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ABSTRACT

Position specific score matrices (PSSMs) are
derived from multiple sequence alignments to aid
in the recognition of distant protein sequence rela-
tionships. The PSI-BLAST protein database search
program derives the column scores of its PSSMs
with the aid of pseudocounts, added to the
observed amino acid counts in a multiple alignment
column. In the absence of theory, the number of
pseudocounts used has been a completely empiri-
cal parameter. This article argues that the minimum
description length principle can motivate the choice
of this parameter. Specifically, for realistic align-
ments, the principle supports the practice of using
a number of pseudocounts essentially independent
of alignment size. However, it also implies that more
highly conserved columns should use fewer pseu-
docounts, increasing the inter-column contrast of
the implied PSSMs. A new method for calculating
pseudocounts that significantly improves PSI-
BLAST’s retrieval accuracy is now employed by
default.

INTRODUCTION

The scores of local protein sequence alignments are gen-
erally constructed as the sum of ‘substitution scores’ for
aligning pairs of amino acids, and ‘gap scores’ for aligning
runs of amino acids in one sequence with null characters
inserted into the other (1). Given certain generally applica-
ble conditions, the substitution scores sij for aligning
amino acids i and j can be written in the log-odds form
sij ¼ lnðqij=pipjÞ

� �
=�: Here, the pi are ‘background frequen-

cies’ with which the amino acids typically occur in pro-
teins, the qij are ‘target frequencies’ characterizing aligned
amino acid pairs in the ‘true alignments’ sought, and � is a

scale constant (2,3). All reasonable substitution matrices
are implicitly of log-odds form, and the most widely used
are explicitly so constructed (4–6). This log-odds formal-
ism carries over naturally to protein profiles or position
specific score matrices (PSSMs), where the scores for
aligning amino acids to a specific column generally are
constructed by the formula si ¼ lnðqi=piÞ½ �=�; where qi is
the predicted probability that a properly aligned homolo-
gous protein has amino acid i in that column. A central
problem in the construction of PSSMs is therefore how to
estimate the qi from a multiple alignment.
Several issues arise in converting a vector of observed

counts c into a vector of predicted probabilities q. The first
is that the sequences in a multiple alignment are rarely
independent, but are rather related to one another by a
complex phylogenetic tree. If each amino acid in the align-
ment is given equal weight, there is a danger that a large
number of closely related sequences will outvote a smaller
number of more diverse sequences, thus squandering the
available information. To address this problem, a large
number of weighting schemes have been proposed (7–16),
which assign lower weights to data from closely related
sequences. These weights cannot properly be derived
from the data in a single alignment column, and therefore
generally are constructed considering larger alignment
regions. We employ below the method used by PSI-
BLAST (17,18), which is a modification of that described
by Henikoff and Henikoff (11).
Once weights have been applied to the sequences in a

multiple alignment, the raw amino acid count vector c is
converted into an ‘observed frequency’ vector f. If one
assumes, as discussed below, that the observed data are
equivalent to n, not necessarily integral, independent
observations, then the weighted count vector is nf.
Unless otherwise specified, it will be assumed below that
when we speak of observed frequencies or counts, we
mean f and nf.
It would be possible simply to adopt f as the pre-

dicted probabilities q, and this is indeed the maximum
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likelihood estimate. However, an obvious shortcoming to
this approach is that, due to small sample sizes, it is likely
the observed frequencies of several amino acids will be 0.
The scores assigned to these amino acids will then be �1,
a reasonable result only if one truly believes it is impossi-
ble for these amino acids to appear in the column in ques-
tion. One way around this problem is a Bayesian
approach, in which a prior probability distribution is spe-
cified over the space of amino acid distributions.
Mathematically, it is convenient to specify such a prior
as a Dirichlet distribution. If the mean prior probability
for amino acid i is chosen to be pi; then the expected
posterior probability for amino acid i will be proportional
to nfi þmpi: This approach is equivalent to adding m
‘pseudocounts’ to the n effective observations, with the
pseudocounts distributed proportionately to the pi: The
number of pseudocounts depends upon how peaked is
the Dirichlet prior chosen.
A problem with the Dirichlet prior approach is that it

