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ABSTRACT

Overlapping genes are defined as a pair of genes
whose transcripts are overlapped. Recently, many
cases of overlapped genes have been investigated
in various eukaryotic organisms; however, their
origin and transcriptional control mechanism has
not yet been clearly determined. In this study, we
implemented evolutionary visualizer for overlapping
genes (EVOG), a Web-based DB with a novel visua-
lization interface, to investigate the evolutionary
relationship between overlapping genes. Using this
technique, we collected and analyzed all over-
lapping genes in human, chimpanzee, orangutan,
marmoset, rhesus, cow, dog, mouse, rat, chicken,
Xenopus, zebrafish and Drosophila. This integrated
database provides a manually curated database that
displays the evolutionary features of overlapping
genes. The EVOG DB components included a
number of overlapping genes (10074 in human,
10 009 in chimpanzee, 67 039 in orangutan, 51 001
in marmoset, 219 in rhesus, 3627 in cow, 209 in
dog, 10 700 in mouse, 7987 in rat, 1439 in chicken,
597 in Xenopus, 2457 in zebrafish and 4115 in
Drosophila). The EVOG database is very effective
and easy to use for the analysis of the evolutionary
process of overlapping genes when comparing dif-
ferent species. Therefore, EVOG could potentially be
used as the main tool to investigate the evolution of
the human genome in relation to disease by com-
paring the expression profiles of overlapping genes.
EVOG is available at http://neobio.cs.pusan.ac.kr/
evog/.

INTRODUCTION

Overlapping genes are described as different genes whose
genomic regions overlap to some extent. This is frequently
observed in viral and prokaryotic genomes as well as in
mitochondrial DNA and is believed to be a common strat-
egy for genome organization and gene regulation in bac-
teria (1). However, there is a growing body of evidence
that suggests overlapping genes may regulate key gene
expression mechanisms in eukaryotes (2) with genomic
imprinting (3), RNA interference, translational regulation
(4), transcriptional interference (5) and RNA editing (6).
Moreover, using bioinformatic approaches based on
expressed sequence tags and full-length cDNA sequences
it has been estimated that �20% of human genes are over-
lapping genes (7,8). Despite their abundance, the origin
and evolution of overlapping genes in eukaryotes remain
unclear (9).

Recently, several studies have reported that the occur-
rence of overlapping genes may have been an advanta-
geous factor for gene expression, regulation and/or a
harmful factor for provoking new diseases during evolu-
tion (10). In humans, an increasing amount of evidence
indicates that overlapping genes were a major factor in the
culmination of various human diseases (11). For example,
imprinting related SNURF-SNRPN and UBE3A overlap-
ping genes is associated with Prader–Willi and Angelman
syndromes (12). Beckwith–Wiedemann syndrome (13),
Angelman syndrome (14) and transient neonatal diabetes
(15) were also suggested as overlapping gene related dis-
eases. Cross-species comparative analysis on large-scale
datasets of nucleotide sequences, genomic structure and
gene expression are considered to be an effective approach
to enrich our knowledge of the functionally important
elements (16). The availability of the complete genome
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sequence and the accumulation of millions of expressed
sequences have made it possible for large-scale predictions
of naturally occurring overlapping genes (3).

Overlapping genes have been primarily considered to
be important in regulatory gene structure for mRNA
degradation and translational repression. In this study,
we employed evolutionary approaches to address the
functional roles of overlapping genes by comparing the
genome organization between humans and different spe-
cies. We performed a comprehensive comparative geno-
mics analysis on 10 different genomes and found
overlapping patterns of overlapping genes during the evo-
lution of the genome. In addition, we developed a semi-
automatic system to identify overlapping genes on a
massive scale using publicly available sequence databases.
We identified features and conservation of overlapping
genes, and inferred possible mechanisms responsible for
overlap formation. Our system could be a valuable
resource for analyzing and comparing overlapping genes
between animal genomes that range from human to
insects. In addition, Evolutionary visualizer for overlap-
ping genes (EVOG) could be potentially used as the main
tool to investigate the evolution of the human genome in
relation to disease by comparing the expression profile of
overlapping genes.

