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ABSTRACT

The DNA replication-related element-binding factor
(DREF) regulates cell proliferation-related gene
expression in Drosophila. By genetic screening,
taking advantage of the rough eye phenotype of
transgenic flies that express DREF in the eye
discs, we identified 24 genes that suppressed and
12 genes that enhanced the rough eye phenotype
when heterozygous for mutations. Five genes,
HP6, pigeon, lace, X box binding protein 1 and guf-
tagu were found to carry replication-related element
(DRE) sequences in their 5’-flanking regions. Of
these, the HP6 gene carries two sequences that
match seven out of eight nucleotides of DRE and
two additional sequences that match six out of
eight nucleotides of DRE in the 5’-flanking region.
Band mobility shift assays using Drosophila Kc
cell nuclear extracts demonstrated DREF binding
to two of these sites and chromatin immunoprecipi-
tation using anti-DREF antibodies confirmed that
this occurs in vivo. Knockdown of DREF in
Drosophila S2 cells decreased the HP6 mRNA
level. The results, taken together, indicate that
DREF directly regulates expression of the HP6
gene. HP6 mRNA was detected throughout develop-
ment by RT-PCR with highest levels in adult males.

In addition, immunostaining analyses revealed colo-
calization of HP6 and DREF in nuclei at the apical
tips in the testes.

INTRODUCTION

Promoters of many DNA replication- and proliferation-
related genes in Drosophila contain a common 8 bp
palindromic sequence, 50-TATCGATA, named the DNA
replication-related element (DRE) (1–10). The require-
ment of DRE for promoter activity has been confirmed
in both cultured cell and transgenic fly systems (1,11,12)
and a specific DNA replication-related element-binding
factor (DREF) has been identified. Molecular cloning of
its cDNA has led to confirmation that DREF is a tran-
scriptional activator of DRE-containing genes (1). It is
also reported that DREF is a component of a transcrip-
tion initiation complex containing TRF2 (13). In addition,
the chromatin remodelling factor dMi-2 and a homeodo-
main protein Distal-less can bind to the DNA-binding
domain of DREF to inhibit its DNA-binding activity
(14,15).
Searches of the Drosophila genome database have

revealed the presence of 277 genes containing DRE-like
sequences within their promoter regions (16,17) and
immunostaining of polytene chromosomes of salivary
glands with anti-DREF monoclonal antibodies demon-
strated binding of DREF to a hundred discrete interband
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regions of polytene chromosomes (14). In addition, serial
analysis of gene expression (SAGE) showed that many
genes selectively expressed in dividing cells located ante-
rior to the morphogenetic furrow of the eye imaginal disc
carry DRE in their 50-flanking regions (18). DREF may
therefore regulate the expression of many genes and play
multiple roles in vivo.
Ectopic expression of the dominant-negative form of

DREF using the GAL4-UAS targeted expression system
causes inhibition of both endo-replication in larval sali-
vary gland cells and mitotic DNA replication in eye ima-
ginal disc cells (19). Ectopic expression of full length
DREF in eye imaginal discs causes ectopic DNA synthesis
and apoptosis in otherwise post-mitotic cells, and inhibits
photoreceptor cell differentiation that results in a severe
rough eye phenotype (20). RNAi mediated knockdown of
DREF in growing tissues has also provided direct evi-
dence that it is necessary for cell cycle and cell growth
control (21,22).
In order to identify novel targets of DREF, we have

carried out a screening, taking advantage of the rough
eye phenotype of the transgenic flies that express full
length DREF in the eye imaginal discs. Our previous
screen identified the dE2F, brahma, moira and osa gene
as suppressors and the Distal-less gene as an enhancer of
the DREF-induced rough eye phenotype (20). E2F is a
transcription factor regulating the genes involved in cell
cycle, while Brahma, Moira and Osa are components of
the chromatin-remodelling Brahma (BRM) complex (23).
Suppression of the DREF-induced rough eye phenotype
by reduction of dosage of the brahma, moira, or osa sug-
gests that the genes coding for the BRM complex are tar-
gets of DREF (20). These observations combined with
molecular and biochemical analyses indicate that DREF
is involved in transcriptional regulation of the genes coding
for the BRM complex (24). In this study, we further iden-
tified 24 suppressors and 12 enhancers of the DREF-
induced rough eye phenotype. One of the strongest
suppressors was a mutant for the HP6 (CG15636) gene,
which carries multiple DRE-like sequences in its
50-flanking region. The present results indicate that the
HP6 gene is one of the targets of the DRE/DREF regula-
tory system with major physiological significance.

MATERIALS AND METHODS

Fly stocks

Fly stocks were maintained at 258C on standard food. The
Canton S fly was used as a wild type strain. dp8vlR/SM5
and dpD/SM1 were obtained from the Kyoto Institute of
Technology, Drosophila Genetic Resource Center (Japan).
The UAS-DREF transgenic fly line was described earlier
(19) as was the transgenic fly line (line number 16) carrying
pGMR-GAL4 on the X chromosome (25). All other
stocks used in this study were obtained from the
Bloomington, Indiana, stock centre.

Establishment of transgenic flies

P-element-mediated germ line transformation was carried
out as described earlier (26). F1 transformants were

selected on the basis of white-eye colour rescue (27).
Two independent lines were established for the pUAS-
HP6. We used line 2 carrying UAS-HP6 on the third chro-
mosome in the present study.

Oligonucleotides

To obtain a cDNA for the HP6 (CG15636) gene, the fol-
lowing polymerase chain reaction (PCR) primers were
chemically synthesized:

50Bgl2P,
50-CGATATCTAAAAGATCTCGGAAGATGCC

30Kpn1P,
50-CGGTGCGGTACCGTTTTATGGACTAGG

50BamH1P,
50-TCTGGATCCATGCCCAGCTC

30Xho1P,
50-GTTTCTCGAGCTAGGCATTTCG

The sequences of double-stranded oligonucleotides con-
taining DRE (DRE-P) in the PCNA gene were as
described earlier (11). The DRE-PM oligonucleotide is a
two-base substitution derivative of DRE-P (11). For band
mobility shift assays, the following oligonucleotides were
synthesized. The DRE and DRE-like sequences are shown
in bold letters and the substituted bases in the HP6 gene
promoter are shown in small letters.