ignores information about amino acid relationships that is
present even in standard substitution matrices. For exam-
ple, the BLOSUM-62 matrix (6) implies that the observa-
tion of a single leucine should increase the predicted
probabilities for the observation of other hydrophobic
amino acids, but a Bayesian approach using a Dirichlet
prior such as discussed above will decrease the predicted
probabilities for all non-observed amino acids.
Accordingly, two main approaches have been proposed
to balance prior knowledge of amino acid relationships
and observed data. The first is the Dirichlet mixture
method (19,20). This elegant formalism assumes a prior
on the space of amino acid distributions that consists of a
mixture of a number of Dirichlet distributions. These dis-
tributions can be seen as representing typical biases found
frequently in protein positions. For example, one Dirichlet
prior may favor aromatic residues, another charged resi-
dues, etc. A Dirichlet mixture prior can capture informa-
tion about amino acid relationships and allow the
observation of one amino acid to increase the predicted
probability of another. The second approach is the data-
dependent pseudocount method (17,21), which is
employed by PSI-BLAST. As discussed in greater detail
below, this approach predicts target frequencies by adding
pseudocounts to observed counts, but lets the pseudo-
counts depend upon the observed data. In the limit of a
large number of observations, the frequencies predicted by
both the Dirichlet mixture and data-dependent pseudo-
count methods approach the observed frequencies. One
advantage of the data-dependent pseudocount method is
that the scores it implies can easily be engineered to reduce
to any specified substitution matrix in the case of a column
with n=1. Used in the same algorithmic context, the two
methods have roughly equivalent success in the recogni-
tion of subtle biological relationships (22).
One question that arises in applying the data-dependent

pseudocount method is how many pseudocounts to
employ, and whether this number should depend in any
way upon the data. In the absence of theory, this question
has to date been treated empirically. In this article, we
study the question of pseudocount number through the
lens of the minimum description length (MDL)

principle (23), which we review briefly below. The MDL
principle is of utility in choosing among models of varying
complexity, usually corresponding to their number of
degrees of freedom. We argue that varying the number
of pseudocounts can be understood as varying model
complexity, so that the MDL principle should apply. We
find that this principle suggests that the number of pseu-
docounts used should depend upon the data observed. An
implementation of the implied procedure improves PSI-
BLAST database search accuracy to a modest but statis-
tically significant degree. This success suggests that the
minimum description length principle may provide a fruit-
ful perspective for considering other aspects of protein
profile construction.

MATERIALS AND METHODS

Evaluating search accuracy

In this article, we evaluate the search accuracy of a base-
line version of PSI-BLAST (blastpgp release 2.2.17) and
several variants. The evaluation is based on a ‘gold stan-
dard’ for determining whether two sequences are related.
We employ the ASTRAL 40 subset (24) of release 1.71 of
the Structural Classification of Proteins (SCOP) data-
base (25,26), excluding sequences from superfamilies
with only one member. We divide these sequences into a
training query set (odd numbered sequences when listed
lexicographically) and a test query set (even numbered
sequences). We use the training set to optimize parameter
settings, but evaluate the resulting search programs using
the test set.

PSI-BLAST is most effective at constructing PSSMs
when it compares queries to a large sequence database,
for which the true and false sequences relationships are
in general unknown. Accordingly, our protocol has two
phases. In the first phase, we use PSI-BLAST to compare
each query to a frozen version (available from the authors
upon request) of the non-redundant (nr) protein sequence
database maintained by the National Center for
Biotechnology Information (27) for four rounds, or less
if convergence is reached earlier, saving the PSSM used in
the last round as a ‘checkpoint’. In the second phase, we
use PSI-BLAST to compare the checkpointed PSSM to
the SCOP database. For a given query sequence, we con-
sider any sequences returned that were classified by SCOP
as from the same superfamily to be true positives and any
sequences classified as from different folds to be false posi-
tives. Sequences that are from the same fold but from
different superfamilies are treated as neither true nor
false positives because it is difficult to determine whether
such sequences are in fact homologous. The training set
contains 3609 queries having 111 809 true positives, and
the test set 3609 queries with 109 133 true positives.

Given a ranked list of search results classified as true or
false positives, Receiver Operating Characteristic (ROC)
analysis provides a useful tool for measuring search accu-
racy (28). In brief, suppose that as one descends through
this list, the cumulative number of true positives is plotted
against the cumulative number of false positives. If there
are t possible true positives, then the ROCn score is the
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area under this curve, up to n false positives, divided by
t� n. A ROCn score of 1.0 requires all true positives to be
found before the first false positive and corresponds to
perfect retrieval. In all our tests, we pool the search results
from all queries, ranked by E-value, and evaluate search
methods using the ROC5000 score for the resulting list,
which corresponds to about 1.4 errors per query. Other
ROCn scores yield equivalent results, and we report both
ROC5000 and ROC10 000 scores below. Standard errors are
calculated as described in Schäffer et al. (18).

