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ABSTRACT

A major challenge in microarray design is the selec-
tion of highly specific oligonucleotide probes for all
targeted genes of interest, while maintaining ther-
modynamic uniformity at the hybridization tempera-
ture. We introduce a novel microarray design
framework (Thermodynamic Model-based Oligo
Design Optimizer, TherMODO) that for the first
time incorporates a number of advanced modelling
features: (i) A model of position-dependent labelling
effects that is quantitatively derived from experi-
ment. (ii) Multi-state thermodynamic hybridization
models of probe binding behaviour, including poten-
tial cross-hybridization reactions. (iii) A fast cali-
brated sequence-similarity-based heuristic for
cross-hybridization prediction supporting large-
scale designs. (iv) A novel compound score formu-
lation for the integrated assessment of multiple
probe design objectives. In contrast to a greedy
search for probes meeting parameter thresholds,
this approach permits an optimization at the probe
set level and facilitates the selection of highly spe-
cific probe candidates while maintaining probe set
uniformity. (v) Lastly, a flexible target grouping
structure allows easy adaptation of the pipeline to
a variety of microarray application scenarios. The
algorithm and features are discussed and demon-
strated on actual design runs. Source code is avail-
able on request.

INTRODUCTION

DNA microarray technology has developed into a well-
established, powerful high-throughput method in bio-
logical research. The flexibility of the technology

allows a variety of applications, including the study of
genome-scale gene expression patterns, genotyping and
genetic mapping, DNA–protein interactions (ChIP-chip),
and comparative genomic hybridizations (CGH) (1–6).
The predominant use of microarrays is still in the
domain of gene expression profiling. One strength of the
technology is its high dynamic range, with modern plat-
forms yielding 5–6 orders of magnitude (7,8). Also, micro-
arrays can directly probe low-copy-number targets,
including regulatory transcripts and transcription factors.
Despite the widespread success of microarrays, however,
the interpretation of gene expression measurements has
remained a challenge (9). Many modern methods for
microarray data analysis attempt to detect biologically
meaningful patterns or signatures in the data, and thus
particularly rely on accurate measurements (10,11).
Highly specific probes with uniform hybridization beha-
viour are, therefore, crucial for accurate quantitative
modelling and further advancement of inference methods
in microarray analysis (12,13).
While a large number of tools for rapid array design are

currently available, high-quality probe design requires the
prediction of microarray probe hybridization beha-
viour (14) in a complex mixture, which is an intrinsically
hard problem (15). The computational complexity of pre-
dicting individual probe behaviour is considerably reduced
through ad hoc heuristics, such as replacing thermody-
namic modelling with local sequence similarity criteria.
These have been motivated by experimental exploratory
studies of microarray probe specificity (16). Sequence
similarity can be tested very efficiently with suffix trees
(17–20) or the popular BLAST tool (21–32).
As calculations for one probe can already be quite ela-

borate, most of the current research in microarray design
has focused on dealing with the inherent difficulty of probe
selection in a high-dimensional search space (33).
Typically, greedy approaches select the first probe candi-
dates matching design criteria, and thus narrowing the
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pool of fully considered candidates early. For example,
restricting guanine–cytosine (GC) content excludes
probes with extreme probe–target melting temperatures.
Filters for low sequence complexity regions avoid
areas intrinsically prone to non-specific hybridization.
Concerns about probe secondary structure have motiva-
ted sequence palindrome-based filtering heuristics
(21,26,27), while more recent advances have introduced
a new class of thermodynamic models (34–39) for the pre-
diction of probe structure and also probe–target binding
behaviour (22,23,25,30).
Several design challenges, however, remain that are

central to achieving high-performance microarrays.
While very efficient, the conventional use of greedy
searches and fixed parameter thresholds often leads to
suboptimal probe choices, compared with approaches
that determine optimal parameters and probes by non-
greedy optimization (18,40,41). Ideally, microarray
design would draw from a thorough comparison of all
possible probes and their properties. Essentially, for
each probe candidate, one thus wants the best possible
prediction of probe characteristics, such as the sensitivity
and specificity of probe signal response to the concentra-
tion of its target transcript (12,15).
For example, during sample labelling, the primer type

and the limited processivity of the reverse transcriptase
affect the likelihood that a certain sequence region is pres-
ent in the pool of labelled transcripts. As a consequence,
the location of the probe binding site along the transcript
can affect probe performance. The difficulty of determin-
ing the actual parameters for a model of this process has
precluded a quantitative consideration of these effects.
Most probe design tools, therefore, try to handle these
biases using a greedy preference for probe binding sites
in the terminal regions which are enriched in labelled pro-
ducts. This, however, comes at the expense of forfeiting
potentially better probes in different locations.
It is noteworthy that transcript secondary structure can

make particular target regions inaccessible and hence
impede probe hybridization. In a recent study of a
genome-scale probe design, up to a third of all probe bind-
ing sites were affected (42). Nevertheless, target structure
is typically not considered during probe design, perhaps
due to the additional computational expense of its predic-
tion. This, however, results in probes with unexpectedly
reduced sensitivity.
Identification of potentially cross-hybridizing probes is

crucial for controlling probe specificity. The commonly
employed sequence-similarity heuristics are fast because
they exploit short contiguous sequence match ‘words’ to
seed their alignments. As a consequence, however, they
may miss less similar, yet thermodynamically relevant
cross-matches (15,20). This needs to be considered in a
conservative assessment of probe specificity. In addition,
sequence comparisons are usually limited to known tran-
scripts, although our catalogue of all actively transcribed
genome regions is still far from exhaustive (43–45). Hence,
the complete mixture of transcripts that need to be discri-
minated in a biological sample is not known a priori. This
motivates the inclusion of genomic sequence in the detec-
tion of potential cross-hybridization.