DRE2,
50-CTTACACAAAAATCGATTAAATTGAAGAAC
30-GAATGTGTTTTTAGCTAATTTAACTTCTTG

DRE2Mut,
50-CTTACACAAAAcgCGAgTAAATTGAAGAAC
30-GAATGTGTTTTgcGCTcATTTAACTTCTTG

DRE1,
50-TGCCACATCGAAAGGGTTGCCAAAGCATGT
CGATACCTACAGTTATCGAAACTGA
30-ACGGTGTAGCTTTCCCAACGGTTTCGTACAG
CTATGGATGTCAATAGCTTTGACT

DRE1Mut,
50-TGCCACcgCGAAcGGGTTGCCAAAGCATGg
CGAgcCCTACAGTTcgCGAAcCTGA
30-ACGGTGgcGCTTgCCCAACGGTTTCGTACc
GCTcgGGATGTCAAgcGCTTgGACT

DRE1aMutbg,
50-TGCCACcgCGAAcGGGTTGCCAAAGCATGTC
GATACCTACAGTTATCGAAACTGA
30-ACGGTgTAGCTtTCCCAACGGTTTCGTACAG
CTATGGATGTCAATAGCTTTGACT

DRE 1bMutag,
50-TGCCACATCGAAAGGGTTGCCAAAGCATGg
CGAgcCCTACAGTTATCGAAACTGA
30-ACGGTGTAGCTTTCCCAACGGTTTCGTACc
GCTcgGGATGTCAATAGCTTTGACT

DRE 1gMutab,
50-TGCCACATCGAAAGGGTTGCCAAAGCATGT
CGATACCTACAGTTcgCGAAcCTGA
30-ACGGTGTAGCTTTCCCAACGGTTTCGTACAG
CTATGGATGTCAAgcGCTTgGACT

DRE1g,
50-ACAGTTATCGAAACTGAAAAATAAT
30-TGTCAATAGCTTTGACTTTTTATTA
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DRE1gMut,
50-ACAGTTcgCGAAcCTGAAAAATAAT
30-TGTCAAgcGCTTgGACTTTTTATTA

To carry out chromatin immunoprecipitation, the
following PCR primers were chemically synthesized:

PCNAP,
50-GATGAATGATTAACGTGGGCTG

PCNAantiP,
50-GAAATAAATATACTCTGTAAAAAGTGT
GAAC

CG15636DRE1P,
50-ATCGAAAGGGTTGCCAAAGC

CG15636antiDRE1P,
50-GCGTAGCCAATTGTCACGTT

CG15636DRE2P,
50-CTGGAATACATACACACCGAG

CG15636antiDRE2P,
50-TGGGCGCACAATTTAAAGCAG

RP49P,
50-AGCGCACCAAGCACTTCATC

RP49antiP,
50-CGTTCTCTTGAGAACGCAGG

To carry out RT-PCR, the following PCR primers were
chemically synthesized:

CG15636P,
50-ATGCCCAGCTCCACTTTGAC

CG15636antiP,
50-CTAGGCATTTCGTGATCGTTTCTTC

RP49 primers used for RT-PCR were the same as used for
chromatin immunoprecipitation.

For quantitative real time PCR, the following oligonu-
cleotides were synthesized:

DREF-F, 50-GGCAATCTCCGTTGAATGACG
DREF-R, 50-TTCACCTCCGAGAAGCCCTT
b-tubulin-F, 50-AGTTCACCGCTATGTTCA
b-tubulin-R, 50-CGCAAAACATTGATCGAG
RP49-F, 50-GCTTCTGGTTTCCGGCAAGCTTCAAG
RP49-R, 50-GACCTCCAGCTCGCGCACGTTGTGCA

CCAGGAAC

CG15636 primers used for quantitative real time PCR
were the same as used for RT-PCR.

Plasmid construction

To construct the pUAS-HP6 plasmid, PCR was per-
formed using Drosophila genomic DNA as a template
and primers 50Bgl2P and 30Kpn1P in combination.
PCR products were digested with BglII and KpnI and
inserted between the BglII and KpnI sites ofthe pUAST
plasmid (28).

To construct the pGST-HP6 plasmid for expression
of GST-HP6 fusion protein in Escherichia coli, PCR
was performed using pUAS-HP6 as a template and
primers 50BamH1P and 30Xho1P in combination. PCR
products were digested with BamHI and XhoI and inserted
between the BamHI and XhoI sites of pGex6p-1 (GE
healthcare).

Expression of GST fusion proteins and purification of
HP6 protein

Expression of GST-HP6 fusion proteins in E. coli BL21
was carried out as described elsewhere (29). Lysates of
cells were prepared by sonication in PBS containing
1mM PMSF, and 1 mM each of pepstatin and leupeptin.
Lysates were cleared by centrifugation at 12 000g for
20min at 48C and applied to glutathione-Sepharose
(GE healthcare). The columns were washed with PBS con-
taining 0.5M NaCl and 0.1% Triton X-100, then
with a buffer containing 150mM NaCl, 50mM Tris–
HCl pH 7.2, 1mM EDTA and 1mM dithiothreitol
(DTT). The included GST-HP6 fusion proteins were trea-
ted with Precision protease (GE healthcare) for 16 h at 48C
(30) and then eluted with PBS.

Antibodies

The purified HP6 protein were used to elicit polyclonal
antibody production in rabbit. Polyclonal antibodies
reacting with HP6 were affinity-purified from anti-serum
using the N-hydroxysuccinimide (NHS)-activated
Sepharose HP (GE healthcare) coupled with GST-HP6
fusion protein after passage through GST-conjugated
Sepharose HP. Preparation of anti-DREF monoclonal
antibodies was as described previously (1,31).

Western immunoblot analysis

Adult males of Canton S, a line carrying the Act5C-GAL4
transgene and a line carrying both UAS-Flag-HP6 and
Act5C-GAL4 transgenes were frozen in liquid nitrogen
and homogenized in a solution containing 50mM Tris–
borate (pH 6.8), 2% SDS, 6% b-ME, 10% glycerol and
0.1% bromophenol blue. Homogenates were centrifuged
at 17 800g at 48C for 5min, and extracts (100mg of pro-
tein) were electrophoretically separated on SDS-15%
polyacrylamide gels and transferred to polyvinylidene
difluoride (PVDF) membranes (Bio-Rad) in a solution
containing 25mM Tris, 190mM glycine and 20% metha-
nol for 1 h at 258C. Blotted membranes were blocked with
Tris–buffered saline (TBS) solution (20mM Tris–HCl, pH
7.4 and 150mM NaCl) containing 0.05% Tween 20 and
5% skim milk for 1 h at 258C and then incubated with an
anti-HP6 polyclonal antibody at a 1 : 500 dilution, or the
anti-FLAGM5 antibody (Sigma) at a 1 : 2000 dilution at
48C for 16 h. After washing with TBS containing 0.05%
Tween 20, the blots were incubated with horseradish per-
oxidase-labelled anti-mouse IgG and anti-rabbit IgG (GE
healthcare) at a 1 : 20 000 dilution for 1 h at 258C.
Detection was performed with ECL Western blotting
detection reagents (GE healthcare).