DATABASE CONSTRUCTION

Dataset

We used the combined data of publicly available mRNA
and genome alignment from the University of California,
Santa Cruz genome browser database (http://genome.
ucsc.edu; March, 2006, release). These alignments
were produced by BLAT using mRNA databases. Our
DB includes 13 genome datasets (human, chimpanzee,
orangutan, marmoset, rhesus, cow, dog, mouse, rat,
chicken, Xenopus, zebrafish and drosophila), which were
obtained from the UCSC genome database recently
updated.

Searching for overlapping genes from transcript sequences

In this study, overlapping genes are defined as the adjacent
gene sequences that overlap partially and share one or
more nucleotides. Nevertheless, the complete gene struc-
ture should include both the transcription regulatory
regions at the 50 upstream end and the termination
region at the 30 downstream end of coding sequences.
We systematically analyzed all overlapping genes in the
genomes of thirteen species. We limited our analysis to
protein-coding genes and we did not consider alternative
splicing forms of a gene to be overlapping genes. Because
we were especially interested in addressing the evolution of
overlapping genes, we required that all genes in our study
have strict orthologs between human and other genomes.
To obtain high quality genome data, we focused on only
mRNA sequences for the genome alignment data from the
UCSC genome browser database and did not include
ESTs. Therefore, we used the genome to mRNA sequence
alignment data calculated in the UCSC Genome Browser
database. In the data, we attempted to map the mRNA

sequence to the genome sequence. To reduce the workload
and improve the mapping quality, we first applied the
selected sense orientation reliable transcripts. All imper-
fect alignments were removed. The transcripts sequences
that were aligned to more than one genomic fragment
were discarded as suspected chimeras. We searched for
overlapped genes from genes that were transcribed
on the opposite strands of the same genomic locus. All
of the putative overlapped genes were also mapped onto
the genome. If the RefSeq mRNA sequences overlapped,
only the longest was considered. We searched for over-
lapping sense/antisense and gene-in-gene pairs based on
the coordinates of the RefSeq in the genome sequence.
To cover both the transcriptional initiation and term-
ination sites of all the gene structures, we expanded the
overlapping regions to allow adjacent upstream or down-
stream gene regions to partially overlap. Using this pro-
cedure, Human, Chimpanzee, Orangutan, Marmoset,
Rhesus, Cow, Dog, Mouse, Rat, Chicken, Xenopus,
Zebrafish and Drosophila genes were identified as over-
lapping genes (Table 1).

Identification of overlapping genes according
to pairing region

Overlapping genes were then categorized into seven differ-
ent types, 30UTR-to-30UTR, 50UTR-to-50UTR, Intron-
to-Exon, 30UTR-to-50UTR, 50UTR-to-30UTR, Non-exon
overlapping and single exon to-UTR overlapping. These
classes were determined according to the relative genome
location using genomic mapping data from UCSC genome
browser. The antisense transcripts from the opposite
strand of the same genomic locus were included.
Chimeras of overlapping genes were collected from the
databases described above by selecting sequences that con-
tained two parts, were each at least 50 bp long, were
aligned to different genes and had opposite orientations.

Comparative analysis of overlapping genes

A comparative analysis of overlapping genes between
species was conducted by performing a comprehensive
comparative genomics analysis across 13 genomes and

