the corresponding
genes were not identified, and the role of these enzymes
in tRNA processing in vivo is unknown (5). tRNase Z, an
endonuclease found in all three domains of life that
removes the 30 trailer from tRNAs, has been identified
in yeast (TRZ1) and found to be essential for viability
(9,10). While in vitro endonuclease activity for this
enzyme has been observed using human precursor
tRNAArg as a substrate (11), the function of yeast Trz1p
in vivo is not known. Lastly, a ribonuclease encoded by the
REX1 gene has been shown to trim the 30 ends of some
intron-containing tRNAs and a tRNAArg that is produced
from a dimeric transcript also encoding tRNAAsp (12,13).

Previously, REX1 was named RNA82 and described as
a nuclease involved in processing 5S rRNA (14). In an
rna82.1 mutant strain, 5S rRNA was found to have an
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extended 30 end, with up to 13 extra nucleotides detected
in pulse-labeling experiments, and as many as three addi-
tional nucleotides found in steady-state RNA samples
(14). In addition, the dimeric tRNAArg-tRNAAsp tran-
script was not fully processed in an extract from rna82.1
cells, as the 30 end of tRNAArg was found to retain nucleo-
tides normally removed in an extract from a wild-type
strain (15). Rex1p also appears to process the 30 ends of
some tRNAs that contain introns, such as
tRNATyr(GUA) and tRNALys(UUU) (13). With the avail-
ability of protein sequence data, Rex1p has been classified
as a member of the DEDD superfamily of exonucleases
(16), although this activity has not been demonstrated
using purified Rex1 protein.

Previously, we identified and characterized Trm6p and
Trm61p from S. cerevisiae, the two subunits of a tRNA
modification enzyme that methylates A58 in the T�C loop
of tRNAs (17). In this study, we have found that a syn-
thetic slow-growth phenotype results when REX1 is
deleted in a trm6-504 mutant strain. We demonstrate
that Rex1p has a role in initiator tRNAMet (tRNAi

Met)
30 end processing and show that tRNAi

Met precursors,
particularly those with extended 30 trailers, accumulate
in a trm6-504 rex1D strain. We show that loss of Rex1p
results in polyadenylation of tRNAi

Met, as well as the
previously identified substrates of Rex1p—5S rRNA and
tRNAArg-tRNAAsp. Rex1p purified from yeast displays
ribonuclease activity when mature or precursor
tRNAi

Met is provided as a substrate and mutation of
amino acids conserved among DEDD exonucleases elim-
inates this activity.

MATERIALS AND METHODS

Yeast strains

REX1 was deleted in strains Y200 and Y190 (18) by inser-
tion of the kanamycin resistance gene. PCR amplification
of the KanMX4 cassette with REX1 flanking sequence
was performed using primers JA396 and JA397. Yeast
strains were transformed as described (19) with the PCR
product and allowed to grow in Yeast extract–Peptone–
Dextrose (YPD) liquid media at 308C for 3 h before being
plated to YPD with 200 mg/ml geneticin. Transformants
were replica printed to YPD with geneticin and the result-
ing colonies screened for the correct insertion of KanMX4
by yeast colony PCR (20) with primer sets JA370 and
JA398, JA385 and JA398 and JA399 and JA398.
Deletion of REX1 in Y190 was named Y386 and in
Y200 was named Y387. Y200, Y190, Y386 and Y387
transformed with IMT4 (p108) and imt4-3 (p467) are
strains Y450-453 and Y454-457, respectively. Similarly,
strains carrying the empty plasmid pRS316 (21) are strains
Y468-471. Y200, Y190, Y386 and Y387 strains carrying
the empty plasmid YCplac33 (22) are Y266, Y265, Y439
and Y402, respectively. For purification of wild-type (Wt)
and mutant Rex1p, Y386 was transformed with pAV101,
to create Y438, and p532, to create Y495. Strain H2457
with high-copy plasmids carrying the IMT1-4 genes has
been described (23).

Plasmid construction

IMT4 was previously cloned into the HindIII site of
pRS316 as a HindIII fragment isolated from plasmid C-
50 (24), giving pJA108. Mutagenesis of the 30 end of IMT4
was carried out using Quik Change site-directed mutagen-
esis (Stratagene) with pJA108 as a template and mutagenic
primers JA546 and JA547. The correct sequence of the
mutant, p467, was confirmed by DNA sequencing. A
yeast shuttle vector containing REX1 under the control
of a galactose-inducible promoter, pAV101, was kindly
provided by Dr. Ambro van Hoof. Alanine substitutions
at residues D229 and E231 were introduced using Quik
Change site-directed mutagenesis (Stratagene), with pri-
mers JA616 and JA617 and confirmed by DNA sequen-
cing, giving p532.
In vitro T7 RNA polymerase transcription constructs

were created in pUC18 (25), except the mature
tRNAi

Met construct (HG300), which was obtained as a
gift from Dr. Henri Grosjean. IMT3 with approximately
500-bp of upstream sequence and 600 bp of downstream
sequence was amplified from yeast genomic DNA using
primers JA571 and JA572 and cloned into the BamHI
sites of pRS316 (21) as a BamHI fragment. The correct
sequence of this plasmid (p480) was confirmed by DNA
sequencing. For T7 transcription, IMT3 was amplified
from p480 using PCR with primers JA602, which includes
a T7 promoter, and JA603. The PCR product was
digested with SalI and BamHI and ligated to pUC18
that had been digested with SalI and BamHI, giving
p522. The IMT4 T7 transcription construct was created
similarly by amplifying tRNAi

Met sequence from HG300
using PCR with primers JA602 and JA618. The PCR pro-
duct was digested with SalI and BamHI and ligated to
pUC18 that had been digested with SalI and BamHI,
giving p528.