Scanning electron microscopy

Adult flies were anesthetized, mounted on stages and
observed under a Hitachi S-3000 scanning electron micro-
scope in the low vacuum mode.

Band mobility shift assays

Band mobility shift analysis was performed as reported
previously (4), with minor modifications. Kc cell nuclear
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extracts were prepared as described elsewhere (4) and
incubated in a reaction mixture containing 15mM
Hepes, pH 7.6, 60mM KCl, 0.1mM EDTA, 1mM
DTT, 12% glycerol, 0.05mg/ml poly(dI-dC),
0.05mg/ml Salmon sperm DNA (average size 0.2 kb)
and double-stranded 32P-labelled synthetic oligonucleo-
tides (10 000 cpm) for 15min at 08C. When necessary,
unlabelled oligonucleotides were added as competitors at
this step. DNA–protein complexes were electrophoreti-
cally resolved on 4% polyacrylamide gels in 50mM
Tris–borate, pH 8.3, 1mM EDTA and 2.5% glycerol at
258C. Gels were dried and autoradiographed.
Band mobility shift assays were also performed in the

presence of anti-DREF monoclonal antibody 1, anti-
DREF monoclonal antibody 4 (1) or anti-GST monoclo-
nal antibody 1 as a control. Kc cell nuclear extracts were
mixed with each antibody, incubated for 2 h on ice, added
to mixtures containing 32P-labelled synthetic oligonucleo-
tides (10 000 cpm) and 0.05mg/ml poly(dI-dC), 0.05mg/
ml Salmon sperm DNA (average size 0.2 kb) and then
incubated for 15min at 08C as described above.

Immunostaining of polytene chromosomes

Polytene chromosome spreads were prepared according to
the protocol of Zink et al. from Canton S wild-type wan-
dering third instar larvae (32) and stored in PBS-0.05%
Tween 20-1% bovine serum albumin (BSA) at 48C for 16 h
before incubation with anti-DREF monoclonal antibody
at a 1 : 1000 dilution at 48C for 16 h. After extensive wash-
ing with PBS-0.05% Tween 20-1% BSA, samples were
incubated at 258C for 1 h with anti-mouse IgG conjugated
with Alexa 594 (Invitrogen) at a 1 : 400 dilution. The chro-
mosomes were then washed with PBS-0.05% Tween
20-1% BSA and mounted in Fluoroguard Antifade
Reagent (Bio-Rad) for microscopic observation.

Immunostaining of testes

Preparation of testes from 1-day-old adult males for
immunostaining was as described (33). After blocking
with PBS containing 10% normal goat serum, the pre-
parations were incubated with anti-DREF monoclonal
antibody at a 1 : 1000 dilution or with an anti-HP6 poly-
clonal antibody at a 1 : 500 dilution at 48C for 16 h. After
extensive washing with PBS, samples were incubated at
258C for 2 h with anti-rabbit IgG conjugated with Alexa
594 (Invitrogen) or anti-mouse IgG conjugated with Alexa
488 (Invitrogen) at a 1 : 400 dilution. The samples were
mounted in Fluoroguard Antifade Reagent (Bio-Rad)
for microscopic observation.

Chromatin immunoprecipitation

We performed chromatin immunoprecipitation using a
Chip Assay kit as recommended by the manufacturer
(Upstate). Approximately 1� 107 S2 cells were fixed in
1% formaldehyde at 378C for 10min and then quenched
in 125mM glycine for 5min at 258C. Cells were washed
twice in PBS containing protease inhibitors (1mM PMSF,
1 mg/ml aprotinin and 1 mg/ml pepstatin A) and lysed in
2ml of SDS lysis buffer. Lysates were sonicated to break
DNA into fragments of less than 1 kb and centrifuged

at 15 300g for 10min at 48C. The sonicated cell superna-
tants were diluted 10-fold in Chip Dilution Buffer and pre-
cleared with 80 ml Salmon Sperm DNA/Protein A agarose-
50% slurry for 30min at 48C. After brief centrifugation,
each supernatant was incubated with 1 mg of the rabbit
IgG or anti-DREF polyclonal antibody for 16 h at 48C.
Salmon Sperm DNA/Protein A agarose-50% slurry was
added, followed by incubation for 1 h at 48C. After wash-
ing, immunoprecipitated DNA was eluted with elution
buffer containing 1% SDS and 0.1M NaHCO3. Then
the protein-DNA crosslinks were reversed by heating at
658C for 4 h. After deproteinization with proteinase K,
DNA was recovered by phenol–chloroform extraction
and ethanol precipitation.

Immunoprecipitated DNA fragments were detected by
quantitative real time PCR using SYBR Green I (Takara)
and the Applied Biosystems 7500 Real Time PCR system
(34). The ��CT value for each sample was calculated by
subtracting the CT value for the input sample from the CT
value obtained for the immunoprecipitated samples. Fold
differences relative to the controls using non-immune IgG
were then calculated by raising 2 to the ��CT power. The
��CT was calculated by subtracting the �CT value for
that for the sample immunoprecipitated with control IgG.

Quantitative RT-PCR

1� 106 S2 cells were plated in 6-well dishes in 2ml
M3 medium containing 30 mg/well of DREF double
stranded RNAs (DREFdsRNA) or LacZdsRNA for 1 h.
After the incubation, 3ml of 10% FBS-M3 medium was
added to each well. At 5 days after the dsRNA treatment,
total RNA was isolated from cells using TrizolReagent
(Invitrogen) and 1 mg aliquots were reverse transcribed
with oligo dT primer using a Takara high fidelity
RNA PCR kit (Takara). Then, real time PCR was per-
formed with a SYBR Green I kit (Takara) and the
Applied Biosystems 7500 Real Time PCR system using
one ml of reverse transcribed sample per reaction. Levels
of mRNAs in the DREFdsRNA or LacZdsRNA treated
cells and in no dsRNA treated cells were investigated by
the CT comparative method (35). The �-tubulin gene was
chosen as a negative control. Rp49 was used as an endo-
genous reference gene. Experiments were performed in
triplicate for each of three RNA batches isolated
separately.