Finally, groups of very similar targets, such as protein
families, alternative splice variants, as well as paralogues
and orthologues can severely constrain the selection of
specific probes, sometimes even making it impossible to
discern targets with a single probe. Explicit support for
these scenarios is already beneficial in the design of
whole-genome arrays and becomes even more relevant
for arrays targeting splice variants or multiple organism
strains.

There thus remain many opportunities for improving
array design for high-performance microarrays (12,15).
We here introduce a Thermodynamic Model-based Oligo
Design Optimizer (TherMODO) that showcases a number
of ways in which we can advance the state of the art in
probe design. In particular, we combine:

� An experimentally derived model of position-
dependent labelling effects.
� Thermodynamic multi-state models of probe hybrid-

ization behaviour that also consider target structure.
� A calibrated BLAST heuristic for the efficient conser-

vative detection of cross-hybridizations.
� Compound scores integrating individual models for a

joint assessment of probe specificity and signal
uniformity.
� Global optimization of probe sets in contrast to a

greedy search and user supplied design parameters.
� An extensible, flexible design framework that allows

for groups of highly similar targets.

The algorithm and its features are discussed and
demonstrated with the analyses of an actual design run
on the Escherichia coli K12 genome, with complementary
results from human.

MATERIALS AND METHODS

Algorithm structure

For computational efficiency, TherMODO probe design
proceeds in a tiered structure. Figure 1 gives an overview
of the algorithm. First, any sequence similarities between
the Design Targets and all transcripts are identified in a
screen for regions of interest for quantitative modelling
(BLAST Heuristics). Probe Candidates are characterized
each by Models for the Gibbs free energies of all potential
binding reactions, that the probe is accessible (rather than
self-folding), and that probe binding sites have been
labelled and are accessible (rather than part of transcript
secondary structure). Relationships between very similar
design targets such as homologues, splice variants or
related genomic loci are represented by Target Groups.
Combining all the information from the first pipeline
stage the algorithm then computes integrated hybridiza-
tion intensity scores, allowing direct comparisons between
intended Target Matches and unwanted cross-hybridiza-
tion (Cross-Match). All probe candidates are then consid-
ered together in a final Global Set Optimization step to
choose a probe set with maximal probe specificity and
uniformity. Simple file-based data storage is employed to
allow easy coarse-grained parallelization that scales line-
arly on modern multi-core workstations, or even compute
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clusters (tested for 4–64 threads, data not shown). Due to
the multi-tiered architecture, however, allowing a reuse of
Stage 1 results for multiple subsequent passes, more com-
plex designs with multiple probe lengths run proportion-
ally faster and, even for a large transcriptome like human,
can be run on a modern workstation in less than two days
(Table 1).

Algorithm prerequisites

TherMODO takes advantage of the ViennaRNA package
(34,46,47) for the thermodynamic calculations of the inter-
molecular probe–target duplexes (RNAduplex) as well as
the intra-molecular structures of both targets and probes
(RNAplfold). The Gibbs free energy from ViennaRNA is
adjusted by an empirical correction for substrate bound
probes [(48); J. SantaLucia, Jr, personal communication],

�Gmicrochip ¼ 0:85�Gsolution þ 2:33;

that have been determined for microarray platforms where
probes are attached to a gel-like slide surface (48). Surface
effects of other platforms are still an active field of
research (13).

WU-BLAST is used for sequence similarity searches in
a fast heuristic approach to identify potential cross-
hybridization (W. Gish, personal communication).

BLAST heuristic for cross-match prediction

Target sequences were compared with both strands of all
other transcripts and the genome. Sequence similarities
could then be used in a heuristic to identify potential

binding partners of probe candidates. We included geno-
mic sequences because substantial non-coding regions are
known to be actively transcribed (43–45).
The following WU-BLAST (BLASTN) options were

employed: a seed alignment word size W=7, a match
score M=1, a mismatch score N=�1, a gap penalty
Q=3 and a gap extension penalty R=1. Exploratory
studies of probe binding behaviour suggest that a stretch
of 13–15 matching nucleotides can already give rise to
detectable cross-hybridization (16). For WU-BLAST, the
corresponding minimum score threshold S=13 can be
specified directly, thus avoiding the need to calculate the
corresponding expect value (E) thresholds that would be
necessary for other implementations of the BLAST algo-
rithm (23). The sequence alignments of all matches along
the target transcript are stored in the BLAST heuristics
data structure, allowing efficient reuse when considering
different probe candidates for the same target.

Design Targets

BLAST Heuristics Candidates Models Target Groups

Cross-Match ScoresTarget Match Scores

Pool of Scored Candidates

Global Set Optimization

Ranked Candidate Sets
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Figure 1. Tiered framework structure, overview. In the first stage of the pipeline, sequence similarities between design targets and other transcripts
are identified to screen for regions of interest for modelling (BLAST Heuristics). Probe Candidates are characterized each by Models for the Gibbs
free energies of all potential binding reactions, that the probe is accessible (rather than self-folding), and that probe binding sites have been labelled
and are accessible (rather than part of transcript secondary structure). Relationships between very similar design targets, such as homologues, splice
variants, or related genomic loci are represented by Target Groups. In the second stage, all the information from the first phase is combined to
compute integrated hybridization intensity scores allowing direct comparisons between intended Target Matches and unwanted cross-hybridization
(Cross-Matches). All probe candidates are then considered together in the third and final stage of Global Set Optimization, ranking alternative probe
sets by their mean integrated compound score.