SGA analysis

trm6-504 genetic interactions were identified using a high-
throughput, array-based method known as Synthetic
Genetic Array (26–28). First, the trm6-504 mutation was
introduced into strain Y5563 [C. Boone lab, (29)] using
two PCR products; one containing trm6-504 with
sequence at the 30 end complementary to the URA3 pro-
moter (made using primers JA269 and JA270), and a
second product encoding URA3MX6 with sequence at
the 30 end complementary to sequence downstream of
trm6-504. [amplified using primers JA271 and JA272
with the template p4348 (28)]. Y5563 was co-transformed
with these two DNA fragments and transformants were
selected on Sc�URA. The integration of URA3 at the cor-
rect location was confirmed by PCR and the presence of
trm6-504 was verified by a temperature sensitive pheno-
type; this strain was then crossed with a set of �5000
viable haploid gene deletion strains (29). A series of
robotic arraying procedures enabled selection of haploid
double mutant meiotic progeny, which were subsequently
examined for defects in colony growth at 268C and 308C
(29). Approximately 200 candidate synthetic lethal or slow
growth interactions were identified in the high-throughput
screen.
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RNA isolation

Total RNA from yeast was purified using the
MasterPure Yeast RNA Purification Kit (Epicentre).
When using the MasterPure Kit, cultures were grown to
OD600=0.6� 0.8 and cells were pelleted from 1.5–3ml
of culture.

Northern blot analysis

Total RNA was separated on 8% or 10% polyacrylamide
gels containing 8M urea and electrophoresis was carried
out in 1�TBE at 450V. Gels containing radioactive sam-
ples, such as those used in activity assays, were dried prior
to visualization using phosphorimaging (GE Healthcare).
Gels were first fixed for 15min in a 15% methanol, 5%
acetic acid solution, and then dried at 728C for 55min on
a slab gel dryer (Thermo Scientific). For northern blotting,
gels were soaked for 10min in 0.5�TBE and samples
transferred to Biodyne B nylon membrane (Pall Corpora-
tion) using a semi dry electroblotter (Owl Separation
Systems) at 400mA for 60min. Following transfer, the
RNA was cross-linked to the membrane using a UV
stratalinker (Stratagene). After being probed, blots
were stripped with 800ml of boiling hot 1% SDS,
and then tested for residual signal by exposure to a
phosphorimager screen overnight prior to being probed
again.

Purification of poly (A)+RNA

Yeast strains were grown to an O.D.600 of 0.5–0.6 in
250ml YPD at 308C. Cells were harvested by centrifuga-
tion at 6000� g for 5min at 48C, washed with
1�phosphate buffered saline and frozen at� 808C.
Purification of total and poly (A)+RNA was then car-
ried out as described (18) using 50mg of oligo (dT) cellu-
lose (New England Biolabs). Poly (A)+RNA was eluted
with 2ml elution buffer and collected as 0.5ml fractions
The OD260 of each fraction was determined and fractions
having the greatest amounts of RNA were pooled.
Samples were then extracted with AE (50mM sodium
acetate, pH 5.0 and 10mM EDTA) buffer-saturated
phenol and the aqueous layer extracted again with chloro-
form: isoamylalcohol (24:1). RNA was precipitated with
1/10 volume 3M sodium acetate (pH 5.3) and 3 volumes
of ethanol at �208C overnight. After precipitation, poly
(A)+RNA was collected by centrifugation at 14 000 rpm
for 15min at 48C. Pellets were washed with 70% ethanol
and allowed to air dry. The poly (A)+RNA was resus-
pended in 15 ml of nuclease free water. For northern blot-
ting, equal amounts of poly (A)+RNA were loaded
based on the different inputs of total RNA used for
oligo (dT) selection. The total RNA concentration in
each sample was determined by UV spectroscopy and
the sample that had the highest amount of total RNA
set to 100%. All other samples were calculated as a per-
centage of this sample and the amount of poly
(A)+RNA loaded onto the gel was increased based on
the difference in the total RNA input. For example, if one
of the samples had only 65% as much total RNA as the
sample set at 100%, then 35% more poly (A)+RNA was

run for this sample, thereby accounting for the lower
amount of total RNA used for oligo (dT) cellulose purifi-
cation for this sample.

Purification of Rex1p

A 25ml culture of Y438 or Y495 grown at 308C in syn-
thetic complete medium lacking uracil (Sc�URA) was used
to inoculate a 1 l culture in Sc�URA lacking glucose and
supplemented with 1% galactose and 2% sucrose (ScGal/
Suc�URA). Cells were grown at 308C, harvested at
OD600=0.8� 1, and the pellets frozen on dry ice and
stored at �808C. To purify Rex1p, the cell pellet was
thawed on ice and resuspended in breaking buffer
[20mM HEPES, pH 7, 150mM NaCl, 1� complete pro-
tease inhibitor cocktail (Roche)]. Cells were disrupted
using a French press (Thermo IEC) at a pressure of 20
000 psi and the lysate subjected to centrifugation at 3000g,
48C, for 10min. This clarified extract was then subjected
to centrifugation at 70 000g, 48C, for 30min, and the clar-
ified supernatant added to anti-FLAG M2 agarose
(Sigma) pre-equilibrated in wash buffer (20mM HEPES,
pH 7.0, 150mM NaCl). After incubation with gentle
mixing at 48C for 2 h, the resin was collected by centrifu-
gation at 1000� g, 48C, for 5min and the supernatant
discarded. The resin was washed with 10ml wash buffer,
collected again, and the supernatant discarded. The resin
was then transferred to a 10ml column and washed with
10ml wash buffer. Rex1p was eluted with 1ml breaking
buffer containing 150 ng/ml FLAG peptide (Sigma), and
collected in five fractions. The fractions were analyzed
by SDS-PAGE followed by Coomassie staining or
Western blotting with anti-FLAG M2 antibody
(Stratagene).