Developmental RT-PCR

Total RNAs from Drosophila bodies at various develop-
mental stages were purified with TRIZOL (Invitrogen).
For RT-PCR, mRNAs were purified using an Oligotex-
dT30 <Super> mRNA Purification kit (Takara Bio) and
then were used for cDNA synthesis using an oligo d(T)
primer and Bca PLUS RTase (Takara Bio) according to
the manufacturer’s instructions. HP6 and RP49 DNA
were amplified by PCR using PyrobestTM DNA
Polymerase (Takara Bio) with primer oligonucleotides
CG15636P and CG15636antiP for HP6 and RP49P and
RP49antiP for RP49. The PCR conditions included one
cycle of 2min at 948C followed by 25 cycles of 948C for
30 s, 528C or 558C for 30 s and 728C for 1min. All the
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PCR reactions were performed within the range of linear
amplification and PCR products were separated on 2%
agarose gels.

RESULTS

Genetic screening of modifiers of the DREF-induced rough
eye phenotype and identification of anHP6mutation as a
dominant suppressor

As reported previously, we have established transgenic fly
lines bearing GMR-GAL4 and DREF cDNAs under the
control of a GAL4-binding sequence (UAS-DREF1-709)
(19,28). Over-expression of DREF induced ectopic DNA
synthesis and apoptosis, and inhibited the photoreceptor
cell differentiation in eye imaginal discs and adult flies
exhibited a severe rough eye phenotype (36). Since the
eye phenotype does not impair viability or fertility (20),
these flies serve as a genetic tool to screen for modifying
mutations. Previous studies identified 5 and 17 deletion
regions that modify the DREF-induced rough eyes phe-
notype in the X and the second chromosome, respectively
(20). In order to identify genes in these genomic regions
that are responsible for modification of the DREF-
induced rough eye phenotype, various mutants mapped
in and around the 22 genomic regions (5D1-2; 5E, 7D1;
7D5-6, 9B1-2; 10A1-2, 11A2; 11B9, 19A5; 19D3,
21A1; 21B7-8, 21B8-C1; 21C8-D1, 21D2-3; 21F2-22A1,
25D2-4; 26B2-5, 32F1-3; 33F1-2, 35D1; 35D4, 35D2;
35F1-2, 35D2-4; 35E2-6, 36A8-9; 36E1-2, 36E4-36F1;
38A6-7, 37B2-12; 38D2-5, 37C2-5; 38B2-C1, 37D1-2;
38C1-2, 41A, 48A-B, 55A-55F, 57B4; 58B) were collected
and used to cross with transgenic flies expressing DREF
(Table 1).

Out of 238 independent mutant lines examined, 27 lines
suppressed, while 19 lines enhanced the rough eye pheno-
type when they were heterozygous for the mutations
(Figure 1D to F, Table 1). Under the scanning electron
microscope, eyes of these heterozygous mutant flies
appeared normal (data not shown). The other mutant
lines apparently exerted no detectable effects on the
DREF-induced rough eye phenotype. Cytological loca-
tions of these negative lines are listed in Supplementary
Table 1. Data base search revealed that 24 genes are
responsible for the suppression and 12 genes for the
enhancement. One of the strongest levels of suppression
of the rough eye phenotype was observed with the
P-element insertion line P{w+mGT=GT1}CG15636
(Figure 1B). The suppression could be reverted under
dysgenic conditions (Figure 1C), suggesting the mutation
induced by the P-element insertion to be truly responsible
for the suppression. The Berkeley Drosophila genome
project database (http://www.fruitfly.org/blast) revealed
that the P-element is inserted 43 bp upstream of the termi-
nation codon of the HP6 (CG15636) gene (Figure 2) and
Greil et al. (37) reported that the mutant is semi-lethal.
In contrast coexpression of HP6 further enhanced the
DREF-induced rough eye phenotype in compared with
the control flies coexpressing LacZ (Figure 1G and H),
despite that overexpression of HP6 alone in the eye

imaginal disc exerted only a marginal effect on the adult
eye morphology (Figure 1I).
We searched for DRE like sequences in the 50-flanking

region of the HP6 gene from the NCBI database, and
found two sequences that match seven out of the eight
nucleotides of DRE and two additional sequences that
match six out of the eight nucleotides within the 1.4 kb
upstream region (Figure 2). We named these sites as
DRE1a (–161 to –154), DRE1b (–139 to –132), DRE1g
(–123 to –116) and DRE2 (–1013 to –1006) with respect
to the translation initiation codon (Figure 2). It is
reported that stimulatory effects of DRE can be observed
at positions within at least 2.5 kb from the transcription
initiation site (4) and sequences matching six out of eight
nucleotides of DRE have promoter activity (11,38).
Therefore, all of these DRE-like sequences of the HP6
gene likely play roles in regulation of the HP6 gene pro-
moter activity.

DREF binds to the chromosomal region containing
theHP6 gene

To examine whether DREF locates to the chromosomal
region containing the HP6 gene, we carried out immuno-
staining of salivary gland polytene chromosomes in third
instar larvae with anti-DREF monoclonal antibodies.
DREF signals are detected in a number of discrete regions
throughout the polytene chromosomes (14). Careful
inspection allowed the mapping of signals for DREF at
the HP6 gene locus, 25A1, on the 2L chromosome
(Supplementary Figure 1). The Berkeley Drosophila
genome project database revealed that only two genes
(HP6 and dumpy) are located in this 25A1 locus. Since
HP6 is located in the intron of dumpy (dp), P-element
insertion in line P{w+mGT=GT1}CG15636 may affect
not only HP6 but also dp gene expression. We therefore
crossed DREF-overexpressing flies with two independent
X ray-induced homozygous lethal dp mutant strains,
dp8vlR/SM5 and dpD/SM1. However no effect on the
DREF-induced rough eye phenotype by dp mutation
was observed (Supplementary Figure 2). Furthermore
there is no DRE like sequence within the 2 kb 50-flanking
region of the dp gene. It is therefore very likely that DREF
binds to DRE-like sequences in the 50-flanking region of
the HP6 gene in the salivary glands.