Table 1. Approximate computation times of microarray probe design

forE. coli and human

Organism Genes Transcriptome Time (1�) Time (5�)

E. coli �4 000 4Mb 1h 30min 3 h 40min
H. sapiens �25 000 76Mb 19 h <2 days

The table shows the speed up of computation times through reuse of
Stage 1 data at subsequent design passes. The first time given (1�) is
for the analysis of probes of uniform length, here, 65-mers. The second
time given (5�) is for five passes for probes of different lengths, here,
65–69-mers. Tests were run on a modern eight-core workstation (see
Methods section).
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Probe candidates

The user may specify a minimum and maximum oligonu-
cleotide length for probes candidates considered. The
E. coli and human probe design runs discussed in this
article permitted a range of 65–69 nt as probe lengths.
Probes of this length show good sensitivity (49) and con-
sideration of a range of lengths allows more uniform
designs. For each target, stretches of mono-, di- and tri-
nucleotide repeats of 10 nt or longer are masked as these
have been reported to possibly interfere with synthesis
chemistry (23).

Models

Quantitative models allow an integrated assessment of
a number of probe properties. Results are stored in
the Models data structure allowing efficient reuse for
different probe candidates.

Labelling probability. With the processivity of the label-
ling enzyme represented by the characteristic length �,
the probability of obtaining a labelled transcript of
length l follows an exponential distribution (Figure 2b),

PL / eð�l=�Þ:

For random primed labelling and a target of length x0,
the probability of obtaining a labelled transcript at
position x relative to the 30-terminal becomes

PL /
Xx0
i¼x

eð�ðx0�i Þ=�Þ:

We fit this model to data from both gel images and
Bioanalyzer data (Figure 2d) to obtain the characteristic
length �. We provide a full derivation of equations and a
detailed description of the fitting process and fit results in
the Supplementary Material.
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Figure 2. Quantitative models of position-specific labelling effects. (a–c) The probability PL of finding a target region in the labelled transcript pool is
on the y-axis. The x-axis indicates the position along the target, here shown for a 2-kb sequence. The dashed lines represent typical thresholds used
by traditional design tools [e.g. (23,25)] instead of a quantitative model. (a) An idealized schema demonstrating the effects of random primer
placement, shown for an infinite labelling enzyme read-through. (b) The effects of labelling enzyme drop-off, shown for a 30-terminal anchored
primer, assuming a uniform random drop-off rate. (c) A model taking into account both random primer placement and labelling enzyme drop-off.
The model shown uses actual parameters obtained from measured gel data (next panel). (d) Gel data for unlabelled RNA (grey line) and cDNA from
random-primed labelling (solid line). Fluorescence intensity is plotted as a function of the run-length, with the corresponding DNA ladder size
markers also shown at the top of the panel. Peaks due to structural RNAs were removed for the model fit. The dashed line traces the model
prediction. The gel itself is pictured on the right with the three lanes, respectively, loaded with unlabelled RNA, a ladder (�), and labelled cDNA.
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The labelling probabilities for both targets and potential
binding partners are calculated with this model.

Binding probability. We compute a score reflecting
the predicted probe–target binding probability PB at the
effective hybridization temperature Thyb. This is one of the
few design parameters that need to be set by the user.
Past experience has shown that subtracting 208C from
the typical probe–target melting temperature has worked
well for probes of length 40–70 nt. For the designs
reported here, we have chosen Thyb ¼ 698C. We note
that for optimally efficient hybridizations, the physical
hybridization temperature that corresponds to Thyb

needs to be experimentally calibrated. The binding
probability

PB / e��Gtarget=RT hyb;

is proportional to the Boltzmann factor with the Gibbs
free energy �Gtarget. Here, R ¼ 1:9872 kcalmol�1K�1 is
the universal molar gas constant. For the observed bind-
ing energies of oligonucleotide probes and practical reac-
tion temperatures, binding is far from the saturation point
and the above equation is a good approximation of the
steady-state binding probability. Analogous calculations
are performed for other potential binding partners.

Probe accessibility. We use RNAplfold to obtain the
probability PP of a probe being accessible, i.e. not forming
a stable secondary structure at Thyb.

Binding site accessibility. For reasons of computational
efficiency when considering many probes of different
sizes for longer transcripts, we calculate the
probability PA of a probe binding site being accessible in
two steps. First, RNAplfold is used to obtain the accessi-
bility of short seed-like regions in the transcript. These are
then combined to calculate the probability that the entire
probe binding site is accessible, considering possible stable
secondary structures in a 100-base window (see
Supplementary Material for details).

Target groups

The Target Groups data structure describes the associa-
tions between design target sequences and other similar
sequences, such as protein family members, orthologues,
paralogues or splice variants. These associations can, for
example, be assigned manually, from database informa-
tion, or by sequence-based method like BLASTN searches
or sequence clustering approaches CD-HIT (50). Target
Groups allow two types of relationship between a probe
and potential binding partners. For each target, a list of
‘primary’ targets states which binding partners a probe
must bind, whereas another list of ‘secondary’ targets
shows which binding partners a probe may bind (is
‘allowed’ to bind). One can specify entire sequences or
sequence regions as binding partners, which allows for a
simple integration of genomic regions as binding partners.
For each candidate probe, TherMODO will compare the
predicted binding partners to those listed in the respective
Target Group. The reported Cross-Match score is the

strongest cross-match that is not permitted according to
the targets ‘may bind’ list.