Rex1p in vitro assays

tRNA substrates were transcribed in vitro using T7 RNA
polymerase. DNA templates were linearized by restriction
digest using BstNI for HG300 and DraI for p522 and
p528. The in vitro transcription reaction (100 ml) consisted
of 1� T7 RNA polymerase buffer (New England Biolabs),
1.25mM rNTPs, 10mM DTT, 20–40U RNasin ribonu-
clease inhibitor (Promega), �400 ng DNA template, and
250U T7 RNA polymerase (New England Biolabs). After
incubation at 378C for 3 h, 1U RQ1 DNase was added and
samples incubated at 378C for 20min. RNA was extracted
with AE buffer-saturated phenol, pH 5, ethanol precipi-
tated, and resuspended in nuclease free water. After
separation on a 10% denaturing polyacrylamide gel,
tRNA was visualized by methylene blue staining and gel
purified. tRNAs were then dephosphorylated and 50 end
labeled using 32P-ATP. Scintillation counting was used to
determine the concentration of labeled tRNA. Activity
assays were carried out in 20mM HEPES, pH 7, 5mM
MgCl2 and 100mM NaCl at 308C. Reaction products
were separated on a 10% denaturing polyacrylamide
gel and visualized using phosphorimaging or
autoradiography.

300 Nucleic Acids Research, 2009, Vol. 37, No. 1



RESULTS

trm6-504 and rex1D exhibit a synthetic genetic interaction

Trm6p and Trm61p comprise the m1A58 tRNA methly-
transferase in S. cerevisiae, and we have previously shown
that a trm6-504 mutant, which lacks m1A58 from all
tRNA, has reduced levels of tRNAi

Met when grown at
308C (23). Synthetic genetic array (26) analysis was con-
ducted to identify synthetic lethal (SGA) and synthetic
slow-growth interactions between trm6-504 and nonessen-
tial yeast genes. Genes encoding proteins already known
to be involved in tRNA modification and processing were
detected in the array, including tRNA modification
enzymes that act on tRNAi

Met. In addition, genes encod-
ing proteins of unknown function, as well as proteins with
known functions but no established roles in tRNAi

Met

production, were identified (Anderson,J.T., unpublished
data). One of the genes of known function was RNH70/
REX1, which encodes a nuclease that has been shown to
be involved in rRNA and tRNA maturation.

Because REX1 is not known to process tRNAi
Met, we

were intrigued by the SGA findings. According to the
SGA analysis, a trm6-504 rex1D double-mutant strain
exhibited a severe slow-growth phenotype; however, we
did not observe a consistent slow-growth phenotype in a
trm6-504 rex1D strain after sporulation and tetrad dissec-
tion of the strain generated in the array. Therefore, we
deleted REX1 in the trm6-504 strain (Y190) we have stu-
died extensively (18). A trm6-504 strain grows slowly at
308C, and we were unable to see an additional growth
defect due to loss of REX1 when a trm6-504 rex1D
double-mutant strain was grown in a rich medium
(YPD) at 308C. However, we found that trm6-504 rex1D
double-mutant cells grown on synthetic dextrose minimal
medium supplemented with histidine and uracil
(SD+His+Ura), conditions that resemble those in the
SGA screen, at 308C or room temperature, consistently
displayed a modest growth defect as compared to the
trm6-504 strain (Figure 1).

Initiator tRNAMet processing is altered
in a trm6-504 rex1D double mutant strain

Although a trm6-504 strain grows slowly at 308C (23) and
exhibits reduced levels of mature tRNAi

Met, raising
the level of initiator tRNAMet by introducing a high-
copy (hc) plasmid carrying IMT4, which encodes
tRNAi

Met, restores robust growth (23). Because the SGA
and our experiments revealed that the trm6-504 rex1D
double mutant grew slower than the trm6-504 mutant,
we wanted to determine if there was less mature
tRNAi

Met in the trm6-504 rex1D strain than in the trm6-
504 strain. Total RNA was extracted from Wt (Y200),
trm6-504 (Y190), trm6-504 rex1D (Y386) and rex1D
(Y387) strains grown at 308C and separated by electro-
phoresis using a denaturing 8% polyacrylamide gel.
Northern analysis was performed using a probe (JA11,
Table 1) that detects both precursor tRNAi

Met, which con-
tains 50 leader and 30 trailer sequence, and mature
tRNAi

Met (Figure 2A). While we did not observe an
obvious difference in the amount of mature tRNAi

Met

between trm6-504 and trm6-504 rex1D strains, we noticed
that a subset of the tRNAi

Met precursors accumulated to
greater levels in the trm6-504 rex1D lane than in the Wt,
trm6-504, or rex1D lanes (Figure 2A). The same blot was
probed for 5S rRNA as a loading control and small dif-
ferences were observed between samples. Strains in which
REX1 has been deleted have slightly longer 5S rRNA than
a Wt strain (Figure 2A), in agreement with what has been
reported previously (12,14).
From previous work, we know that the four forms of

precursor tRNAi
Met migrate at two different positions on

a denaturing 8% polyacrylamide gel due to differences in
the length of the 30 trailer (Figure 2B) (23). The slower-
migrating species consists of tRNAi

Met precursors
encoded by IMT2 and IMT3, which have 6–7 nucleotides
between the end of the mature tRNAi

Met sequence and a
RNA Polymerase III (Pol III) termination signal, a stretch
of five or more thymines (30) (Figure 2B and C), creating a
long trailer (LT). tRNAi

Met precursors encoded by IMT1
and IMT4 migrate more quickly, having only one nucleo-
tide, a short trailer (ST), before the predicted Pol III ter-
mination signal (Figure 2B and C). As seen by Northern
analysis, it is the slower-migrating species that is more
intense in a trm6-504 rex1D double mutant strain
(Figure 2A), suggesting that tRNAi

Met precursors encoded
by IMT2 and IMT3 accumulate, while those encoded by
IMT1 and IMT4 do not. To test this hypothesis, we
probed a Northern blot of total RNA from the Wt
(Y200), trm6-504 (Y190), trm6-504 rex1D (Y386) and
rex1D (Y387) strains specifically for IMT2 and IMT3
using probes that hybridize to their unique 50 leader
sequences (Figure 2D). Both IMT2- and IMT3-encoded
precursors (LT) were more abundant in a trm6-504 rex1D

Figure 1. A trm6-504 rex1D double mutant strain displays a synthetic
slow-growth phenotype. Wt (Y200), trm6-504 (Y190), trm6-504 rex1D
(Y386) and rex1D (Y387) yeast strains were streaked to SD+His+Ura

and grown at room temperature for 3 days.