Table 1. Statistics for EVOG database

Species Genome
assembly

No. of
overlapping
gene pairs

No. of
genes

Human hg18 10 074 27 062
Chimp panTro2 10 009 27 306
Orangutan ponAbe2 67 039 187 740
Marmoset calJac1 51 001 204 327
Rhesus rheMac2 219 513
Cow bosTau4 3627 10 161
Dog canFam2 209 923
Chicken galGal3 1439 4326
Mouse mm9 10 700 46 859
Rat rn4 7987 21 551
Xenopus xenTro2 597 8987
Zebrafish danRer5 2457 30 540
Drosophila dm3 4115 21 158
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identifying genes that were overlapped. An interesting
phenomenon that has been observed is the gain and loss
of overlapping states. To address this question, we also
examined the overlapping states of orthologous genes
in 13 other genomes, human, chimpanzee, orangutan,
marmoset, rhesus, cow, dog, mouse, rat, chicken,
Xenopus, zebrafish and drosophila. The evolutionary rela-
tionships between the overlapping genes in the 13 analyzed
species were assessed by extracting all overlapping genes
conserved between each pair of species. To analyze the
evolutionary impact of overlapping genes among human,
chimpanzee, orangutan, marmoset, rhesus, cow, dog,
mouse, rat, chicken, Xenopus, zebrafish and drosophila,
we compared the human genome with other genomes.
Selected species were chosen based on wide-range cross-
species comparisons with human, in addition to compiling
relatively complete datasets of genomic sequences and
abundant transcript sequences.

Constructing phylogenetic trees from overlapping genes

Our multi species dataset enabled us to identify how many
overlapping genes were conserved between human and
different species. The distance matrix was calculated
using the number of overlapping genes that existed
between the two-genome pair. For this analysis we used
a metric function to compute the similarity of gene proxi-
mity. In the following, let gn,m denote a gene whose name
is n on a species Sm.
From this we aimed to estimate the difference between

two different gene pairs, {ga,x, gb,x} and {ga,y, gb,y} over
two different species (chromosome) Sx, Sy, where ga,x and
gb,x are orthologous to ga,y and gb,y, respectively. In the
following analysis gx will denote the generic gene identity.
Therefore, gx is orthologous to all gx,W, and SW represents
all species. To demonstrate the utility of this analytical
method, we initially considered only two different genes.
However, computing the similarity between multiple genes
from two different species can be easily done by extending
the following procedure. Let begin(p,A) denote the starting
position (in terms of base pair) of gene gp,A on species SA.
In a similar way end(p,A) denotes the ending position of
gene gp,B on species SB. And |ga,x| is the total length of a
gene such that jga, xj ¼ jbegin a, xð Þ� end a,xð Þj. (Figure 1)
Let sim(Sx,Sy | ga, gb) be the similarity of the configuration
of two genes ga, gb on Sx compared with ga, gb on Sy. Note
that our measure is not symmetric;

sim Sx,Syjga, gb
� �

6¼ sim Sy,Sxjga, gb
� �

The formal definition of sim(Sx, Sy | ga, gb) is as follows.

sim Sx,Syjga, gb
� �

¼
MaximalCommon interval ga, x, gb, x

� �
, ga, y, gb, y
� �� �

jga;yj þ jgb;yj

The Maximal Common interval between (ga,x, gb,x) and
(ga,y, gb,y) can be maximized by moving (ga,y, gb,y)
over Sx. If ga,x, gb,x is completely identical to ga,y, gb,y,
respectively then sim(Sx,Sy | ga, gb)=1. In Figure 2, Sy

was slightly aligned by moving it right in order to maxi-
mize the common (overlapping intervals). Commona and

Commonb intervals denote the overlapping intervals
between ga and gb over Sx and Sy. This yields the following
result in Figure 2.

sim Sx,Syjga, gb
� �

¼
jCommonaj þ jCommonbj

jga;yj þ jgb;yj

We should also consider the direction of the gene
(upstream or downstream) when computing sim( ).
Thus, those above computations are valid only if the
direction of the matched gene is consistent, since matching
an upstream gene to a downstream gene is not reasonable.

By exploiting this sim( ) calculation, we can construct a
phylogenetic tree in terms of the proximity information on
multiple genes. Due to this a typical method, e.g. Nearest-
neighborhood Joining, can be easily applied.