Design runs

We applied TherMODO to the transcripts reported in the
NCBI annotation of E. coli K12 (June 2007). The 4488
annotated transcripts included 102 pseudogenes and 168
structured non-coding RNAs (ncRNAs). Seventeen anno-
tations were less than 65 bp in length and were removed
from the design set, leaving 4471 eligible transcripts. Using
CD-HIT (50) to cluster the E. coli transcriptome at the
default 90% sequence identity threshold, we grouped
179 genes with high sequence similarity into 48 target
groups. A total of 11 214 969 probes were evaluated as
part of this run.
For comparison, several other, popular probe design

tools (20,23,41) were applied to the same data set (see
Supplementary Material for details).
We also examined 25 125 human genes from the NCBI

RefSeq database (January 2008). Computations were per-
formed on a standard PC (dual-CPU dual-core 2 GHz PC
with 8 GB of RAM), running four threads in parallel. Test
runs on a modern workstation with eight cores demon-
strated that the course grained parallelization easily
afforded by the pipeline architecture scaled linearly
(Table 1). Additional tests on a small compute cluster
(64 threads) further confirmed almost linear scaling of
execution times (data not shown).

Labelling assay and analysis

To determine the model parameters for the labelling
model introduced above, RNA extracted from E. coli
was reverse transcribed using the AffinityScript HC
Reverse Transcriptase component of the FairPlay III
Microarray Labelling Kit (Stratagene, Cat. No. 252012)
and random hexamer primers (MWG Biotech AG)
according to the instruction manual provided with the
kit. The reverse transcription (RT) was repeated three
times and the RNA and resulting cDNA samples were
then analysed by both capillary electrophoresis
(Agilent 2100 Bioanalyzer, RNA nano LabChip) and on
a 1% agarose gel. Gel images were quantified using imageJ
(http://rsb.info.nih.gov/ij/). Using size markers, the mea-
sured fluorescence signal distributions of the samples
where then transformed into molecule length distributions
(Figure 2d). See Supplementary Material for further
details.

RESULTS AND DISCUSSION

The tiered algorithm structure (Figure 1, see Methods sec-
tion) allows an exploitation of the power of quantitative
models for target labelling and hybridization behaviour,
while keeping the overall computational complexity suffi-
ciently low to still permit large-scale array designs. Even
designs for a large transcriptome like human can be run in
less than two days on a modern workstation (Table 1).
A discussion of the quantitative models employed is

followed by an examination of their impact on probe qual-
ity assessment. This is illustrated on an actual probe
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design run for E. coli and with complementary data for
human. In particular, parameter estimation through cali-
bration experiments is demonstrated for a popular tran-
script labelling method and the employed sequence
similarity-based heuristic is calibrated on multiple data
sets. We then formulate an integrated score for probe
assessment allowing global probe set optimization.
Finally, we provide a characterization of sample probe

design results in relation to established alternative designs
(20,23,41).

Modelling and calibration

Where computationally feasible, modern quantitative
models considerably improve probe design, with modelled
hybridization behaviour being the best predictor of probe
quality (14,42).

Quantitative effect of probe binding position along the
target. The choice of labelling/amplification protocol
not only determines whether one needs to design probes
for the sense or anti-sense strands (51), but also affects the
likelihood that a certain target region is present in the pool
of labelled transcripts. Traditional probe design tools that
try to take this into account typically exhibit a greedy
preference for probes located near the 30-end of the
target (23), appropriate for oligo-dT-primed labelling.
Similarly, probes near the 50-end can be preferred for
random primer-based labelling (20). Also, many tools
impose a fixed threshold on probe position, excluding can-
didates considered too distant from the terminal (23). In
either case, this greedy preference often means forfeiting
better probes further away from the terminal. Although
the benefits of a quantitative model are increasingly being
recognized (28), the problem of determining model para-
meters has remained a challenge for the principled inte-
gration of labelling models in probe design.
While model parameters will strongly depend on the

exact protocols employed, they can be obtained from mea-
surements of labelled and unlabelled cDNA length distri-
butions. A model for a simple RT-based labelling
protocol, for example, needs to account for primer place-
ment (e.g. oligo-dT anchored or randomly along the
target) and RT enzyme drop-off. Figure 2a demonstrates
how random primer placement affects the likelihood of
finding a target region in the labelled transcript pool,
shown on the y-axis. The x-axis indicates the position
along the target (shown for a 2 kb sequence). The idealized
schema in this figure assumes infinite RT read-through.
Conversely, the schema in Figure 2b plots the effect of
RT enzyme drop-off, for a 30-terminal anchored primer.
Assuming a uniform random drop-off rate leads to an
exponential length distribution / exp

�
�ðx0 � xÞ=�

�
for a

target length x0 and a characteristic drop-off length �. This
means that <37% of labelled transcripts will reach
length �, and <14% will reach 2�.
Both digital gel images, Figure 2d, and Bioanalyzer data

(Supplementary Material) were analysed for a random-
primed indirect labelling protocol. The fit of the model
(dashed line) is shown in Figure 2d, yielding � � 650,
which indicates that RT drop-off in a complex mixture

labelling environment plays a considerable role: <10%
of labelled transcripts will reach length 1500, and just
over 2% will reach length 2500. Fits of gel images and
Bioanalyzer data (Supplementary Material) both support
the model shown in Figure 2c, which accounts for random
primer placement as well as RT enzyme drop-off.