Table 1. Oligonucleotides used for northern analysis

Name Target Sequence (50!30)

JA 11 tRNAi
Met TCGGTTTCGATCCGAGGACATC

AGGGTTATGA
JA 48 50 IMT3 ACGGCGCTTAACTTTTATG
JA 66 50 IMT4 GGCGCTTAGCCAACTTG
JA 72 50 IMT2 GGCGCTGCTAAATCATGAG
JA 99 5S rRNA TCGCGTATGGTCACCCACTACA
JA 555 tRNAVal(CAC) GAAGGCAACGTGATAGCCGC
JA 557 dimeric pre-tRNAArg AGAAACAAAGCACTCACGAT
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strain than in a Wt, trm6-504, or rex1D strain (Figure 2D).
In addition, it appeared there was a small increase in the
amount of IMT2- and IMT3-encoded precursor (LT)
tRNAi

Met in the rex1D strain compared to the Wt
strain, suggesting Rex1p is involved in processing
tRNAi

Met whether or not it lacks m1A58. Levels of
IMT3-encoded precursor tRNAi

Met were also elevated in
a trm6-504 strain, although to a lesser degree than seen in
the trm6-504 rex1D strain (Figure 2D). Finally, IMT4-
encoded precursor did not accumulate in a trm6-504
rex1D strain (data not shown). These data suggest that
Rex1p is required to efficiently process tRNAi

Met precur-
sors with longer 30 trailing sequences (LT) and is not as
crucial for processing of precursors with short 30 trailing
sequences (ST).

Because IMT2 and IMT3 tRNAi
Met precursors accu-

mulate in a trm6-504 rex1D double mutant strain, we rea-
soned that precursor tRNAi

Met encoded by IMT1 or
IMT4 would also accumulate if the 30 trailer sequence
was lengthened. Mutagenesis was carried out on a plasmid
carrying IMT4 (pJA108), and the short 30 trailer (ST)
of IMT4 was replaced with the longer trailer (LT) of
IMT3. Therefore, the precursor tRNAi

Met transcribed
from this imt4-3 construct (p467) has the 50 leader of
IMT4 and the 30 trailer of IMT3 preceding the first Pol
III termination sequence (Figure 2C). To ensure that this
mutant tRNA was functional, the imt4-3 plasmid was
tested for its ability to promote growth of a trm6-504
strain at 308C, a temperature at which this strain has a
slow-growth phenotype (23). While the trm6-504 strain
carrying hcIMT4 showed vigorous growth, a strain carry-
ing an empty vector grew slowly (Figure 3A). The trm6-
504 strain carrying the imt4-3 plasmid also showed robust
growth (Figure 3A), suggesting that functional tRNAi

Met

is produced from the imt4-3 plasmid.
Total RNA was prepared from Wt (Y200), trm6-504

(Y190), trm6-504 rex1D (Y386) and rex1D (Y387) strains
containing empty plasmid or plasmids with IMT4 or imt4-
3. Northern analysis was performed using probes that
hybridize to the 5’ leader of IMT4 or to 5S rRNA,
which serves as a loading control. All of the strains carry-
ing the empty plasmid had approximately the same
amount of IMT4-encoded precursor tRNAi

Met, as did all
of the strains carrying the IMT4 plasmid (Figure 3B).
However, among the strains expressing imt4-3-encoded
precursor tRNAi

Met, there was an increase in precursor
in the trm6-504 strain and an even greater increase in
the trm6-504 rex1D strain (Figure 3B). This result indi-
cates that the length of the 30 trailer sequence influences
whether or not precursor tRNAi

Met is influenced by Rex1p
for processing.

We note that a trm6-504 rex1D strain carrying the high-
copy IMT4 plasmid shows accumulation of a precursor
species that is longer than IMT4-encoded precursor
tRNAi

Met. It is likely that this is precursor tRNAi
Met cre-

ated when Pol III fails to stop transcribing at the first
termination sequence and instead reads through to a
second downstream terminator (Figure 2C). In fact, the
sequences CAAAAC and CATATC, which are similar to
the sequence that follows the first IMT4 terminator
(Figure 2C) have been shown to allow transcriptional

Figure 2. A trm6-504 rex1D strain accumulates tRNAi
Met encoded by

IMT2 and IMT3. (A) Total RNA (5 mg) isolated from Wt (Y200), trm6-
504 (Y190), trm6-504 rex1D (Y386) and rex1D (Y387) strains was sepa-
rated by electrophoresis using an 8% denaturing polyacrylamide gel.
Northern analysis was performed with radiolabeled oligonucleotides
that hybridize to tRNAi

Met (JA11) or 5S rRNA (JA99). Results were
visualized by autoradiography. (B) Northern analysis of total RNA
(10mg) isolated from a trm6-504 strain (H2457) carrying one of the
four IMT genes on a high-copy plasmid. The blot was probed for
tRNAi

Met (JA11) and the results were visualized by autoradiography.
(C) An alignment of the tRNAsi

Met encoded by the four IMT genes
from S. cerevisiae. A portion of the sequence found in the mature
tRNA is shown in a black background. The 30 trailer sequences are
shown in black text, with the putative RNA Polymerase III termination
sites underlined. A downstream terminator IMT4 is underlined with a
dashed line. The imt4-3 mutant has an alteration in the length of the 30

trailer preceding the first transcriptional terminator. (D) Northern ana-
lysis of total RNA (20 mg) performed as described in (A), probing with
oligonucleotides complementary to the 50 leader of IMT2- or IMT3-
encoded tRNAi

Met (JA72 or JA48, respectively).
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read-through by yeast RNA Pol III in vitro (31). As this
species would have a longer trailer, it is consistent with our
other results that this precursor tRNAi

Met accumulates in
the trm6-504 rex1D strain.