Data-dependent pseudocounts

It is useful to develop a geometric understanding of the
data-dependent pseudocount method. A set of target fre-
quencies q is a vector with 20 elements. The elements of q
are constrained to sum to 1, which reduces the degrees of
freedom to 19. We represent the set of all possible q graph-
ically as an equilateral triangle, by analogy to the case of
only three amino acids (Figure 1a). In pairwise sequence
comparison, each amino acid in the query sequence selects
a particular row of the standard substitution matrix S to
score amino acids with which it is aligned. A row of S in
turn can be seen as corresponding to a vector of target
frequencies (Figure 1b). An amino acid in the query can
therefore be seen as a frequency vector f that happens to
lie on a vertex of frequency space, and a score matrix can
be seen as applying a linear transformation to f to obtain
the frequency vector g, by the equation g ¼Mf, where
Mij ¼ pi expð�SijÞ; and � is the implicit scale of the substi-
tution matrix (2,3). (Note that the substitution matrix S,
the matrix of all target frequencies, and the linear trans-
formation matrix M, while all related, are distinct.) This
linear transformation can be applied to any observed fre-
quency vector (Figure 1c), and one approach to estimating
target frequencies q is simply to use this transformation,
which yields the standard substitution matrix in the case
of a single observation. It does not, however, have the
desirable property of q approaching f for large numbers
of observations.

The data-dependent pseudocount method estimates q

with a linear combination of f and the g (Figure 2).
Specifically,

q ¼ fþ aðg� fÞ ¼ ½aMþ ð1� aÞI�f ¼M0ðaÞf: 1

where I is the identity matrix. The parameter a determines
the relative weight given to the observed counts, which are
proportional to f, and the data-dependent pseudocounts,
which are proportional to g.
How should a depend on the effective number of counts

n in a column? When n is 1, a should equal 1, so that q
reduces to g. As n gets large, a should approach 0. Other
than these limiting cases there are few theoretical con-
straints. PSI-BLAST has specified a using the formula

a ¼
m

mþ n� 1
; 2

where m is an empirically determined constant, although it
was originally suggested that m might be chosen to grow
proportionally with

ffiffiffi
n
p

(21,29).
We ran baseline PSI-BLAST on our training set using

several different values of m. We found empirically the
best integral value on the training set is 11. With
m ¼ 11, baseline PSI-BLAST attains a ROC5000 of
0.2407 � 0.0006 on the test set (Table 1).

(1,0,0)

(0,0,1)

(0,1,0)

g

q
f

Figure 2. Linear transformations of frequency distribution space. A
substitution matrix imposes a linear transformation M that maps
each observed frequency vector f to a pseudocount vector g, and all
of frequency distribution space to the smallest simplex shown. For
values of a between 0 and 1, the use of pseudocounts imposes a
linear transformation M0ðaÞ that maps f to a point q on the line
between f and g, and the frequency distribution space to the interme-
diate simplex shown.
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Figure 1. Frequency distribution space. (a) The frequencies for the case of three amino acids can be represented by points inside an equilateral
triangle. (b) A substitution matrix maps the vertices of the simplex, each of which corresponds to the observation of a single amino acid, to target
frequencies in the interior of the simplex. (c) The linear transformation implied by a substitution matrix may be applied to the whole of frequency
distribution space, mapping any vector of observed frequencies f to a pseudocount frequency vector g.
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Number of independent observations

In any application that adds pseudocounts to observed
counts, one must first estimate the number of observed
counts. Just as one must weigh sequences to account for
correlations among them, so one must analyze a set of
sequences to determine how many effectively independent
observations they represent. For example, ten aligned
sequences may all have a leucine in a particular column.
If the ten sequences, although related, have low mutual
sequence similarity, then the uniform appearance of leu-
cine speaks strongly to the importance of this amino acid
in this column. On the other hand, if the ten sequences are
identical, then the evidence for the importance of leucine
in this position is really no greater than the evidence from
a single sequence.
To estimate accurately the number of effectively inde-

pendent observations a column of data represents, it is
valuable to have alignment data not just from the
column in question, but from other columns as well. As
described elsewhere (18), for a specific column from a
multiple alignment produced by PSI-BLAST, we base
our calculation on a reduced multiple alignment.
Omitting a few details, this alignment is constructed
from the set A of all sequences that participate in the
alignment at this column, including those that have gaps
there. Given A, we then consider the maximal set C of
contiguous columns in which all sequences in A are
aligned. Confining attention to the sequences in A, the
baseline PSI-BLAST’s estimate for the effective number
n of independent sequences is the average number of dis-
tinct amino acids observed in the columns C, with nulls
counted as a twenty-first amino acid. This method yields
n=1 independent observation for all columns from an
optimal alignment of identical sequences, and n increases
as the sequences aligned become mutually dissimilar. A
clear disadvantage of the method, however, is that it satu-
rates at a maximum of n ¼ 21. Accordingly, we seek an
improved method for estimating n.
Assume a model in which the amino acids in a column

of size n are unconstrained, and have probabilities of
occurrence p1; p2; . . . ; p20. If the amino acids are chosen
independently and at random, then the probability that an
amino acid of type i occurs at least once is 1� ð1� piÞ

n:
Therefore, the expected number N of distinct amino acids
observed is given by

N ¼ fðnÞ ¼ 20�
X20
i¼1

ð1� piÞ
n: 3

Because f is monotonic in n, and because it may be applied
to nonintegral n, we may invert f to estimate the effective
number of independent draws that correspond to N dis-
tinct observed amino acids. Table 2 lists some values of
f(n) calculated from the pi implicit in BLOSUM-62.

