N-[5-(3-Phenylpropionyl)-1H-pyrrole-2-carbonyl]-L-proline Methyl Ester

Derek C. Martyn and Andrew D. Abell*

Department of Chemistry, The University of Canterbury, Private Bag 4800, Christchurch, New Zealand Fax: (+64 3) 3642110, E-mail: a.abell@chem.canterbury.ac.nz

Received: 22 February 2003 / Accepted 22 May 2003 / Published 1 June 2003

To a stirring solution of the pyrrole carboxylic acid $\mathbf{1}$ [1] ($100 \mathrm{mg}, 0.41 \mathrm{mmol}, 1$ equiv) and L-proline methyl ester hydrochloride ($75 \mathrm{mg}, 0.45 \mathrm{mmol}, 1.1$ equiv) in dry dichloromethane (6 mL) at r.t. under an inert atmosphere were added 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (102 mg , $0.53 \mathrm{mmol}, 1.3$ equiv) and 1-hydroxybenzotriazole hydrate ($83 \mathrm{mg}, 0.62 \mathrm{mmol}, 1.5$ equiv) [2]. N, N-Diisopropylethylamine (Hünig's base, $58 \mathrm{mg}, 0.45 \mathrm{mmol}, 1.1$ equiv) was added, and the reaction mixture was stirred at r.t. for 16 h . The solution was then diluted with dichloromethane (10 mL), washed with 3 M hydrochloric acid ($2 \times 10 \mathrm{~mL}$), water ($2 \times 10 \mathrm{~mL}$), and the combined aqueous washings were back-extracted with dichloromethane ($2 \times 10 \mathrm{~mL}$). The combined organic fractions were dried (MgSO4) and the solvent was removed by evaporation under reduced pressure. Flash chromatography on silica (ethyl acetate/petroleum ether, 2:1) afforded the title compound $2(100 \mathrm{mg}, 69 \%)$ as a tan solid.
$m p 84-86^{\circ} \mathrm{C}$.
IR (KBr , diffuse refraction method) 1539.1, 1598.9, 1660.6, 1737.7, 2954.7, 3028.0, 3435.0.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ d 2.03-2.27 (m, $\left.4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 3.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 3.11(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2 \mathrm{a}} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 3.96(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{bCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 4.68\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=4.1 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right.$), $6.61(\mathrm{~m}, 1 \mathrm{H}$, pyrrole H3), $6.82(\mathrm{~m}, 1 \mathrm{H}$, pyrrole H 4), $7.17-7.29(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 10.10(\mathrm{~s}(\mathrm{br}), 1 \mathrm{H}$, pyrrole NH).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ d 25.3, $28.6\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 30.3\left(\mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 40.1\left(\mathrm{PhCH}_{2} \mathrm{CH}_{2}\right)$, $48.4\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 52.4\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 60.2\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 112.9$ (pyrrole C3), 115.4 (pyrrole C4), 126.2, 128.3, 128.5, 140.9 (ArC), 129.5 (pyrrole C2), 132.5 (pyrrole C5), 159.6 (CON), 172.5 (CO2), $189.9\left(\mathrm{CH}_{2} \mathrm{CO}\right)$.

HRMS (M^{+}) Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$: 354.1580 . Found: 354.1583 .
Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 67.78; H, 6.26; N, 7.90. Found: C, 67.75; H, 6.51; N, 7.97.

References

1. Martyn, D. C.; Abell, A. D. J. Chem. Soc., Org. Biomol. Chem., in press.
2. Tian, Z-Q.; Brown, B. B.; Mack, D. P.; Hutton, C. A.; Bartlett, P. A. J. Org. Chem. 1997, 62, 514.

Sample availability: available from the authors.