As will be shown later, with a quantitative model of
labelling probability, probe–target positional effects can
directly be integrated into a principled combined score.
On a log-scale, they affect signal strength about 40% as
much as probe secondary structure (Figure 3).

Thermodynamic modelling of probe hybridization
behaviour. Many traditional probe design tools consider
GC-content as a proxy for melting behaviour. Still most
modern algorithms characterize probes by predictions of
probe–target melting temperatures. Neither of these, how-
ever, allows a principled prediction of binding behaviour
at the actual hybridization temperature. More sophisti-
cated models of probe hybridization improve our ability
to predict microarray probe performance (14), justifying
the application of thermodynamic modelling despite its
relatively high computational cost.

Observed discrepancies (52) between experiments and
thermodynamic predictions of so-called two-state models
for probe–target binding (34–36) could be explained by
interfering secondary structure (37). While modern
probe design algorithms (22,23,25,30) do apply thermody-
namic models to consider probe secondary structure
(34,36) and the effect of target secondary structure has
been recognized (14,53), to our knowledge, target struc-
ture has so far not been considered by probe design tools
for genome-scale microarrays.

Hybridization behaviour prediction in TherMODO
considers binding between a candidate probe and
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Figure 3. Impact of different probe properties on signal sensitivity Itm.
The y-axis plots on a log10 scale the typical ranges of the probability
scores for target labelling (L), probe accessibility (P), binding site
accessibility (A), and probe–target binding (B). Ranges are calculated
by considering all probe candidates for a specific target. The values 3.8
and 5.8 for probe accessibility (P) and binding site accessibility (A), for
example, indicate that, amongst probe candidates for a typical target,
probe accessibilities varied by up to 103:8 times, whereas binding site
accessibilities varied by up to 105:8 times. In particular, one can see that
the impact of binding site accessibility on probe performance is about
100 times stronger than that of probe accessibility. (a) Shows results for
E. coli, (b) for H. sapiens.
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transcripts as well as the probabilities that the probe and
its binding sites are accessible rather than folded into
stable secondary structures (Figure 4). We have examined
the typical contribution of these effects to the predicted
binding behaviour of all candidate probes of a target.
Figure 3 plots typical log10 ranges for E. coli and
Homo sapiens. Note that while actual values vary for dif-
ferent organisms, the relative importance of effects is simi-
lar. Probe secondary structure affects log signal intensity
35–40% as much as probe–target binding strength. Recent
experimental observations (13) agree with these calcula-
tions. This underscores the importance of considering
probe self-folding during probe design. Interestingly,
binding site accessibility has an even stronger impact
than probe secondary structure, affecting log signal inten-
sity about 1/2 to 2/3 as much as probe–target binding
strength. This explains that considerable improvements
in the quality of probe hybridization prediction is
observed when binding site accessibility is also
considered (37).

Considering probe and target structure in terms of
accessibility probabilities allows a principled combination
of thermodynamic models of individual effects into a
combined quantitative score. In contrast, most established
tools just exclude all probes with a potential for self-
folding. While about half of all targets have <20% of
probe candidates excluded by such filtering for probe sec-
ondary structure, for 9% of targets, the search space is
already reduced by >40%. For the most affected 1% of
targets >60% of probes fail this filter, giving a

substantially reduced search space. A quantitative incor-
poration of probe accessibility therefore improves our
ability to identify good probes for these difficult targets.
The effect of transcript structure is stronger: only 11%

of targets have <20% of probe candidates excluded by
filtering for binding site secondary structure. For almost
half the targets, the search space is already reduced by
>40%. More than a quarter of targets are strongly
affected with over 60% of probes failing this filter,
giving a substantially reduced search space. For a consid-
eration of binding site accessibility, a quantitative
approach instead of threshold-based filtering is therefore
even more important.
We note that our combined thermodynamic model is not

as elaborate as the most sophisticated multi-state models
currently available (37,53,54), which also consider inter-
molecular probe–probe or target–target complexes or
hybrid inter- and intra-molecular structures. By quantita-
tively integrating a number of important effects, however,
we can substantially improve prediction quality over
models employed in traditional genome-scale probe
design tools and achieve a reasonable compromise between
model accuracy and computational complexity (Table 1).
Besides a more sensitive detection of potential cross-

hybridization, thermodynamic models allow the selection
of probe sets with more uniform binding behaviour. The
resulting more accurate microarray readouts support
modern analyses methods for the identification of subtle
biologically relevant patterns.

Calibrated BLAST heuristic. While thermodynamic
models as described above are the best available predictors
of hybridization behaviour, their systematic application is
expensive in terms of computational resources. Many
established probe design tools considerably reduce the
computational complexity of assessing all potential bind-
ing reactions by applying a sequence similarity-based
heuristic as a filter (15). Variants of the BLAST algorithm
are the most popular methods for this purpose (15), with
smaller ‘word size’ increasing sensitivity as well as run-
time (20). When a local sequence match between two
potential binding partners identifies a region of inter-
est (16), thermodynamic models can be used to more accu-
rately assess binding strength (23). This can then be used
for a quantitative assessment of probe binding.
The question arises how the cross-hybridization poten-

tial of probe candidates should be assessed for which no
sequence similarity to cross-matches could be identified.
Examining a random selection of 1000 such probes, for
each probe, we applied thermodynamic models to calcu-
late probe–transcript binding strengths for all possible
transcripts. For E. coli, Figure 5 plots these probes, with
the target binding strength, �Gtarget, on the x-axis, and the
strongest binding strength to cross-matches, �Gxhyb, on
the y-axis. A black line shows the linear regression
minus two standard deviations. This forms a conservative
estimate of cross-hybridization strength as a function of
target-binding strength for probe candidates with no iden-
tified sequence similarity to cross-matches. Very similar
results were obtained for other organisms, including
human (see Supplementary Material). The calibrated