DREF binding activity in vitro

To examine this directly, oligonucleotide DRE1 contain-
ing the region from DRE1a (–161 to –154) to DRE1g
(�123 to �116), oligonucleotide DRE1g containing the
DRE1g (�123 to �116) region and oligonucleotide
DRE2 containing the DRE2 (�1013 to �1006) region
(Figure 2) were chemically synthesized and used for
band mobility shift assays. As previously noted (4), spe-
cific DNA protein complexes could be detected with Kc
cell nuclear extracts and the oligonucleotide DRE-P carry-
ing the DRE sequence in the PCNA gene (Figure 3A). The
shifted bands were effectively diminished by adding unla-
belled oligonucleotides DRE1 and DRE2. Although
DRE1 carrying mutations in either DRE1a or DRE1b
also effectively competed against DRE-P, oligonucleotide
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Table 1. Summary of genes that genetically interact with the DREF gene

Cytological
location

gene CG number Allele(s) tested Type of
allele

Known function Effect on rough
eye phenotype

5D1-5D2; 5E Df(1)sqh Deficiency Suppression

5E3-5E4 Lag1 CG3576 Lag1G0365 P-element
insertion

Unknown Suppression

5E4 Ubi-p5E CG32744 l(1)G0287G0287 P-element
insertion

Ubiquitin-dependent
protein catabolic
process

Suppression

7D1; 7D5-7D6 Df(1)C128 Deficiency Enhancement

7B7 Tom40 CG12157 Tom40G0216 P-element
insertion

Transmembrane
transporter activity

Enhancement

7C3 l(1)G0155 CG1515 l(1)G0155G0155 P-element
insertion

Unknown Enhancement

7D3-7D5 fs(1)h CG2252 fs(1)hG0093 P-element
insertion

Regulation of
transcription

Enhancement

7D5 mys CG1560 mysKG02930 P-element
insertion

Calcium-dependent
cell-cell adhesion

Enhancement

7D5 mys CG1560 mysG0281 P-element
insertion

Calcium-dependent
cell-cell adhesion

Enhancement

7E6-7E7, 7E7-
7E9

CG32711, Trf2 CG32711, CG18009 l(1)G0219G0219 P-element
insertion

Unknown, RNA
polymerase II tran-
scription factor
activity

Enhancement

7E6-7E7, 7E7-
7E9

CG32711, Trf2 CG32711, CG18009 l(1)G0228G0228 P-element
insertion

Unknown, RNA
polymerase II tran-
scription factor
activity

Enhancement

7E6-7E7, 7E7-
7E9

CG32711, Trf2 CG32711, CG18009 l(1)G0295G0295 P-element
insertion

Unknown, RNA
polymerase II tran-
scription factor
activity

Enhancement

7E6-7E7, 7E7-
7E9

CG32711, Trf2 CG32711, CG18009 l(1)G0332G0332 P-element
insertion

Unknown, RNA
polymerase II tran-
scription factor
activity

Enhancement

7E6-7E7, 7E7-
7E9

CG32711, Trf2 CG32711, CG18009 l(1)G0372G0372 P-element
insertion

Unknown, RNA
polymerase II tran-
scription factor
activity

Enhancement

7E6-7E7, 7E7-
7E9

CG32711, Trf2 CG32711, CG18009 l(1)G0425G0425 P-element
insertion

Unknown, RNA
polymerase II tran-
scription factor
activity

Enhancement

19A5; 19D3 Df(1)16-2-19 Deficiency Suppression

18D13-18E1 dome CG14226 domeG0199b Loss of
function

JAK/STAT signal-
ing pathway

Enhancement

19C1 CG9577 CG9577 CG9577KG09994 P-element
insertion

Unknown Enhancement

19C1 sw CG18000 P{SUPor-P}KG05547 P-element
insertion

Microtubule motor
activity

Suppression

19C5-19C6 l(1)G0004 CG11738 l(1)G0004G0004 P-element
insertion

Unknown Suppression

20B3 l(1)G0196 CG14616 l(1)G0196G0196 P-element
insertion

Unknown Enhancement

21B8-C1; 21C8-

21D1

Df(2L)al Deficiency Suppression

21C4-21C5 ex CG4114 l(2)k06506k06506 P-element
insertion

Hippo signaling
pathway

Suppression

21C4-21C5 ex CG4114 l(2)k07308k07308 P-element
insertion

Hippo signaling
pathway

Suppression

21D1 cbt CG4427 l(2)k08915k08915 P-element
insertion

JNK signaling
pathway

Enhancement

21D2-21D3;

21F2-22A1

Df(2L)S3 Deficiency Suppression

21E2 ds CG17941 l(2)0185501855 P-element
insertion

Calcium-dependent
cell-cell adhesion

Enhancement

21E4 S CG4385 Sk09530 P-element
insertion

Effector of Egfr
signalling

Enhancement

(continued)
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Table 1. Continued

Cytological
location

gene CG number Allele(s) tested Type of
allele

Known function Effect on rough
eye phenotype

21F1-2 l(2)10685k05810 P-element
insertion

Suppression

25D2-25D4;

26B2-26B5

Df(2L)cl-h3 Deficiency Suppression

26B2 lid CG9088 lidk06801 P-element
insertion

Trithorax grop pro-
tein trimethyl H3K4
demethylase

Mild suppression

26B2 eIF-4a CG9075 eIF-4ak01501 P-element
insertion

Translation initia-
tion factor activity

Suppression

26B2 eIF-4a CG9075 eIF-4a02439 P-element
insertion

Translation initia-
tion factor activity

Strong suppression

26D1-26D2 l(2)k06107k06107 P-element
insertion

Enhancement

32F1-32F3;

33F1-33F2

Df(2L)Prl Deficiency Enhancement

33A1-33A2 crol CG14938 crolk05205 P-element
insertion

Transcription of a
number of ecdysone-
induced genes

Mild suppression

33C4 Rab6 CG6601 Rab6k13606 P-element
insertion

GTPase activity Suppression

33F3 CG5776,
Å@spict

CG5776, CG12292 l(2)k05448k05448 P-element
insertion

Unknown, negative
regulation of BMP
signaling pathway

Suppression

35D1; 35D4 Df(2L)TW116(R)GW2 Deficiency Suppression

35C5-35D1 gft CG11861 gft06430 Loss of
function

Ubiquitin-protein
ligase activity

Mild suppression

35D2; 35F1-35F2 Df(2L)TW116(R)GW13 Deficiency Suppression

35D2-35D4;

35E2-35E6

Df(2L)b83d29a Deficiency Enhancement

35D2 lace CG4162 lacek05305 P-element
insertion

Serine C-palmitoyl-
transferase activity

Mild suppression

35E1-35E2 P{lacW}J29 P-element
insertion

Suppression

36A8-36A9;

