
Latin American Applied Research  38:161-168 (2008) 

161 

GROUP SOLUTION FOR UNSTEADY BOUNDARY LAYER FLOW OF 
A MICROPOLAR FLUID NEAR THE REAR STAGNATION POINT OF A 

PLANE SURFACE IN A POROUS MEDIUM 
 

M. M. ABD-ELAZIZ † and S. E. AHMED ‡ 

† Faculty of Science, Department of Mathematic, South Valley University, Qena, Egypt 
Mohamed_Aziz@yahoo.com 

 ‡ Faculty of Science, Department of Mathematic, South Valley University, Qena, Egypt 
samehelsayedahmed@yahoo.com 

 
Abstract −− The transformation group theoretic 

approach is applied to the system of equations gov-
erning the unsteady boundary layer flow of a mi-
cropolar fluid near the rear stagnation point of a 
plane surface in a porous media. The application of a 
two-parameter group reduces the number of inde-
pendent variables by two, and consequently the sys-
tem of governing partial differential equations with 
boundary conditions reduces to a system of ordinary 
differential equations with appropriate boundary 
conditions. The possible form of potential velocity Ue 
is derived in steady and unsteady cases. The family 
of ordinary differential equations has been solved 
numerically using a fourth-order Runge-Kutta algo-
rithm with the shooting technique. The effect of 
varying parameters governing the problem is stud-
ied. 

Keywords−− Micropolar fluid, stagnation point, 
porous medium. 

I. INTRODUCTION 
Boundary layers of non-Newtonian fluids have received 
considerable attention in the last few decades. Boundary 
layer theory has been applied successfully to various 
non-Newtonian fluids models. One of these models is 
the theory of micropolar fluids introduced by Eringen 
(1964), Eringen (1966), Eringen (1977). In this theory, 
the micropolar fluid exhibits the microrotational effects 
and micro-inertia. The difficulty of the study of such 
fluid problem is the paucity of boundary conditions and 
the existence of deformable microelements as well as 
the time as the third independent variable. Many at-
tempts were made to find analytical and numerical solu-
tions by applying certain special conditions and using 
different mathematical approaches.  Lok et al. (2003a) 
used the Keller-box method in conjunction with the 
Newton's linearization technique to study the unsteady 
boundary layer flow of a micropolar fluid near the rear 
stagnation point of a plane surface.  Also, Lok et al. 
(2003b) studied the unsteady boundary layer flow of a 
micropolar fluid near the forward stagnation point of a 
plane surface by using the Newton's linearization tech-
nique of Keller-box method.  Seshadri et al. (2002) used 
the implicit finite difference scheme to study the un-
steady mixed convection flow in the stagnation region 

of a heated vertical plate due to impulsive motion. 
 On the other hand, studies with group method were 
used by Helal and Abd-el-Malek (2005), Abd-el-Malek 
et al. (2004). The mathematical technique which used in 
the present analyses is the two- parameter group trans-
formation leads to a similarity representation of the 
problem. A systematic formulism is presented for reduc-
ing the number independent variables in systems which 
consist, in general, of a set partial differential equations 
and auxiliary conditions (such as boundary and/or initial 
conditions).  
 In the present work we consider the unsteady 
boundary layer flow of a micropolar fluid near the rear 
stagnation point of a plane surface in a porous media. 
The governing boundary layer equations have been 
transformed to ordinary differential equations via group 
analysis and these have been solved numerically using 
shooting technique. The effects of varying parameters 
governing the problem were studied. 

II. MATHEMATICAL ANALYSIS 
Let us consider the development of the two-dimensional 
boundary layer flow of a micropolar fluid near the rear 
stagnation point of a plane surface in a porous medium. 
The fluid which occupies a semi-infinite domain 
bounded by an infinite plane and remains at rest for time 
t<0 and starts to move impulsively away from the wall 
at t=0. In our analysis, rectangular Cartesian co-
ordinates (x,y) are used in which x and y are taken as the 
coordinates along the wall and normal to it, respec-
tively. The flow configuration is shown schematically in 
Fig. 1. 