Target
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Folded Target

Folded Probe

Unolded Binding Site

PB
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(a)

(b)

Figure 4. Models of probe–target hybridization. (a) The two-state
model only accounts for the unbound and bound probe–target states.
(b) The multi-state model of hybridization behaviour prediction in
TherMODO considers binding between a candidate probe and targets
as well as the secondary structures of both the probe and its binding
site within the target. Redrawn after SantaLucia and Hicks (61).
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heuristic can, therefore, generally be applied to increase
the speed of assessing cross-hybridization potential with-
out overestimating the quality of probes for which no
cross-matches could be identified by sequence similarity.
Using this calibration, the cross-hybridization potential

of probe candidates with no sequence similarity to cross-
matches can be assessed in a manner consistent with how
probes with identified cross-matches are treated. This thus
allows a quantitative comparison of all probes.

Integrated score and global set optimization

The reduced computational complexity achieved by the
tiered structure of the algorithm and exploitation of the
calibrated heuristic allows the collection of several rela-
tively expensive model-based probe characteristics. The
resulting quantitative prediction of hybridization beha-
viour yields estimates for probe sensitivity and specificity.
A more sensitive probe responds to its target with

higher signal intensity, where the different factors affecting
the signal can be integrated by a compound score for the
target match,

Itm ¼ PL PP PA PB;

with probe–target binding probability PB, binding site
accessibility PA, probe accessibility PP and PL being the
probability of the binding site being part of a labelled
transcript. A similar integrated score Ixm can be computed

for the strongest cross-match, and Itm=Ixm then reflects the
specificity of the probe (cf. Methods section).

To compile a probe set with maximal specificity and
uniform sensitivity, a principled trade-off needs to be
made. For reasons of symmetry, this is most easily written
on a log scale. On one hand, better specificity is obtained
for higher log�I, where �I ¼ Itm = Ixm. On the other
hand, one wishes to minimize the absolute deviation��log Itm � log I0

�� from the characteristic I0 of the probe
set. We propose a joint penalty score

J ¼
���log Itm � log I0

����
�
log Itm � log Ixm

�

which we need to minimize in a search for probes of good
uniformity and high specificity. While differently weighted
variants are possible (28,41), this score equally punishes
lower specificity as well as deviations from uniformity.
From a practical point of view, we further argue that a
separation of target and cross-match affinities of
�I > 1012 does not improve results in a realistic labora-
tory setting, and we therefore introduce a soft maximum
at �I0 ¼ 1012. At this threshold, cross-talk cannot experi-
mentally be detected even in a worst-case scenario, where
the most strongly expressed transcript interferes with the
measurement of the most weakly expressed transcript. To
motivate the threshold, consider that gene expression has
a dynamic range of about 6–8 orders of magnitude (7) and
that microarray scanners typically achieve a bandwidth of
about 3–4 orders of magnitude. A separation of 12 orders
of magnitude, therefore, forms a conservative cut-off
point, ensuring probes of practically perfect specificity in
any realistic laboratory conditions.

Figure 6 schematically illustrates the optimization of the
joint penalty score J. The x-axis plots the integrated com-
pound score Itm for the target match and the y-axis shows
�I ¼ Itm=Ixm, with Ixm being the integrated score for the
strongest cross-match. In general, better probes lie closer
to I0, selecting for probe uniformity, and higher in the
graph, selecting for better specificity. The dashed lines
are isoscores for the joint penalty score J, i.e. probes
along these lines are considered equally good.
Above �I0, all probes are considered highly specific, and
optimization focuses on probe uniformity.

Probe uniformity has traditionally been achieved by
constraining individual probe properties to fixed ranges.
While most probe design tools will ‘greedily’ accept
the first probe candidate meeting the criteria for each
target, non-greedy optimization considerably improves
probe quality (41). In addition, rather than requiring
users to define thresholds to constrain average probe prop-
erties, it is preferable to automatically adapt design para-
meters to the data (40). The compound score introduced
here allows us to extend this approach not just to individual
probe properties but to an integrated measure of probe
sensitivity, I, that is of direct experimental relevance.
Moreover, rather than choosing fixed thresholds, the
joint penalty score J permits individual probes to deviate
from the characteristic I0 if this brings a sufficient increase
in probe specificity (Figure 6, diagonal dashed lines).

TherMODO implements global set optimization itera-
tively: at each step, the best probe set for a given

−55 −50 −45 −40

−2
0

−1
5

−1
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∆Gtarget

∆G
xh

yb

Figure 5. Calibration of the heuristic prediction of cross-hybridization
for probes with no crossmatches detected by sequence similarity. The
x-axis plots the Gibbs free energy �Gtarget of probe–target binding and
the y-axis shows the Gibbs free binding energy �Gxhyb of the strongest
cross-match predicted by thermodynamic models. The black line repre-
sents a linear regression of these values minus two standard deviations,
forming a conservatively calibrated heuristic. Data shown are from
E. coli; very similar results are obtained for other organisms, including
human (see Supplementary Material). The calibrated heuristic can
therefore generally be applied.
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characteristic I0 is constructed by minimizing the average
joint penalty score J for all targets. Then, I0 is adjusted to
improve the set score, in the end yielding the I0 for the
globally optimal probe set.