36E1-36E2

Df(2L)H20 Deficiency Enhancement

36A11 Cyt-c-d CG13263 Cyt-c-dbln1 Loss of
function

Cytochrome C
proteins

Strong suppression

36E4-36F1;

38A6-38A7

Df(2L)TW50 Deficiency Enhancement

36F4 RpS26 CG10305 RpS2604553 P-element
insertion

Structural constitu-
ent of ribosome

Suppression

37C7 pigeon CG10739 pigeonP1 hypomorph unknown Enhancement
37B2-37B12;

38D2-38D5

Df(2L)pr-A16 Deficiency Enhancement

38C5 CG16798 CG16798 l(2)k07219k07219 P-element
insertion

Unknown Suppression

55A-55F Df(2R)PC4 Deficiency Suppression

55B5-55B7 stau CG5753 staury9 Loss of
function

RNA binding Mild suppression

55B7-55B8 Hsf CG5748 Hsf03091 Loss of
function

RNA polymerase II
transcription factor
activity

Suppression

55F3-55F4 l(2)08717 CG15095 l(2)0871708717 P-element
insertion

Plasma membrane
protein

Suppression

57B4; 58B Df(2R)Pu-D17 Deficiency Enhancement

57B12 CG9350 CG9350 l(2)0305003050 P-element
insertion

Unknown Suppression

57C3-57C4 Xbp1 G9415 Xbp1k13803 Loss of
function

Regulation of
transcription

Suppression

57E6-57E8 CG10496 CG10496 CG1049607128a P-element
insertion

Unknown Suppression

57E8-57E9 MESK2 CG15669 MESK2k00119 P-element
insertion

Unknown Suppression

Bold characters indicate deficiency lines used in the previous study (20)
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DRE1 carrying mutations in DRE1g less effectively com-
peted. These results suggest that DREF has affinity for the
region containing DRE1g and DRE2.
When the oligonucleotides DRE2 or DRE1g were

mixed with Kc cell nuclear extracts, specific DNA-protein
complexes were detected [Figures 3B (lane 1) and 3C

(lane 1)], which were diminished by addition of an
excess amount of unlabelled DRE2 and DRE1g oligonu-
cleotides as competitors [Figures 3B (lanes 2 and 3) and
3C (lanes 2 and 3)] but not of oligonucleotides carrying
mutations in the DRE-like sequences [Figures 3B (lanes 4
and 5) and 3C (lanes 4 and 5)]. Furthermore, the specific

Figure 1. Scanning electron micrographs of adult eyes. (A) GMR-GAL4/+; UAS-DREF/+; +/+. (B) GMR-GAL4/+; UAS-DREF/
P{w+mGT=GT1}CG15636; +/+. (C) GMR-GAL4/+; UAS-DREF/P{w+mGT=GT1}CG15636rev; +/+. (D) GMR-GAL4/+; UAS-DREF/
rps26; +/+. (E) GMR-GAL4/+; UAS-DREF/pepck; +/+. (F) GMR-GAL4/+; UAS-DREF/star; +/+. (G) GMR-GAL4/+; UAS-DREF/+;
UAS-nlslacZ/+. (H) GMR-GAL4/UAS-HP6; UAS-DREF/+; +/+. (I) GMR-GAL4/UAS-HP6; +/+; +/+. Bar indicates 50 mm.

1430 Nucleic Acids Research, 2009, Vol. 37, No. 5



DNA-protein complexes were either diminished or super
shifted by adding anti-DREF monoclonal antibodies,
but not by adding the control anti-GST monoclonal
antibody [Figures 3B (lanes 7 and 8) and 3C (lanes 7
and 8)]. These results indicate that DREF can bind to
DRE1g and DRE2 sequences in the HP6 gene promoter
in vitro.

DREF binds to the DRE2- and DRE1-containing genomic
region in vivo

To further examine DREF-binding to the DRE1- and
DRE2-containing region of the HP6 gene, primers to
amplify the region from –66 to �167 and –856 to �1060
(Figure 2) were chemically synthesized and used for chro-
matin immunoprecipitation assays with anti-DREF poly-
clonal antibodies. It is well established that the Drosophila
PCNA gene is regulated by the DREF pathway (1,11,12).
Amplification of the PCNA gene promoter region contain-
ing the DRE in immunoprecipitates with the anti-DREF
polyclonal antibody was 27-fold higher than with control
rabbit IgG (Figure 4). In contrast, no amplification of the
Actin 5C gene region was observed (Figure 4).
Amplification of the HP6 gene promoter region contain-
ing the DRE1 in the immunoprecipitates with anti-DREF
polyclonal antibody was 28-fold and that containing
DRE2 was 13-fold (Figure 4). These results indicate that
DREF binds to the genomic region containing DRE1 and
DRE2 of the HP6 gene in S2 cells.

Effects of knockdown of theDREF gene onHP6 gene
expression in cultured cells

Endogenous HP6 gene expression in RNAi-mediated
DREF knockdown cells was examined to further demon-
strate that HP6 is a DREF target gene. Total RNAs from
double-stranded RNA (dsRNA)-treated S2 cells were
isolated and quantitative RT-PCR was carried out
(Figure 5). The DREF mRNA level was reduced by 82%
in DREFdsRNA-treated cells, but not changed with
LacZdsRNA-treatment. Under these conditions, the level
of endogenous HP6 mRNA was decreased to 39%, while
LacZdsRNA treatment exerted no effect (Figure 5).

Expression of the �-tubulin gene employed as a negative
control was not affected by DREFdsRNA treatment.
These results indicate that DREF is required for HP6
gene expression.

Levels ofHP6mRNA are highest inDrosophila adult testes

We carried out RT-PCR to determine the HP6 expression
pattern during Drosophila development (Figure 6). HP6
mRNA could be detected throughout all developmental
stages but with the highest expression in adult males.
Furthermore, the HP6 mRNA was expressed at least
6.3-fold higher in testes than in other parts of the body
(Figure 6B). The observed HP6 expression pattern is
consistent with the results reported by Greil et al. (37)
and FlyAtlas (http://flyatlas.org/atlas.cgi?name=
FBgn0031613). Relatively high expression of both HP6
and DREF proteins in nuclei at the apical tips of testes
was observed with immunostaining using anti-HP6 and
anti-DREF antibodies (Figure 7B) and the specificity of
anti-HP6 antibody binding was confirmed by western blot
analysis with extracts from adult male flies expressing
Flag-HP6 fusion protein (Figure 7A). The results suggest
some specific role of HP6 during spermatogenesis.