As described above, although one may apply f�1 to the
number of distinct amino acids N observed in a single
column, it is generally better to calculate N as the average
over as many columns as available. In calculating N, we
count aligned gap characters as a twenty-first amino acid,
but if there are 21 amino acids in a column, we set N for
that column to 20.

The model yielding Equation (3) assumes that the
amino acids in a column are under no evolutionary con-
straint. For most positions in real proteins this is unlikely
to be the case, and many columns will be more highly
conserved. Therefore, for an alignment with jCj columns,
we calculate N as the average over the djCj=2e columns
with the greatest number of distinct amino acids. For
N � 19:995, we cap the estimated n at 400. Finally, it is
possible that an alignment involving r actual sequences
will yield an estimated n that is greater than r. When
this happens, we set n equal to r.

As described in Equation (2), PSI-BLAST uses the
number of independent sequences n in conjunction with
the empirical pseudocount parameter m to construct its
position-specific scores. With the new way of calculating
n, the optimal value of m changes; using our training set,
we estimate its value at 28. The new calculation of n, with
m ¼ 28, yields a ROC5000 score on the test set of
0:2419� 0:0006 (Table 1). This is better than the baseline
calculation of n, with m ¼ 11, but the improvement is of
marginal significance. The new calculation of n is used in
all other variants of PSI-BLAST described below.

Theminimum description length principle and protein profiles

The minimum description length principle has an exten-
sive literature but has been little applied in the field of
protein and DNA sequence alignment. In general, it pro-
poses an answer to the question of which model to choose
to describe a set of data, when various models of varying
complexity are available. Models with a greater number of
parameters will, in general, fit the available data better.
However, once a certain level of complexity is reached
they begin to overfit the data—they describe the observed

Table 2. Mean number of distinct amino acids N as a function of the

number of independent sequences n

n N n N n N n N

1 1.000 11 8.334 25 13.672 100 19.367
2 1.942 12 8.862 30 14.820 120 19.595
3 2.828 13 9.362 35 15.723 140 19.730
4 3.664 14 9.835 40 16.440 160 19.814
5 4.452 15 10.283 45 17.014 180 19.869
6 5.195 16 10.708 50 17.477 200 19.906
7 5.897 17 11.110 60 18.163 250 19.957
8 6.559 18 11.492 70 18.631 300 19.979
9 7.184 19 11.853 80 18.959 350 19.989
10 7.775 20 12.197 90 19.194 400 19.995

Table 1. PSI-BLAST retrieval efficiency

PSI-BLAST program version ROC5000

(� 0.0006)
ROC10 000

(� 0.0004)

Baseline (m=11) 0.2407 0.2572
New calculation of n (m=28) 0.2419 0.2584
MDL principle (m0=5.5) 0.2453 0.2628
Relative entropy formula (m0=5.5,
a=0.061, b=0.8)

0.2456 0.2631

818 Nucleic Acids Research, 2009, Vol. 37, No. 3



data more precisely but at the cost of describing underly-
ing regularities less well. Thus models that are too com-
plex, as well as models that are too simple, do a relatively
poor job of predicting new data.

Informative reviews of the MDL principle can be found
in references (23) and (30). To simplify matters somewhat,
given a set of data, we generally choose a ‘theory’ that best
fits the data from among a parameterized set of theories,
called a ‘model’. There may, however, be various models
available, such as, in certain applications, the set of all
linear functions, the set of all quadratic functions, etc.
How complex should the model be from which to
choose the best theory? The MDL principle observes
that a description of the data can usually be divided into
two parts: a description of the theory used to describe the
data, and a description of the data given the theory. It
proposes that the best or most predictive theory will be
that which minimizes the sum of these two description
lengths. To apply this principle, one needs to be able to
quantify the description lengths.

Generally, the easier description length to calculate is
that of the data given the theory. If the set of possible
outcomes is discrete, a theory will assign them probabil-
ities P1;P2; . . . . From information theory, the description
length of each data point corresponding to outcome i is
� log2 Pi bits (31). The description length of the data is
then just of the sum of this quantity over all data points. If
there are n data points, and they follow the probability
distribution f, for large n their minimum description
length, using f as a theory, approaches

�n
X
i

fi log2 fi ¼ nHðfÞ bits; 4

where HðfÞ is the entropy of f (31). If instead, one were to
describe the data using the distribution q as a theory, the
description length would be �n

P
i fi log2 qi bits. In other

words, the description length of the data would be
increased by

n
X
i

fi log2
fi
qi
¼ nDðfjjqÞ bits; 5

where DðfjjqÞ is the relative entropy of f and q (31).
It is harder to quantify the description length of the

theory. This is best taken as a number attached to the
complexity of the model from which the theory is
chosen (23,30). Because theories with nearly identical
parameters are not independent, a model can be under-
stood to encompass a certain number of effectively inde-
pendent theories. For a parameterized set of theories, in
the limit of a large number of observations n, the density
of independent theories can be thought of as proportional
to the square root of the model’s Fisher informa-
tion (23,30,32). Integrating this quantity over the para-
meters’ range yields a measure of the number of
effectively independent theories a model contains. The
description length of a model is the log of this number,
i.e. the amount of information required to specify a par-
ticular theory within the model.