Increased polyadenylation of tRNAi
Met occurs in

a trm6-504 rex1D double mutant strain

Previously, we found that the hypomethylated tRNAi
Met

from a trm6-504 strain activates a nuclear tRNA surveil-
lance pathway that results in its polyadenylation
and degradation (18). We wondered if activation of the
surveillance pathway had changed in a trm6-504 rex1D
strain. As polyadenylated tRNAi

Met cannot be detected
in total RNA samples, we isolated both total RNA and
poly(A)+RNA from Wt (Y200), trm6-504 (Y190), trm6-
504 rex1D (Y386) and rex1D (Y387) strains. Northern
analysis was performed using a probe that detects both
mature and precursor tRNAi

Met. In samples of total
RNA, precursor tRNAi

Met accumulated in a trm6-504
rex1D strain (Figure 4A), and to a lesser extent in a
trm6-504 or rex1D strain, as observed previously
(Figure 2A), while no substantial differences (1.5-fold at
most) were seen when detecting a loading control
(data not shown). In poly(A)+RNA samples,

poly(A)+ tRNAi
Met was present in the trm6-504 strain,

but not the Wt strain, consistent with published data
(Figure 4A) (18). Poly(A)+ tRNAi

Met was also detected
in the rex1D strain, a finding that suggests inefficient 30 end
processing of tRNAi

Met activates the nuclear tRNA sur-
veillance pathway. In the trm6-504 rex1D strain, a greater
amount of poly(A)+ tRNAi

Met was evident, approxi-
mately four times that found in the trm6-504 or rex1D
strain (Figure 4A and B). This finding implies tRNAi

Met

that lacks m1A58 and has an unprocessed 30 end is espe-
cially susceptible to polyadenylation, and, presumably,
degradation. Furthermore, polyadenylation of another
m1A58-containing tRNA—tRNAVal(CAC)—occurs in
the absence of Rex1p (Figure 4C). tRNAVal(CAC) precur-
sors detected in total RNA samples also accumulated in
strains lacking Rex1p (Figure 4C), and we note that
tRNAVal(CAC) is encoded by two genes in which a Pol
III terminator is located 4 or 12 nucleotides downstream
of the end of the mature tRNAVal(CAC) sequence.

Loss of Rex1p results in polyadenylation of 5S
rRNA and tRNAArg

Prior to the discovery of the nuclear RNA surveillance
pathway, 5S rRNA from an rna82.1 (rex1) mutant strain

Figure 3. Changes in the 30 trailer length influence tRNAi
Met accumulation in a trm6-504 rex1D strain. (A) Wt (Y200) or trm6-504 (Y190) strains

carrying vector (YCplac33), hcIMT4, or hcimt4-3 were grown at 308C for 2 days on SC�URA. (B) Total RNA (20 mg) isolated from Wt (Y200), trm6-
504 (Y190), trm6-504 rex1D (Y386) and rex1D (Y387) strains carrying empty vector (YCplac33), hcIMT4 (pJA108) or hcimt4-3 (p467) was subjected
to Northern analysis. The blot was probed with a radiolabeled oligonucleotide complementary to the 50 leader of IMT4 (JA66), and the results
visualized using phosphorimaging. The blot was stripped, probed again with an oligonucleotide that hybridizes to 5S rRNA (JA99), and analyzed by
phosphorimaging.
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had been found to have a poly(A) tail up to 20 A’s
in length (14). This led us to test whether 5S rRNA, and
the other known processing substrate of Rex1p, tRNAArg-
tRNAAsp, would be polyadenylated in a rex1D strain.

Northern analysis of poly(A)+RNA performed with a
probe for 5S rRNA showed poly(A)+5S rRNA was pre-
sent in rex1D and trm6-504 rex1D strains, but not in a Wt
or trm6-504 strain (Figure 5A). There was no obvious
difference between the amount of poly(A)+5S RNA in
the trm6-504 rex1D strain and the rex1D strain. Therefore,
unlike what is seen for tRNAi

Met, polyadenylation of 5S
RNA is a result of a loss of Rex1p and does not seem to be
influenced by the presence or absence of trm6-504. This
result is expected, since 5S RNA is not a Trm6p substrate,
and would not be expected to exhibit an altered structure
due to the absence of m1A.