 
Fig.1. Physical model of the problem. 
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 The boundary layer equations governing the un-
steady flow of a micropolar fluid with constant physical 
properties are (Lok et al., 2003a) 
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In the above equations u and v are the components 
of fluid velocity in the x and y directions, respectively, 
Ue is the uniform stream velocity, N is the component of 
microrotation, ρ is the density, k is the vortex viscosity, 
γ is the spin-gradient viscosity, j is the microinertia den-
sity, ν is the kinematic viscosity and k1 is the permeabil-
ity of the porous medium. 
 The remaining equation is to be solved subject to the 
boundary and initial conditions 
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where β is a constant and 0≤β≤1. The case β=0, which 
indicates N=0, represents concentrated particle flow in 
which the microelements close to the wall surface are 
unable to rotate. The case β=1/2 indicates to the vanish-
ing of antisymmetric part of the stress tensor and de-
noted week concentrations. The case β=1 is used for the 
modelling of turbulent boundary layer flows. We shall 
consider here only the value of β=0 and β=1/2. 
 At this point, we introduce the dimensionless stream 
function ),,( tyxψ  such that 
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with the boundary conditions 
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where ∆=k/μ (coupling constant), λ=γ /ρj (microrotation 
parameter) and σ= k/ρj (dimensionless material parame-
ter). 

III. METHOD OF SOLUTION 
Group analysis is the only rigorous mathematical 
method to find all symmetries of a given differential 
equation and no ad hoc assumptions or a prior knowl-
edge of the equation under investigation is needed. The 
boundary layer equations are especially interesting from 
a physical point of view because they have the capacity 
to admit a large number of invariant solutions i.e. basi-
cally analytic solutions. In the present context, invariant 
solutions are meant to be a reduction to a simpler equa-
tion such as an ordinary differential equation (ODE). 
The non-linear character of the partial differential equa-
tions governing the motion of a fluid produces difficul-
ties in solving the equations. In the field of fluid me-
chanics, most of the researchers try to obtain the simi-
larity solutions in such cases. 

A. Group Formulation of the Problem 
In this section, two parameter transformation group is 
applied to the system of Eqs. (6) and (7) with the bound-
ary conditions (8). The system of equations reduces to a 
system of ordinary differential equation in a single in-
dependent variable with appropriate boundary condi-
tions. The procedure is initiated with the group G, a 
class of two parameter group of the form 
 ( ) ( )2121,: aakSaacSG SS += , (9) 
where S stands for x, y, t, ψ, Ue and N the c's and k's are 
real valued and at least differentiable in their arguments 
(a1, a2). Thus, in the notation of the given representa-
tion, the present analysis is initiated with a class CG of 
two-parameter transformation groups with the form 
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which possesses complete sets of absolute invariant 
η(x,y,t) and gi(x,y,t,N,Ue,ψ), i=1,2,3 where gi are the 
three absolute invariants corresponding to N,ψ  and Ue. 
If η(x,y,t) is the absolute invariant of independent vari-
ables then  

( ) ( ) 3,2,1,),,(,,,,, == ityxFUNtyxg iei ηψ . 
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B. The Invariance Analysis 
The transformation of the dependent variables and their 
partial derivatives are obtained from G via chain-rule 
operations   
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where S stands for N,ψ  and Ue. 
Equation (6) is said to be invariantly transformed 

under (9) and (11) whenever 
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for some function H1(a1, a2) which be constant. Here the 
transformation in (10) and (11) are for the dependent 
variables and not derivatives. To transform the partial 
differential equations, substitution from Eqs. (9) and 
(11) into the left hand side of (12) and rearrangement 
yields 
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where 
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For invariant transformation R is equated to zero. This is 
satisfied by setting 
 0:0 == eUkR , (15) 
and comparing the coefficient in both sides of (13) and 
with H1(a1, a2) we obtain 
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where H1(a1, a2) =constant. 
In similar manner the invariant transformation of (7) 

under (9) and (11) whenever there is a function 
H2(a1,a2) such that 
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where 
 NkR σ21 = . (18) 
The invariance condition implies that  
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and 
 0:01 == NkR . (20) 
 Moreover, the boundary conditions (8) is also in-
variant in form whenever the condition ky=0 is ap-
pended to (15), (16), (19) and (20); that is  
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Combining equations (15), (16), (19) and (20), we get 
 1== ty cc and xNU cccc e ===ψ . (22) 
Thus, the foregoing restrictions indicate that groups 
which are of further interest are those in the class CG 
with the form 

 

( ) ( )

( )
( )
( )
( )⎪

⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

=

=

=

⎪
⎩

⎪
⎨

⎧

+=

=
+=

=

,,

,
,

,

,,
:

21

21

21

21

2121

e
x

e

x

x

t

xx

UaacU

NaacN
aac

aaktt
yy

aakxaacx
s

G
ψψ

 (23) 

This group transforms invariantly the differential Eqs. 
(6) and (7) and the boundary conditions (8). 