Let us examine how these considerations may be
applied to the specification of protein profiles, and

more specifically to the estimation of amino acid target
frequencies q for a single profile position. One may
model n data points using a multinomial distribution
with expected value q. The Fisher information of this
model is

nQ
i qi

: 6

For a fixed number of degrees of freedom, a constant
times the square root of this quantity may be integrated
over the parameter space to estimate the number of inde-
pendent theories described by the model. To illustrate, if
one assumes a multinomial model with three rather than
twenty amino acids, the density of independent theories
is shown in Figure 3, where the points are chosen ran-
domly, but with density proportional to the square root
of the Fisher information. For a multinomial with k free
parameters (corresponding to k+1 amino acids), it is
possible to show (Supplementary Data A) that in the
limit of large n, the description length of the model
approaches

k

2
log2

ne

k
�
1

2
bits: 7

For the standard amino acid alphabet, k ¼ 19.
The usual application of the MDL principle is to select

a model with an appropriate number of parameters. We
will, however, use it differently, as described below, to
select an appropriate number of pseudocounts. This
requires additional technical assumptions which are
described in Supplementary Data B.

BA

C

A
B

C

Figure 3. The effect of pseudocounts on the number of independent
theories. A theory describing the frequency distribution of three
amino acids can be represented as a point within an equilateral triangle.
The density of independent theories, which is proportional to
ð
Q

piÞ
�1=2, is represented by the density of points within the triangle,

and increases as one moves away from its center. Using pseudocounts
confines the theories one may consider to points within a simplex inside
the frequency distribution space. This simplex has a smaller volume
than the complete space, and also has a smaller average density of
independent theories.
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TheMDL principle and pseudocounts

Given a column with n effective observations, and observed
frequencies f, the choice of a ¼ 0 in Equation (1) yields
the maximum likelihood estimate q ¼ f: The description
length of the data using q as a theory is then
�n

P
i fi log2 fi ¼ nHðfÞ: However, if a 6¼ 0, the description

length of the data increases to �n
P

i fi log2 qi. In other
words, the description length of the data increases by
nDðfjjqÞ; see Equation (5). By the MDL principle, this
can be advantageous only if the description length of the
model decreases by a greater amount.
As discussed above, the effective number of independent

theories corresponding to a multinomial can be estimated
by integrating a constant times the square root of the
Fisher information over the whole parameter space. As
illustrated in Figure 3, when pseudocounts are employed
with a 6¼ 0, the volume of parameter space in which the
predicted q can fall decreases. Subject to technical assump-
tions described in Supplementary Data B, the decrease in
the model description length may be derived from an inte-
gral over this smaller volume. Specifically, this decrease, in
bits, is the difference between the logarithm base 2 of the
two integrals. We are unable to calculate the integral over
the smaller volume analytically, but can do so
numerically.
Figure 4 shows, on a logarithmic scale, the effect that

applying pseudocounts, with the matrix M0ðaÞ implied by
BLOSUM-62, has on the description length of the multi-
nomial model, as a ranges from 0 to 1. Positive values on
the y-axis represent decreases in model description length
with respect to a ¼ 0. Increasing a affects the description
length in two ways: first, the volume in which q can fall
decreases; second, the average density of independent the-
ories within this volume decreases. The first effect, labeled

‘volume effect’ in Figure 4, can be calculated analytically.
By Equation (1), using pseudocounts to calculate q is
equivalent to multiplying the observed frequencies f by
the matrix M0ðaÞ. This has the effect of multiplying the
volume of parameter space in which q can fall by the
absolute value of the determinant of M0ðaÞ. The second
effect, labeled ‘density effect’ in Figure 4, must be com-
puted numerically. We sampled 5� 109 vectors uniformly
from the set of all possible amino acid frequency vectors.
For a ranging from 0 to 1, in increments of 0.002, we
applied M0ðaÞ to all of our sampled frequency vectors
and calculated the average value of the square root of
the Fisher information over the resulting points. The
total decrease in the description length of the multinomial
model is obtained by adding the volume and density
effects, and is labeled ‘total effect’ in Figure 4. Note that
the curves shown in Figure 4 are valid only in the limit of
large n. Although this will constrain our ability to apply
the MDL principle in detail, it will still allow us to draw
several valuable conclusions.