The tRNAArg-tRNAAsp dimeric transcript is processed
by a series of endonucleolytic and exonucleolytic steps to
produce two mature tRNAs (32). While endonucleolytic
cleavages separate the tRNAs from each other and gen-
erate the mature 50 ends, exonucleolytic processing by
Rex1p is believed to produce the mature 30 end of
tRNAArg, and possibly tRNAAsp (12,15,32). To look at
possible polyadenylation of tRNAArg-tRNAAsp, we con-
ducted Northern analysis with a probe that hybridizes to
the 30 end of tRNAArg and the 10 nt linker region between
the two tRNAs. In total RNA samples, we observed
greater amounts of tRNAArg that were not fully processed
in the trm6-504 rex1D and rex1D strains (Figure 5B). This
result is consistent with previous studies that showed a
rex1D strain contains 30 extended tRNAArg precursors
encoded by the dimeric tRNAArg-tRNAAsp transcript
(12). 5S rRNA was detected as a loading control and no
significant variations (1.3-fold at most) were seen between
the total RNA samples (data not shown). The dimeric
transcript was also detected in total RNA samples, but
was less abundant in a trm6-504 strain; instead, much
larger RNAs, appearing as a smear near the top of the
membrane, were detected. While we can not explain this
observation at present, we hope to understand this result
through future studies of RNA processing in a trm6-504
strain. From the poly(A)+samples, we could see that
polyadenylation of tRNAArg was occurring in the trm6-
504 rex1D and rex1D strains, and to approximately the
same extent (Figure 5B). In addition, we note that some
of the poly(A)+RNA detected is large enough to be the
dimeric tRNAArg-tRNAAsp transcript. We conclude that
tRNAArg and possibly the dimeric tRNAArg-tRNAAsp

transcript are not efficiently processed at their 30 ends
when Rex1p is absent and become polyadenylated. This
is in contrast to the polyadenylation of tRNAi

Met seen in a
trm6-504 mutant where we believe an altered tRNAi

Met

structure, due to the absence of m1A58, activates the
RNA surveillance pathway. While tRNAArg has m1A58
in a Wt strain, tRNAArg was not found to be polyadeny-
lated when lacking this modification, as in the trm6-504
strain (Figure 5B). These data indicate that inefficiently
processed precursor tRNAs can activate the RNA surveil-
lance pathway.

Rex1p exhibits tRNA 3’ end processing activity

A 60kDa exonuclease capable of removing the 30 trailer
from a tRNA substrate was previously purified from
S. cerevisiae extracts (5); given that Rex1p is predicted

Figure 4. An increase in the level of polyadenylated tRNAi
Met is seen in

a trm6-504 rex1D strain. (A) Total RNA (5mg) and poly(A)+RNA
(3–4 mg, normalized to the total RNA yield, see ‘Methods’ section) was
separated on a 6% denaturing polyacrylamide gel. Northern analysis
was performed with a radiolabeled oligonucleotide complementary to
tRNAi

Met (JA11). (B) A bar graph of the relative amounts of
poly(A)+ tRNAi

Met in the Wt, trm6-504, trm6-504 rex1D and rex1D
strains, as seen in (A). Quantitation was performed using ImageQuant
TL software (GE Healthcare). (C) The blot in (A) was stripped and
probed for tRNAVal(CAC) (JA555). Results were visualized by auto-
radiography for both blots. The mature tRNA in the poly(A)+ lanes
represents tRNA that was not eliminated by oligo-(dT) selection.
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to be 63 kDa, it is likely that this exonuclease was Rex1p.
Rex1p, along with Rex2p, Rex3p and Rex4p, possesses
four acidic amino acids, spread over three Exo motifs,
which are highly conserved among the DEDD family of
exoribonucleases (Figure 6A) (16). We used a galactose-
inducible promoter to drive over-expression of FLAG-
tagged Rex1p in a trm6-504 rex1D strain, and purified
Rex1p using affinity chromatography (Figure 6B).
Purified protein was confirmed as Rex1p based on size

and Western blotting with anti-FLAG antibodies (data
not shown). In order to be confident that any observed
exonuclease activity belonged to Rex1p and not a con-
taminant, we also designed and purified a D229A/E231A
mutant Rex1p. This mutant has alanine substituted for the
highly conserved DE residues found in the ExoI motif of
DEDD exoribonucleases (Figure 6A). For RNase T from
Escherichia coli, which is also a DEDD exonuclease, it has
been shown that an alanine substitution at either of these
positions inactivates the enzyme (Figure 6A) (33).
To assay the activity of Rex1p, several tRNAi

Met sub-
strates were prepared in vitro using T7 RNA polymerase—
a ‘mature’ tRNAi

Met which ends in CCA, an ‘IMT3’
tRNAi

Met which has the seven nucleotides trailer of
IMT3 and a stretch of five uridines, and an ‘IMT4’
tRNAi

Met, which ends with the one nucleotide trailer of
IMT4 and a stretch of five uridines. tRNAi

Met substrates
were labeled with 32P at the 50 end and incubated with
purified Wt or mutant Rex1p. Reaction products were
separated on a denaturing polyacrylamide gel and visua-
lized by exposure of the dried gel to a phosphorimager
screen. All three substrates were shortened at their 30

ends in the presence of Wt Rex1p, but were unchanged
when incubated in buffer alone or in the presence of the
mutant Rex1p (Figure 6C). This result illustrates the
nuclease activity of Rex1p, and demonstrates that this
activity is lost when two highly conserved amino acids
are mutated. All three substrates were converted to pro-
ducts similar in length, meaning that more nucleotides
were removed from the ‘IMT3’ substrate than from the
‘IMT4’ substrate, and more from the ‘IMT4’ substrate
than the ‘mature’ substrate. We note that the ‘IMT3’ sub-
strate was not fully digested during the 10min incubation
period. Despite gel purification, this substrate consisted of
two bands, and the slower-migrating species was consis-
tently more resistant to trimming by Rex1p.
To visualize the exonuclease activity of Rex1p, we mon-

itored product formation over time. The ‘IMT3’ substrate
was incubated with Wt Rex1p for a period of 0.5, 1, 3 or
7min. In addition, control reactions consisting of the
‘IMT3’ substrate without added MgCl2 and the ‘IMT3’
and ‘mature’ substrates without Rex1p, were carried out
for 7min. Reaction products were separated on a denatur-
ing 10% polyacrylamide gel and visualized by phosphor-
imaging. Exonucleolytic processing of the ‘IMT3’
substrate by Rex1p was observed, as illustrated by the
intermediates that can be seen (Figure 6D). Processing
was not observed in the control reaction lacking Mg2+