USER INTERFACE

The EVOG database is publicly accessible at http://
neobio.cs.pusan.ac.kr/evog/. Before using EVOG, every
user has to confirm that JRE (JRE 1.6 or newest) is
installed on their local computer. There are various ways
for users to access the data stored in the EVOG database.
The database can be browsed by selecting a specific
genome and gene name from the main page. The web
interface allows users to access the database content via
three different search options. First, users can search the
genes of interest by using the HUGO symbol name. In
addition, one can use this route to get gene sequences
and detailed gene information from the NCBI data bank
(Figure 3A). Second, users can search overlapping genes
by clicking one of the genomes listed on the main page
(Figure 3C). The genome browser of EVOG will then
show annotation features of all the overlapped genes
when a particular organism on the multiple genome
menu is clicked (Figure 3A). To investigate evolutionary

Figure 1. Computing the similarity of gene proximity between two
different species.

Figure 2. Computing the maximal common interval. Sy was slightly
moved to the right in order to maximize the common intervals.
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aspects of overlapping genes, we implemented EVOG with
a novel visualization interface. The web-based genome
browser was implemented using JavaServer Faces (JSF)
technology, which has the advantage of constructing a
clearly defined architecture by separating application
logic and presentation. In addition, the EVOG database
supports a visualization interface that shows the compara-
tive configuration of overlapping genes across multiple
species along the whole chromosome scale. As shown in
Figure 3B, we show one overlapping gene pairs (AUP1,
HTRA2), which appears commonly in human, chim-
panzee, cow and mouse. It displays the distance mea-
sured between overlapping genes as a phylogenetic tree
(Figure 3D), enabling users to infer the evolutionary his-
tory of the overlapping genes at a glance. In the picture,
sense transcripts are in red and anti-sense transcripts are in
blue. The small thick segment denotes the exon and the
thin line denotes the intron. Users can freely zoom in/out
of a specified region to more closely investigate the over-
lapping regions of gene pairs. EVOG database supports

two different viewing scales, the absolute scale and the
zoomed scale, both of which are fit to the panel size.
The absolute scale is a fixed viewing scale, which includes
the overlapping genes that appear in multiple genomes.
Zooming makes the viewing scale fit the actual size.
Users can enlarge the viewing interval by selecting the
scale lines with the mouse. Moreover, the EVOG database
incorporates multiple genome and tree visualization tools
to facilitate online visualization of the data.

SUMMARY AND FUTURE DIRECTIONS

The EVOG database is an integrated database for over-
lapping genes that includes bioinformatics analysis data.
EVOG supports all overlapping genes that are common in
a subset of Human, Chimpanzee, Orangutan, Marmoset,
Rhesus, Cow, Dog, Mouse, Rat, Chicken, Xenopus,
Zebrafish and Drosophila. In addition, it provides a
manually curated database that displays the evolutionary

Figure 3. (A) Overlapping genes web retrieval interface. The web interface allows users to access the database contents via three different searching
options. This is useful for finding organisms with overlapping genes specified by the users. (B) The results page from the EvOG database. The results
page is very effective and easy to use for the comparative analysis and investigation of the evolutionary process of overlapping genes. (C) The users
can search interesting overlapping genes by click genome listed on the main page. (D) The distance matrix was calculated by the number of
overlapping genes between each two-genome pair.
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features of overlapping genes. The EVOG database is very
effective and easy to use for the comparative analysis and
investigation of evolutionary processes of overlapping
genes. Furthermore, the EvOG database supports a visua-
lization interface that shows the comparative configura-
tion of overlapping genes across multiple species along
the whole chromosome scale. The database is constantly
being supplemented with new genome data from a range
of other available sources. In the near future, the EVOG
database will include the whole genomes of more than 20
species for comparison of commonly overlapping genes.
Therefore, EVOG could potentially be used as the main
tool to investigate the evolution of the human genome in
relation to disease by comparing the expression profiles of
overlapping genes.
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