To summarize, as a and the number of pseudocounts
increases, the description length of the data f, given the
calculated theory q, increases (Supplementary Data C).
However, the description length of the multinomial
model, as measured by the logarithm of the effective
number of independent theories it comprises, decreases,
as shown in Figure 4. The MDL principle claims that
the optimal value of a will be that for which the sum of
these two description lengths is minimized.

RESULTS

Pseudocounts as a function of the number of independent
observations

To investigate the implications of the MDL principle, we
first examine a toy hydrophobic protein column. Table 3
shows the observed amino acid frequencies f for this
column and the background frequencies p implicit in the
BLOSUM-62 matrix. In Figure 5, we plot, for these fre-
quencies and n ¼ 500 observations, the change in the data,
model, and total description lengths with respect to a base
at a ¼ 0. For the model and total description lengths, a
positive value in the plot indicates a ‘decrease’ in the
description length, whereas for the data description

0 0.2 0.4 0.6 0.8 1
α

0

10

20

30

40

50

B
its

Total effect
Volume effect
Density effect

Figure 4. Decrease in model description length as a result of using
pseudocounts implied by the BLOSUM-62 substitution matrix. For
large n, one may calculate the decrease in the description length of
the model for a between 0 and 1, compared to the description length
of the model at a ¼ 0. The total decrease can be decomposed into a
decrease in simplex volume, and a decrease in independent theory den-
sity. Half as many independent theories corresponds to a decrease of
one bit. Positive values on the y-axis represent decreases in model
description length.

Table 3. The observed frequencies fi of a toy hydrophobic alignment

column, and the background probabilities pi of BLOSUM-62

fi pi fi pi

A 0.010 0.074 M 0.200 0.025
C 0.010 0.025 N 0.010 0.045
D 0.001 0.054 P 0.010 0.039
E 0.001 0.054 Q 0.010 0.034
F 0.050 0.047 R 0.001 0.052
G 0.010 0.074 S 0.003 0.057
H 0.010 0.026 T 0.003 0.051
I 0.200 0.068 V 0.200 0.073
K 0.001 0.058 W 0.020 0.013
L 0.200 0.099 Y 0.050 0.032
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length a positive value indicates an ‘increase’. The data
description length was computed using Equation (5),
whereas the model description length was computed
numerically as described in the previous section. The min-
imum total description length is at a ¼ 0:0375. Solving
Equation (2) for m yields

m ¼ ðn� 1Þ
a

1 � a
; 8

which implies the optimal number of pseudocounts is
m ¼ 19:4.

We can perform the same calculation for varying
numbers n of independent observations. While the curve
in Figure 5 showing change in the description length of
the model remains fixed, the curve representing the
increase in the description length of the data shifts
upward with increasing n. Accordingly as n grows, the
optimal a will decrease, although it is not obvious how
the implied optimal number of pseudocounts m will
behave. In Figure 6, we plot the calculated value of m as
a function of n. It is evident that while not precisely con-
stant, the value of m is almost unchanging for n between
300 and 1000.

What can we make of the apparent divergence of m for
small n? As stated above, the theory that allows us to
calculate the description length of the model is valid
only for large n. As seen in Figure 4, when a ¼ 1, we cal-
culate that the description length of the model is about
46.3 bits less than when a ¼ 0. However, by formula 7, the
total description length of the model is less than 46.3 bits
when n is less than 212. Thus, our calculation cannot be
accurate in this range of n. Not having a good way to
apply the MDL principle for small n, we take the near

constancy of m for n between 300 and 1000 as an indica-
tion that m can be assumed to be nearly constant for all n
less than 1000. This conforms with the empirical result
that a constant m outperforms one proportional to

ffiffiffi
n
p

.
If our asymptotic theory can deal with small n only by

implication, what does it say about very large n? Except
when f is equal to the background frequencies, in which
case applying pseudocounts has no effect, the description
length of the data is a strictly increasing function of a. The
calculated value of the description length of the model does
not depend on n, but the curve representing the change in
the data shifts upward with increasing n. Therefore, amust
converge to zero as n grows large, though it converges at
different rates for different values of f.
It is possible to show that for small a, the decrease in

model description length is approximately k1
ffiffiffi
a
p

(Supplementary Data D), whereas the increase in data
description is approximately k2na2: Thus the total
decrease in description length is given by

�ðaÞ � k1
ffiffiffi
a
p
� k2na2; 9

which reaches a maximum at a ¼ k3n
�2=3. By

Equation (8), this implies that the optimal number of
pseudocounts should grow as n1=3. We have seen that,
for our toy column, m is almost constant for n < 1000,
so the asymptotic growth of m with the cube root of n does
not have appreciable effect until n is very large indeed. It
would be hard to test this theoretical result empirically,
because multiple alignments with which we are likely to
deal will not have n sufficiently large.