(Figure 6D), demonstrating that Mg2+ is required for
Rex1p activity, which is not unexpected since other
DEDD family members require divalent cations (16).
In addition to our in vitro studies, we investigated the

effects of Wt and mutant Rex1p expression in vivo. Total
RNA was isolated from trm6-504 rex1D strains containing
empty vector, REX1, or the rex1 mutant, grown in either
synthetic complete medium lacking uracil (Sc�URA),
which does not induce REX1 expression, or Sc�URA lack-
ing glucose and supplemented with galactose and sucrose
(ScGal/Suc�URA), which induces REX1 expression.
Northern analysis performed using a probe that detects
both precursor and mature tRNAi

Met showed that

Figure 5. Loss of Rex1p results in polyadenylation of 5S rRNA and
tRNAArg from the dimeric tRNAArg-tRNAAsp transcript. (A) Total and
poly (A)+RNA were analyzed as described for Figure 4. The blot was
probed for 5S rRNA (JA99) and the results visualized by autoradio-
graphy. (B) Northern analysis was performed using a labeled oligonu-
cleotide (JA557) that hybridizes to the 30 end of tRNAArg and the
linker sequence between the two tRNAs. Phosphorimaging was used
to analyze results. The presence of mature forms of RNAs in the
poly(A)+ lanes represent RNAs not eliminated during oligo-(dT)
selection.
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induction of Wt Rex1p prevented the accumulation of
tRNAi

Met precursors observed previously, whereas induc-
tion of the mutant Rex1p did not prevent accumulation of
precursor tRNAi

Met (Figure 6E). A loading control did
not show substantial differences (1.5-fold at most) between
samples (data not shown). We conclude that the exoribo-
nuclease activity of Rex1p is responsible for processing
hypomethylated tRNAi

Met precursors in vivo.

DISCUSSION

We have shown that tRNAi
Met precursors accumulate in a

trm6-504 rex1D double-mutant strain—in particular those
encoded by IMT2 and IMT3. Compared to IMT1 and
IMT4, the IMT2 and IMT3 genes have an extended 30

trailer sequence preceding the Pol III termination signal.
We found that increasing the length of the 30 trailer pre-
ceding the terminator in IMT4 from one to seven nucleo-
tides resulted in its accumulation in a trm6-504 rex1D
strain. One explanation for these results is that Rex1p
may specifically process tRNAi

Met precursors with long
30 trailers, and not those with short 30 trailers.
Alternatively, in the absence of Rex1p, other ribonu-
cleases in the cell may only be capable of efficiently pro-
cessing those tRNAi

Met precursors with short trailers. In
support of this interpretation, we found that a trm6-504
rex1D strain continued to accumulate tRNAi

Met precur-
sors despite over-expression of LHP1 (data not shown).
As increased levels of Lhp1p have been proposed to pro-
mote endonucleolytic processing (6), there does not
appear to be an endonuclease that can compensate for
the loss of Rex1p function. In E. coli, both redundancy
and substrate preference have been observed for exonu-
cleases that process the 30 ends of tRNAs. While an E. coli
strain lacking five exonucleases—RNases II, D, T, BN and
PH—is not viable, growth is restored when any one of
these enzymes is introduced, indicating that these exonu-
cleases have overlapping abilities (34). In addition, each
exonuclease is able to process some precursor tRNA spe-
cies efficiently, and others very poorly, suggesting that
different groups of tRNAs are most effectively processed
by different nucleases (4).

Currently, the only precursor tRNAs known to be poly-
adenlyated and degraded by the nuclear surveillance path-
way are hypomodified tRNAi

Met in S. cerevisiae and a
mutant tRNASer in Schizosaccharomyces pombe
(18,35,36). We have shown that tRNAi

Met and
tRNAVal(CAC) are polyadenylated in a rex1D strain, sug-
gesting that tRNAs with unprocessed 30 ends are also sub-
strates for the nuclear surveillance machinery. The finding
that tRNAi

Met lacking m1A58 and containing a 30 exten-
sion is apparently more susceptible to polyadenylation
suggests that these features influence the efficiency of
recognition by the nuclear surveillance machinery. In
addition, 5S rRNA and the dimeric tRNAArg-tRNAAsp

transcript were polyadenylated in strains lacking Rex1p,
suggesting these RNAs are also subject to degradation by
the nuclear surveillance pathway when their 30 ends are
not efficiently processed. This phenomenon may not be
restricted to 30 end processing defects, since the

Figure 6. Rex1p displays tRNA 30end processing activity in vivo and
in vitro. (A) A diagram of Rex1p showing the conserved amino acids
found in the three Exo motifs. An alignment of Rex1, 2, 3 and 4, and
E. coli RNase T protein sequence is shown underneath to illustrate the
conservation of the D�E sequence found in the ExoI domain. (B) Wt
and mutant FLAG-tagged Rex1p were purified from yeast (strains
Y438 and Y495, respectively) using affinity chromatography. Purified
protein was subjected to SDS-PAGE and visualized by Coomassie
staining. The positions of molecular weight standards (Broad Range
Protein Marker, New England Bioloabs) are indicated. (C) Gel purified
32P- 50 end labeled tRNAsi

Met (� 10 pM) were incubated in buffer
alone or with Wt or mutant Rex1p (�7.5 nM) at 308C for 10min.
Reaction products were separated on a 10% denaturing polyacrylamide
gel and visualized by autoradiography. The positions of RNAs of
known length (Decade Marker, Ambion) are indicated (in nucleotides).
(D) Wt Rex1p (�7.5 nM) was incubated with labeled ‘IMT3’ tRNAi

Met

(�20 pM) for known periods of time from 0.5–7min, as indicated.
Control reactions with ‘IMT3’ tRNAi