The quality of the final compiled set benefits from a
much increased search space as no probe candidates are
discarded before the optimization step, yielding more spe-
cific and extremely uniform probe sets. In a design run for
4471 annotated transcripts of E. coli K12, we have scored
over 11 million probe candidates. The design run covered
all transcripts, including protein-coding sequences,
pseudo-genes and the 168 structural RNAs. The stable
folds of structural RNA transcripts are fully considered
during the thermodynamic probe design. The construction
of 4381 unique probes achieved the most comprehensive
reported coverage of the E. coli transcriptome.

We consider 96.1% of these probes to have both an
excellent specificity (�I > 1012) and extreme binding
uniformity (median/mad RT log Itm ¼ �18:000� 0:004,
Figure 7). For 2.9% of probes, while being just as specific,
sensitivity was reduced by 1% or more because of unusual
sequence composition or secondary structure of the target.
Less than 1% of probes showed any cross-hybridization
potential. Of these, for 30% no binding partners could be
identified but cross-hybridization potential was detected
by our calibrated heuristic.

Characterization of probe design results

While we appreciate that it is difficult to objectively
compare different probe design tools, we have rerun and
characterized the results of several popular programs on
the full E. coli transcriptome: OligoRankPick (41),
OligoArray (20), and YODA (20). All probe sets were char-
acterized by probe binding strength (PB), probe self-
folding (PP), target region accessibility (PA) and positional
labelling effects (PL). For this assessment, no compromises
were made for the sake of speed and, instead of exploiting
sequence-similarity-based heuristics, full model thermody-
namic calculations were applied to all probes and their
potential binding partners. As a result, these more com-
prehensive computations give a more accurate joint
score J than the approximations used in the actual
probe design process which we evaluate.
The three alternate probe design programs examined

represent different established approaches to probe
design and have complementary features. For instance,
YODA incorporates a custom sequence similarity search
(SeqMatch) for the identification of potential cross-hybri-
dization that is more sensitive than a BLAST run with
typical parameters. OligoArray employs thermodynamic
models for the assessment of probe–target duplexes,
cross-hybridization, and self-folding. Both YODA and
OA use greedy search for selecting probes that match spe-
cified design criteria. In contrast, OligoRankPick uses a
non-greedy approach, choosing probes from a pool of
candidates per target using a weighted rank-sum strategy
for a number of probe qualities, such as probe specificity
GC-content, self-binding and sequence complexity. With
the exception of YODA, the tools employ a BLAST-based
filter for identifying cross-hybridization.
Although we make no claims of a systematic compar-

ison, a number of general trends can be observed. For all
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Figure 7. The distribution of the integrated compound score I amongst
all probe candidates (a) versus the distribution for the optimized probe
set (b). Note the 1:100 difference of scale, which emphasizes the sharp-
ness of the final distribution. Data shown are from E. coli.
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Figure 6. Optimization of the joint penalty score J. The x-axis plots the
integrated compound score Itm for the target match and the y-axis
reflects a measure of specificity, �I ¼ Itm=Ixm, with Ixm being the inte-
grated score for the strongest cross-match. Both axes are on log scale.
In general, better probes lie closer to I0, selecting for probe uniformity,
and higher in the graph, selecting for better specificity. The dashed lines
are isoscores for the joint penalty score J, i.e. probes along these lines
are considered equally good. This shows that a deviation from the
characteristic I0 of the set is allowed if it brings a sufficient increase
in specificity. The benefit of an increase of the specificity score above
�I0 is considered to be vanishing, as a further improvement of separa-
tion could not be measured experimentally. In the top half of the
graph, therefore, all probes are considered highly specific, and optimi-
zation focuses on probe uniformity. (Arrows show desired directions of
change).
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tools, final probe set properties were more uniform than
for the original probe design space. Typically, tools aim
for a uniform GC-content or melting temperature. With
default parameters, the greedy, threshold-based tools
improved uniformity less than 2-fold, while a 4-fold
improvement could be achieved with a non-greedy
approach (41). Traditionally, GC-content and melting
temperature, which are strongly correlated to the free
binding energy, have been used as a first proxy of signal
strength.
Experiments have since confirmed (8,13,55,56) that the

secondary structure of probes and targets as well as label-
ling effects are important contributions to signal intensity
(Figure 3). This is reflected in the broad distributions
observed for the predicted hybridization signal sensitivity
Itm in probe sets designed by traditional tools, in contrast
to the extremely uniform probes constructed by
TherMODO. Using a non-greedy approach, uniformity
could be improved more than 800-fold over the original
design space (Figure 7). It is noteworthy that probe set
designs with similarly uniform melting temperatures
(20) can have completely different Itm uniformity.
In addition to probe set uniformity, designs of course

aim for high sensitivity and specificity. The binding
strength contributes to the sensitivity, and design results
were similar for probes of fixed lengths. Allowing variable
length probes, the binding strengths were slightly higher
for the TherMODO design. TherMODO, however, also
optimizes the contributions of other factors to probe sen-
sitivity. Taking probe and target structure as well as label-
ling effects into account thus improved probe sensitivity
for about three out of four genes. Overall, this resulted in
an improvement of 11–17% of typical probe sensitivity
over traditional designs. Of these, the non-greedy
approach (41) outperformed the greedy, threshold-based
tools. Longer probe lengths (23) also improved sensitivity.
Last but not least, array quality is determined by probe