Pseudocounts as a function of column composition

So far, the MDL principle has only confirmed the earlier
empirical result that for practical alignment sizes the
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Figure 5. Selecting an optimal proportion of pseudocounts using the
MDL principle. For n ¼ 500 and the observed frequencies f listed in
Table 3, we apply pseudocounts as implied by the BLOSUM-62 sub-
stitution matrix. We use Equation (5) to compute the change in the
description length of the data, when compared to the description length
of the data at a ¼ 0, for a between 0 and 0.1. The dot-dashed curve (in
red) shows the increase in the description length of the data. The
dashed curve (in blue) shows the decrease in the description length of
the model. The total decrease in the description length, shown by the
solid curve (in black), is maximized at a ¼ 0:0375, which corresponds
to 19.4 pseudocounts.
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Figure 6. Optimal number of pseudocounts, m, as a function of the
number of independent observations, n. Using the data listed in Table 3
and the method illustrated in Figure 5, we found the optimal number of
pseudocounts for varying n. The method cannot be valid for n < 212
(vertical dotted line), because the calculated decrease in model descrip-
tion length for a ¼ 1 is greater than the description length of the model
at a ¼ 0, but it is not possible for a model to have a negative descrip-
tion length. For n between 212 and 1000, the calculation suggests we
use a nearly constant number m of pseudocounts, roughly 19.4. In the
limit of very large n, the MDL principle suggests the number of pseu-
docounts should grow proportionately to n1=3.
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number of pseudocounts should not depend on n. In addi-
tion, the principle suggests that the number of pseudo-
counts should depend on the composition of the
column: for different observed frequencies, the increase
in data description length as a function of a differs, but
the reduction in model description length as a function of
a remains fixed (Figure 5).
To test this prediction, we implemented an MDL rou-

tine to optimize a, and thereby the number of pseudo-
counts m, for different observed frequency vectors f. Our
theory may be used properly only for a large number n0 of
independent observations, although then the number of
pseudocounts it yields is effectively independent of n0.
Therefore, whatever the actual value of n, we always
apply the theory with n0 ¼ 500. The value 500 here is
somewhat arbitrary, and a larger value of n0 could be
used with almost identical results.
We cannot, however, escape a certain degree of circu-

larity, because when we assume that n0 is large, it is not
reasonable to claim as well that many of the observed
frequencies are zero (as is frequently the case when n is
small), and doing so yields poor results. Accordingly,
before we apply the MDL theory, it is best to eliminate
zero frequencies. We use Equations (1) and (2) with a
small, fixed number m0 of initial pseudocounts, to trans-
form the observed frequency vector f to f0 using the
equation

f0 ¼M0
m0

m0 þ n� 1

� �
f: 10

We then apply the MDL theory to f0 and n0 ¼ 500 to
obtain m, the estimated optimal number of pseudocounts.
Finally, we estimate the target frequencies q using the
equation

q ¼M0
m

mþ n� 1

� �
f: 11

We select m0 to optimize retrieval on our training set,
achieved at m0 ¼ 5:5. Using this value, and the procedure
just described, we then study the effectiveness of the MDL
method on our test set. The ROC5000 score is 0.2453 �
0.0006, a significant albeit modest improvement on that of
the constant pseudocount method (Table 1).

Pseudocounts as a function of column entropy

There is a strong correlation between the value of a chosen
by the MDL principle and the relative entropy of a
column’s amino acid distribution to the background dis-
tribution. To study this relationship, we constructed a
large set of columns representative of typical protein
sequence alignments. Specifically, we ran PSI-BLAST,
using the new method for calculating n and 28 pseudo-
counts, on the 103 queries of the aravind103 query
set (18,33), against SWISS-PROT (34). For ease of imple-
mentation, column data were recorded on the fifth
round for all non-X positions in those query sequences
for which the search did not converge before the full five
rounds were completed. We considered those 10 875 col-
umns representing at least five independent observations.

For each, we calculated the a implied by the MDL method
described above. In Figure 7, we plot a versus Dðf0jjpÞ
(abbreviated below as D) on a log-log scale, along with
a linear regression line, shown in red. As can be seen, there
is a good (correlation coefficient �0:87) linear correlation,
implying an approximate power-law relationship

a ¼ a D�b; 12

with a � 0:081 and b � 0:75, when D is expressed in bits.
Qualitatively, columns that are unlike the background fre-
quencies imply a low a, and relatively few pseudocounts,
while columns that are similar to the background frequen-
cies imply a high a. In comparison to constant pseudo-
counts, this will tend to render the substitution scores
implied by low relative-entropy columns even closer to
zero, while it will tend to render the scores of high rela-
tive-entropy columns greater in absolute value. In other
words, it will tend to increase the ‘contrast’ of the implied
PSSMs.