DISCUSSION

The present genetic screening of modifiers of the DREF-
induced rough eye phenotype and identified 24 suppres-
sors and 12 enhancers (Table 1 and Figure 1). Although
these modifier genes are not necessarily transcriptional
targets of DREF as reported previously (14), they could
be critical genes in positive or negative regulation of the
DREF pathway. By data base search, five genes, HP6,
pigeon, lace, X box binding protein 1 (Xbp-1) and guftagu
were found to carry DRE sequences in their 50-flanking
regions. These genes are therefore candidate DREF target
genes. Nucleotide positions of DRE and DRE like
sequences in the 50-flanking regions of these genes are
listed in the Supplementary Table 2.
The fat gene, one of the suppressors of the rough eye,

encodes nonclassical cadherin (39,40) and genetically

Figure 2. DRE and DRE-like sequences in the 50-flanking regions of the HP6 gene. The translation initiation site is numbered as +1. DRE and
DRE-like sequences are located at positions –1013 to –1006 (DRE 2), –161 to –154 (DRE 1a), –139 to –132 (DRE 1b) and –123 to –116 (DRE1g).
DRE1 comprises DRE 1a, DRE 1b and DRE 1g. Nucleotides that do not match to DRE consensus sequences are shown in small letters. A
P-element is inserted 43 bp upstream of the termination codon of the HP6 gene. The regions (DRE1 and DRE2) used as probes for band mobility
shift assays are indicated.
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interacts with armadillo (41), a Drosophila homologue of
mammalian b-catenin and downstream effecter of the Wnt
signal transduction pathway (42). Interaction with fat in
the eye confirms the ability of this gene to modify cyto-
plasmic Armadillo level (41). When sufficient Armadillo

protein accumulates in the cell, it forms a complex with
Pangolin, a Drosophila homologue of mammalian T-cell
factor (43). Previously we demonstrated that the
Armadillo/Pangolin complex activates transcription of
the DREF gene (44). We therefore suggest that

Figure 3. Complex formation between DRE in the PCNA gene promoter and Kc cell nuclear extracts. 32P-labelled double stranded oligonucleotides
DRE-P (A), DRE2 (B) and DRE1g (C) were incubated with Kc cell nuclear extracts in the presence of the indicated competitor oligonucleotides or
anti-DREF monoclonal antibodies. The amounts of competitors were 100- or 400-fold molar ratios. Anti-GST Mab1, anti-GST monoclonal anti-
body 1; anti-DREFMab1, anti-DREF monoclonal antibody 1; anti-DREFMab4, anti-DREF monoclonal antibody 4; DRE-P, oligonucleotide
containing the DRE sequence of the Drosophila PCNA gene; DRE-PM, DRE-P having a mutation in the DRE sequence; DRE2, oligonucleotide
containing the DRE2 sequence of the HP6 gene; DRE2M, DRE2 having mutations in the DRE-like sequence; DRE1, oligonucleotide containing the
DRE1 sequence of the HP6 gene; DRE1M, DRE1 having mutations in the DRE1abg sequences; DRE1aM, DRE1 having mutations in the DRE1a
sequence; DRE1bM, DRE1 having mutations in DRE1bsequence; DRE1gM, DRE1 having mutations in the DRE1g sequence.
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suppression of the DREF-induced rough eye phenotype is
caused by decrease of the Armadillo protein accumulation
by half reduction of the fat gene dosage. The present
screen also identified the lace gene as another suppressor.
The lace gene encodes a membrane protein similar to the
yeast protein LCB2, a subunit of serine palmitoyltransfer-
ase (SPT), which catalyses the first step of sphingolipid
biosynthesis (45). It is now well known that sphingolipids
trigger elevated levels of apoptosis via the modulation of
known signaling pathways (46). Previously we reported
that DREF is involved in regulation of vein formation
through the activation of raf, downstream of Egfr

signaling in the Drosophila wing imaginal discs (21).
In accordance with this, the present genetic screen identi-
fied the star gene as one enhancer of the DREF-induced
rough eye (Table 1). It encodes an integral membrane pro-
tein that is expressed in cells secreting Spitz and is loca-
lized in the early endoplasmic reticulum and nuclear
envelope (47). Star interacts directly with Spitz, an activat-
ing ligand for Egfr (48), and regulates its protein expres-
sion (49).
The Xbp-1 gene is also a suppressor of the DREF-

induced rough eye phenotype. The Xbp-1 gene encodes
a ‘bZIP’-containing transcription factor and plays a key
role in the unfolded protein response, an evolutionarily
conserved signalling pathway activated by an overload

Figure 6. Developmental RT-PCR. Total RNA was extracted from Drosophila bodies or the indicated tissues at various developmental stages and
RT-PCR was carried out. The upper panels represent the HP6 mRNA levels and lower panels the Rpl32/RP49 mRNA levels as a control.

Figure 4. Binding of DREF to DRE-containing genomic regions of the
HP6 gene. Cross-linked chromatin of S2 cells was immunoprecipitated
with anti-DREF IgG, control rabbit IgG or no IgG. The genomic
regions containing DRE1 of the HP6 gene, DRE2 of the HP6 gene,
DRE of the PCNA gene and Act5C gene were amplified by real time
PCR and compared with the amplification products from the immuno-
precipitates with the control IgG.

Figure 5. Effects of dsRNA treatment on mRNA levels of HP6 in S2
cells. cDNAs were prepared from total RNA isolated from dsRNA
treated S2 cells and levels of DREF, HP6 and �-tubulin mRNAs were
measured by quantitative RT-PCR. Fold differences against the ampli-
fication with no treatment (Mock) are shown with standard deviations
from three independent dsRNA treatments.
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of misfolded proteins in the endoplasmic reticulum
ER (50). The guftagu gene is an other suppressor that
encodes the Drosophila Cullin-3 homologue (d-Cul3) (51)
whose function impinges on the activity of many different
signalling pathways and developmental events via tar-
geted destruction or modification of specific proteins
(51). Recently, we have reported that the Drosophila
skpA gene is a target of DREF (52). The skpA gene
encodes a component of the SCF complex that func-
tions in combination with the ubiquitin conjugating
enzyme UbcD1 and is involved in cell cycle regulation.