specificity. For probes of fixed lengths, the non-greedy
approaches perform better. It is noteworthy that longer
probe lengths contribute considerably to specificity as has
also been observed experimentally (49). Specificity in gene
expression profiling should not be confused with the need
for single-base pair discrimination in single nucleotide
polymorphism (SNP) detection that is better served by
shorter probes (57). It is noteworthy that all examined
tools designed probes of practically perfect specificity for
the majority of genes (Table 2). Differences could, how-
ever, be observed for more difficult subsets of about 6–
12% of design targets. In particular, TherMODO global
set optimization gave a (median) 1000-fold improvement
in probe specificity for these harder targets. Moreover,
only a single TherMODO probe had slightly lower speci-
ficity than the corresponding probe from an alternate
design: this alternative probe, however, had an unusually
low sensitivity. The slight reduction in specificity
(RT log�I ¼ �1:5), was more than made up by the
increased sensitivity (RT log�Itm ¼ þ5:7) contributing
to an improved overall probe set uniformity. All
TherMODO probes had a higher joint score J in the
assessment. This is a non-trivial observation as the calcu-
lated assessment score is more accurate than the

approximations used during the probe design process.
Complete detailed results of the design runs, comparative
statistics and plots for both the calibrated BLAST heur-
istic and full thermodynamic calculations of probe speci-
ficity are provided in the Supplementary Material.

In summary, the extremely high thermodynamic hybrid-
ization uniformity observed in TherMODO designed
probe sets could be achieved without sacrificing specificity.

SUMMARY AND OUTLOOK

With the ever increasing number of genomes sequenced
and custom microarrays now available at prices similar
to those ready made, oligonucleotide arrays are often
the method of choice for genome-scale quantitative gene
expression profiling. While the technology is particularly
well suited for the quantification of low copy number
transcripts and features high dynamic range, accurate
measurements depend on good probe design.

In this article, we have introduced a novel algorithm,
TherMODO, that combines a number of advances on the
state of the art in probe design for high-performance
microarrays. In particular, we include a model of posi-
tion-dependent labelling effects based on actual experi-
mental data for a quantitative consideration of the
trade-off between labelling intensity and probe binding
behaviour. The prediction of probe binding behaviour
has been improved beyond the traditional two-state
models by also considering the probabilities that the
probes and the transcript binding sites will be accessible
rather than folded into stable secondary structures. These
thermodynamic calculations are applied to analyse probe–
target binding as well as in the computation of potential
cross-hybridization reactions. Cross-hybridization is con-
servatively assessed by a fast sequence-similarity-based
heuristic that has been calibrated by comparison to full
thermodynamic models. The different factors affecting the
signal were studied for several organisms (data shown for
E. coli and human), and could be integrated by a com-
pound score. We optimize designs at the probe set level,
jointly maximizing set uniformity and average probe
specificity.

The performance of this approach was validated and
compared with other popular tools (20,23,41) in a

Table 2. Probe design target coverage and probe specificity

Program Designed probes
(unique)

Perfect
specificity/improved

TherMODO 4471 (4381) 4296 (96.1%)/–
OligoRankPick 4471 (4357) 3915 (87.5%)/550 (12.3% )
OligoArray 4222 (4157) 3924 (87.7%)/293 (6.6% )
YODA 4110 (4110) 3825 (85.5%)/282 (6.3% )

The number of transcript targets covered by each design is shown,
with the number of unique probes reflecting the number of distinct
transcripts that can be discriminated. Probes with �I>� I0=1012

were considered as having a perfect specificity under realistic laboratory
conditions (see Discussion section). The number of probes for difficult
targets for which probe specificity could be improved through the
TherMODO design process is the last number shown.
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genome-scale probe design for E. coli. A highly specific
probe set with extremely uniform hybridization intensities
was compiled from a global pool of probe candidates,
achieving the best transcript coverage so far reported.
To demonstrate the flexibility of the algorithm’s target
group structure for handling groups of similar targets,
179 genes with high sequence similarity were collected in
48 target groups for this design. We emphasize that the
option of specifying groups of targets that a probe has to
bind or may bind is not only useful for the design of com-
prehensive microarrays probing the genes of an organism
with high specificity, but are also valuable for more com-
plex applications. With the increasing number of
sequenced strains (58), for example, arrays that allow a
direct comparison of multiple strains become of interest
(G. Striedner et al., manuscript in preparation).

The open structure of the TherMODO algorithm allows
further improvements in a number of areas: in the future,
the definition of target groups could conveniently flow
from a first pass of the pipeline rather than relying on
sequence-similarity-based tools [(50); W. Gish, personal
communication]. The general scoring scheme can also
easily be extended to consider genome-position-specific
effects for the design of tiling arrays. While future support
of multiple ‘replicate’ probes per gene is straightforward,
the use of multiple probes to discriminate splice forms or
other highly similar targets remains an additional chal-
lenge (59,60). Lastly, as more sophisticated thermody-
namic models become available and compute power
increases, the models employed in TherMODO can
easily be updated. With the physical delivery of an ordered
custom array taking about 3–4 weeks, slightly longer
design times on a modern workstation (Table 1) will
often be acceptable in return for improved design results.

In summary, TherMODO provides a flexible pipeline
for the design of high-performance microarrays. The algo-
rithm benefits from advanced quantitative models and the
power of global optimization, and operates without a need
for user supplied threshold parameters.

SUPPLEMENTARY DATA

Computed probe designs, comparison statistics and com-
parative plots, as well as additional experimental data
supporting the manuscript are archived online at http://
bioinf.boku.ac.at/pub/thermodo2008/.
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