One question that arises from examining Figure 7 is
whether a simple power-law formula expressing a as a
function of D might perform as well or better than
the complicated MDL procedure for calculating a.
Assuming an equation of the form (12), and m0 ¼ 5:5,
we sought to optimize retrieval on our training set by
varying a and b. The best values we could find were
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Figure 7. The relationship between the pseudocount proportion a
implied by the MDL principle and column relative entropy. Each
point represents a multiple alignment column constructed by PSI-
BLAST from the aravind103 query set (18,33) run against SWISS-
PROT (34). Only columns with n � 5 independent observations are
considered. The x-axis represents the relative entropy Dðf0 jj pÞ, where
f0 is the observed frequency vector of the column after the addition of
m0 ¼ 5:5 pseudocounts, and p is the background amino acid frequency
vector implicit in BLOSUM-62. The y-axis represents the pseudocount
proportion a calculated from the MDL theory. The upper diagonal line
(shown in red) represents the best power-law fit to the data. The lower
diagonal line (shown in green) represents the power-law relationship of
a to Dðf0 jj pÞ that empirically yields the optimal retrieval on the training
set. Note that the background frequency vector p is the fixed point of
the linear transformation M. Therefore, if f0 ¼ p, the increase in the
description length of the data is identically zero for all a, implying that
the MDL is optimized at a ¼ 1. For any finite n, vectors f0 close enough
to p also imply an optimal a of 1. A small number of such points are
seen at the upper left of this graph.
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a ¼ 0:061 and b ¼ 0:8, and the implied power law is
shown as a green line in Figure 7. On our test set, the
simple formula (12) yields a ROC5000 score
0:2456� 0:0006 (Table 1), statistically no different than
that of the MDL theory.

DISCUSSION

We have shown that a new method for estimating the
number n of independent observations represented by a
multiple alignment column leads to improved retrieval
accuracy. This method is now used in the PSI-BLAST
code maintained and distributed by the NCBI (blastpgp
release 2.2.18).

Nishida et al. (35), in a paper published jointly with this
one, have made an empirical study of the use of pseudo-
counts in the construction of DNA position-specific score
matrices. Like us, they conclude that the number of pseu-
docounts should be independent of the number of
sequences in the source multiple alignment, at least for
alignments of realistic size. Our papers also agree that
the number of pseudocounts should decrease for align-
ments with greater relative entropy to the background dis-
tribution, although Nishida et al. (35) consider adjusting
pseudocounts for complete PSSMs, whereas we consider
varying them on a column-by-column basis. Henikoff and
Henikoff (22) have also proposed that, in the protein align-
ment context, the number of pseudocounts should be
decreased for columns with high relative entropy, although
without any strongly argued motivation.

We improved the retrieval performance of PSI-BLAST
by making the number of pseudocounts dependent upon a
column’s composition. The MDL principle provides one
justification for this procedure, but it is possible to derive a
similar PSSM score adjustment from a different theoreti-
cal perspective. For example, one might argue that
because different protein positions evolve at different
rates, the appropriate substitution matrix to use for a
slowly evolving position is one corresponding to a lower
PAM distance (4), or one with a greater relative entropy.
Therefore, instead of varying the number of pseudocounts
as a function of a the relative entropy of a column, one
might instead vary the substitution matrix from which the
pseudocounts are derived. If one examines Figure 2 and
Equation (1), one may observe that decreasing the number
of pseudocounts decreases a and moves the derived target
frequency vector q closer to f. Alternatively, decreasing the
PAM distance of the underlying substitution matrix
expands both inner simplexes and also moves q towards
f, without varying a or the number of pseudocounts. Thus,
this alternative perspective has the same qualitative effect
on PSSM scores as does the MDL principle.

As seen above, statistically indistinguishable perfor-
mance is achieved by using the MDL principle to calculate
an appropriate number of pseudocounts, and by using an
empirical formula that calculates the number of pseudo-
counts as a function of column relative entropy. The PSI-
BLAST code maintained and distributed by the NCBI
(blastpgp release 2.2.18) now implements by default
this empirical formula for calculating pseudocounts.

The number of initial pseudocounts m0 used to calculate
f0 and the parameters a and b in formula (12) may be
modified based on further testing. A user may override
the rule for calculating pseudocounts by specifying a
fixed number of pseudocounts; for BLOSUM-62 we rec-
ommend 28–30. The new method of computing the effec-
tive number of observations is used, whether or not the
number of pseudocounts is fixed.
As described, alternative theoretical formulations can

yield adjustments similar to those implied by the MDL
principle in the calculation of target frequencies and
PSSM scores. Ultimately, it is the quality of retrieval
that is important, not the theory behind target frequency
construction. Nevertheless, theories are important in that
they can suggest fruitful avenues for further investigation.
The MDL theory supports the use of an essentially con-
stant number of pseudocounts over the range of alignment
sizes we are likely to encounter. It also predicts that pseu-
docount number should in general decrease with increas-
ing column relative entropy. That these results are
consistent with empirical retrieval performance suggests
that the MDL principle provides a useful perspective
when thinking about protein model construction.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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