Moreover regulation of the gene encoding the protea-
some regulator REGg by the DRE/DREF system has
also been reported by others (53). The ubiquitin-
proteasome pathway plays key roles in many basic
cellular processes, including immune responses, develop-
ment and programmed cell death (45,46). In addition
to degradation of defective or misfolded proteins, a critical
regulatory role has been defined in studies of the cell
cycle (54–56). Some major signal transduction path-
ways that are of great importance during development
are known to be controlled in a coordinated way,

Figure 7. Specificity of anti-HP6 rabbit polyclonal antibody examined by western blot analysis and immunostaining of testes. (A) Extracts were: from
w; +; Act5C-GAL4/+ adult male flies for immunoblotting with anti-HP6 antibody (lane 2) or anti-FlagM5 antibody (lane 4); from w; +; Act5C-
GAL4/UAS-HP6 adult male flies for immunoblotting with anti-HP6 antibody (lanes 1 and 6), or anti-FlagM5 antibody (lane 3); from wild type adult
male flies for immunoblotting with anti-HP6 antibody (lane 5). The arrowheads correspond to the Flag-HP6 protein and the arrow corresponds to
endogenous HP6 protein. The 100mg aliquots of protein were used for lanes 1–4, 500 mg for lane 5 and 300mg for lane 6. (B) Immunostaining of
testis with anti-HP6 antibody (a and d) or anti-DREF antibody (b and e). Merged images of HP6 and DREF signals (c and f). (d to f) Higher
magnification images of a to c.
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in which the DRE/DREF pathway may be intimately
involved (57).

The eukaryotic initiation factor 3p40 (eIF3p40), the drib-
ble and the ribosomal protein S26 genes were included in
the other suppressors identified in the screening and they
are all associated with protein synthesis (Table 1).
The dribble protein encodes a novel KRR1p-like KH
domain protein (58) and krr1 mutations affect biogenesis
of 18S rRNA and its precursors and 40S ribosomal sub-
units(59). The eIF3p40 protein encodes the p40 subunit
of the eIF3 complex which facilitates charging of the
40S ribosomal subunit with the ternary complex (eIF2,
Met-tRNAMet, GTP) and bridging with the eIF4G sub-
unit of the cap-binding complex, eIF4F and inhibiting the
association of 40S and 60S ribosomal subunits (60,61).
The ribosomal protein S26 gene encodes a Drosophila
ribosomal protein (RP) with homology to rat RP S26
(62). A slow growth rate and an altered adult size are
thought to be the result of a reduced capacity for protein
synthesis and this phenotype has been demonstrated
to disrupt genes that encode RPs (63). Recently we iden-
tified the eIF4A gene, encoding a member of the
DEAD box family of ATP-dependent RNA helicases
(64), as another target of DREF. eIF4A is proposed to
function in cap(m7GpppN)-dependent initiation of
protein synthesis by unwinding the secondary structure
of 50-untranslated regions of mRNA (65,66). Since genes
responsible for degradation of defective or misfolded
proteins are targets of DREF as described above, DREF
apparently promotes both protein synthesis and degrada-
tion by directly or indirectly activating genes involved in
these processes. This is presumably associated with the
active protein metabolism typical of proliferating cells.

A number of other genes are of obvious interest given
their physiological significance. Among the strongest sup-
pressors of the DREF-induced rough eye phenotype was
the mutated HP6 gene. The present studies clearly dem-
onstrate that HP6 gene is one of the targets of DREF.
Although HP6 is not a modifier of position effect variega-
tion as are several of other Drosophila HPs, it carries
chromo shadow domain (37). It has been shown that
chromo shadow domain in HP1 is highly conserved
across species and crucial for interaction with many pro-
teins such as the SUV39H1 (67), SP100 (68,69),
TIF1-b(KAP-1) (70), Ku70 (71), lamin B receptor, HP1
itself (72), Ki-67 (73) and HP1/origin recognition com-
plex-associated protein (HOAP) (74). It has further been
reported that HP6 directly interacts with the Caravaggio
protein in a two-hybrid assay (75). The caravaggio gene is
otherwise known as Drosophila HOAP. We here found the
expression level of HP6 mRNA to the highest in adult
males and it much higher in testes than other sites.
DREF is also expressed in the testis (1). The present
study revealed that both proteins at least partially
co-localize in nuclei at the apical tips of testes where
cell proliferation actively occurs, suggesting some roles
of HP6 in regulation of cell proliferation or transcription
of the meiosis-related genes in testis.

We have searched for DRE sequences in the 50-flanking
regions of other five HP family genes in Drosophila on the
genome database and found that examples in promoters in

all cases (Table 2). In this context it should be noted that
DREF is also involved in transcriptional regulation of
genes coding for the chromatin remodeling BRM complex
(24). Moreover, the present genetic screen identified the
little imaginal discs (lid) gene as a suppressor of the
DREF-induced rough eye phenotype. The lid encodes a
histone H3 trimethyl-Lys4 demethylase, a regulator of the
chromatin structure (76–78). Therefore DREF may influ-
ence expression of many genes through regulation of genes
involved in alteration of chromatin structures.
Five suppressor genes for the DREF-induced rough

eye phenotype; HP6, pigeon, lace, Xbp-1 and guftagu are
candidate DREF target genes, since they carry DRE
sequences in their 50-flanking regions. These five genes
have distinct functions as described above.
Overexpression of DREF in eye imaginal discs induced
multiple effects such as induction of DNA synthesis and
apoptosis, inhibition of photoreceptor cell differentiation
and loss of pigment cells (20). Although suppression of the
rough eye phenotype by mutation of each suppressor
genes appeared to be strong by examination with a scan-
ning electron microscopy, inspection of horizontal sec-
tions of adult fly eyes showed that the suppression is still
partial in most cases (20). Therefore suppression of the
DREF-induced rough eye phenotype could be resulted
from disturbance of multiple pathways in which many
suppressor genes might be involved.
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Table 2. DRE or DRE-like sequences in 50-flanking region of the

Drosophila HPfamily genes

Gene DRE or DRE-like Position

HP1 50-cATCGATt �462 to �469
50-aATCGATt �470 to �477
50-taTCGATA �503 to �510
50-TcTCGATc �979 to �986

HP2 50-aATCGATt �489 to �495
HP3 50-TATCGATt �134 to �141

50-TATCGATt �186 to �194
50-gATCGAgA �475 to �482
50-TATCGAcA �920 to �927

HP4 50-TATCGATA �366 to �373
50-atTCGATA �536 to �543

HP5 50-TATCGATt �670 to �677
HP6 50-TATCGAaA �116 to �123

50-TgTCGATA �132 to �139
50-cATCGAaA �154 to �161
50-aATCGATt �1006 to �1013
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