Met lacking either enzyme or
Mg2+ are shown, as well as a control reaction lacking enzyme that
contained the ‘mature’ tRNAi

Met. After separation on a denaturing
10% polyacrylamide gel, results were visualized using phosphorima-
ging. (E) Northern analysis of total RNA (10 mg) isolated from a
trm6-504 rex1D strain carrying an empty vector (pRS316), or a plasmid
with galactose-inducible Wt REX1 (pAV101) or mutant rex1 (p532),
grown under non-inducing or inducing conditions. The blot was probed
with a radiolabeled oligonucleotide complementary to tRNAi

Met (JA11)
and the results visualized using autoradiography.
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polyadenylated species observed also retains the 50 leader
sequence. This could indicate that a loss of m1A in
tRNAi

Met perturbs 50 end processing by RNaseP, and
that this too activates the surveillance pathway. Since it
is widely accepted that RNaseP cleavage initiates proces-
sing of precursor tRNAs (32,37), this would explain why
increased levels of polyA+tRNAi

Met are seen in strains
in which both 50 and 30 end processing are slowed. We
conclude that RNAs with unprocessed 30 ends can now
be added to the current list of substrates for the nuclear
surveillance pathway.

The role of Rex1p in RNA processing is similar to that
of the non-orthologous enzyme RNase T from E. coli,
which is also a 30–50 exonuclease and a member of the
DEDD exonuclease superfamily (16,38). RNase T is
required for maturation of 5S rRNA, and, like a rex1D
strain, an E. coli strain lacking RNase T contains 5S
rRNA with extra nucleotides at the 30 end (39). RNase
T is also involved in tRNA maturation, and has been
found to trim the 30 ends of tRNA precursors (40). The
crystal structures of DEDD exonucleases, such as RNase
T and RNase D, reveal that four highly conserved acidic
amino acids (DEDD) coordinate two divalent metal ions
involved in catalysis (41,42). Consistent with these find-
ings, we observed Rex1p activity to be dependent on
the presence of Mg2+ and found that alanine substitutions
of two conserved acidic amino acids (DE) inactivated the
enzyme. The specificity of both Rex1p and RNase T for 5S
rRNA and tRNAs suggests there are features common to
both substrates that can be recognized by these enzymes.
In yeast, the 30 end of both precursor tRNAi

Met and 5S
rRNA consists of a double-stranded stem followed by
several unpaired nucleotides. For both RNAs the single
stranded 30 end would be expected to have a poly(U) tail
due to transcription of the RNA Pol III termination
signal, and we have detected poly(U) tails on the IMT3-
encoded precursor tRNAi

Met that accumulates in a trm6-
504 rex1D strain (data not shown). Interestingly, in the
dimeric tRNAArg-tRNAAsp transcript, the linker region
between the two tRNAs is also U rich. Therefore, a
double-stranded stem and a single-stranded U-rich
sequence may be important for Rex1p to recognize its
substrate, and future studies are needed to explore this
possibility. While Rex1p was recently shown to be
involved in the 30 end processing of some intron-contain-
ing tRNAs (13), both tRNAi

Met and tRNAVal do not con-
tain introns, indicating that the presence an intron is not
required for recognition by Rex1p.

While the results of our in vivo experiments suggested
Rex1p may only process tRNAi

Met precursors with long 30

trailers, Rex1p processed the 30 ends of tRNAsi
Met with

both long and short trailers in our in vitro assay.
Exonuclease activity was also observed when a
tRNAi

Met ending in CCA was used as a substrate. The
absence of other nucleases and proteins involved in
tRNA processing in the in vitro assay may allow Rex1p
to remove nucleotides from tRNAi

Met substrates that
would normally be processed more efficiently by other
enzymes in vivo. Furthermore, the tRNAi

Met substrate
ending in CCA would become aminoacylated
in vivo, which would presumably block exonucleolytic

degradation, as has been shown for RNase T (38). It
should be noted that the tRNA substrates used in this
assay were transcribed in vitro and lack modifications,
including m1A58. The ability of Rex1p to process these
unmodified tRNAs in vitro is consistent with our observa-
tion that more precursor tRNAi

Met accumulates in a
rex1D strain where tRNAi

Met also lacks m1A58.
We have shown Rex1p to have Mg2+-dependent

30!50exonuclease activity in vitro, and these results are
consistent with previous findings for a 60 kDa protein pur-
ified from yeast (5). In yeast, the mature 30 ends of
tRNAi

Met (prior to CCA addition), tRNAsArg (from the
dimeric transcript, prior to CCA addition) and 5S rRNA
all consist of a double-stranded stem with a 30 overhang of
a single nucleotide. This indicates that Rex1p may func-
tion by binding single-stranded 30 trailer sequences and
trimming the RNA within one nucleotide of a double-
stranded stem. Further studies to identify the products
generated by Rex1p in vitro are needed to determine
whether or not this is true. In addition, we currently do
not fully understand the influence of the m1A58 modifica-
tion on 30 end processing. Rex1p appears to be able to
process hypomethylated precursor tRNAi

Met to some
degree, as we see less accumulation in a trm6-504 strain
than a trm6-504 rex1D strain. We propose that in the
absence of both m1A58 and Rex1p activity, processing
of precursor tRNAsi

Met with long 30 trailers is carried
out very inefficiently by other nucleases, resulting in the
accumulation and polyadenylation of tRNAsi

Met we have
observed. However, when m1A58 is present, processing by
other nucleases appears to be more effective, even in the
absence of Rex1p, as we observe only a slight increase in
IMT2- and IMT3-encoded precursor tRNAsi

Met in a
rex1D strain. A more thorough characterization of
nucleases known to be involved and identification of addi-
tional nucleases involved in tRNA 30 end processing may
allow us to better understand the relationship between
tRNA modification and 30 end maturation.
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