C. Complete Sets of Absolute Invariants 
The complete set of absolute invariants is 

(i) the absolute invariants of the independent vari-
ables (x,y,t) is η=η(x,y,t), 

(ii) the absolute invariants of the dependent vari-
ables (ψ,N,Ue), then  

.3,2,1)),,,((),,;,,( == jtyxFUNtyxg iei ηψ  
The basic theorem in group theory (Moran and Gaggi-
oli, 1968) states that: a function g*(x,y,t,ψ,N,Ue) is an 
absolute invariant of a two parameter group if it satisfies 
the following two first-order linear differential equa-
tions 
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where ),( 0
2
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1 aa are the identity elements of the group. 

D. Absolute Invariants of Independent Variables 
The absolute invariant η=η(x,y,t) of the independent 
variables (x,y,t) is determined using Eqs. (24)-(25).   
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Since 0=yk , then 044 == βα , then we have Eq. (25) 
becomes 
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The similarity analysis of (6) to (8) now proceeds for 
the particular case of two parameter groups of the form 
(23) according to the basic theorem from group theory, 
Eqs. (27) has only and only one solution if at least one 
of the following condition is satisfied  
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where 
.ijjiij βαβαλ −=      (i,j=1,2,3,4,5,6). 

For convenience, then, the system (27) will be rewritten 
in terms of the quantities given by (28); the result is 
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From the transformation (23) and the definition of α's, 
β’s and λ's, we have the result  
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then, the conditions (28) reduce to 
 .02616 ≠+ λλ x  (31) 
Applying Eqs. (30) and (31) to Eqs. (29) gives 

(i) the first equation of (29) is identically satisfied, 
(ii) the second equation of (29) reduce to 

 .0=
∂
∂

t
η  (32) 

For convenience, Eqs. (29) can be rewritten in the form 
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and from (31), the Eq. (33) gives  
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From Eqs. (32) and (34) we have 
 ).(yf=η  (35) 
Without loss of generality the independent absolute in-
variant η(y) in Eq. (35) may assume of the form 
 Ay=η . (36)  

E. Absolute Invariants of Dependent Variables 
For the absolute invariants corresponding to the de-
pendent variable ψ, N and Ue. A function g1(x,t,ψ) is 
absolute invariant of a two-parameter group if it satis-
fies the first –order linear differential equations 
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The solution of Eqs. (37) gives 
 ).()),(/(),,( 111 ηωψφψ Ftxtxg ==  (38) 
 In similar manner, we get 
 )()),(/(),,( 222 ηωφ GtxNNtxg == , (39) 
 )()),(/(),,( 333 ηωφ EtxUUtxg ee == . (40) 

where ),(1 txω , ),(2 txω  and ),(2 txω are functions to be 
determined. Without loss of generality, the φ’s in (38), 
(39) and (40) are selected to be the identity functions. 
Then we can express the functions ψ(x,y,t), N(x,y,t) and 
Ue(x,y,t) in terms of the absolute invariants F(η) and 
G(η) in the form 
 )(),(),,( 1 ηωψ Ftxtyx = , (41) 
 )(),(),,( 2 ηω GtxtyxN = , (42) 
 )(),(),( 3 ηω EtxtxU e = . (43) 
Since ω3 is independent of y, whereas η depends on y, it 
follow that E in (43) must be equal to a constant. Then 
(43) becomes 
 ),(),( 30 txUtxUe ω= . (44) 
 We follow the work of many recent authors by as-
suming that eU  is given by (Lok et al., 2003a) 
 .)(),( axxUtxU ee ==  (45) 
The forms of the functions ω1 and ω2 are those for 
which the governing Eqs. (6) and (8) reduce to ordinary 
differential equations. 
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IV. THE REDUCTION TO ORDENARY 
DEFFERENTIAL EQUATION 

Here, we will consider two cases 
A Steady Case (i.e. )(),( 11 xtx ωω =  and )(),( 22 xtx ωω = ) 
As a special case of our study, we can take )(1 xω , 

)(2 xω  and A in the form 
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then, η, ψ and N become 
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then, Eqs. (6) and  (7) give 
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 The most important results are the local wall shear 
stress wτ  and the local wall couple stress Mw which may 
be written as 
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B. Unsteady Case 
In this case, also, as a special case of our work and ac-
cording to Eq. (34), we will introduce the (Lok et al., 
2003b) transformations for the dimensionless stream 
function F, the dimensionless microrotation function G 
and a pseudo-similarity η which are given by 
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The outcome of this transformation is that the Eqs. (6) 
and (7) become 
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and the boundary conditions (8) transform to 
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 The initial velocity and microrotation profiles F'(η) 
and G(η) at t=0 are obtained from the following ordi-
nary differential equations 
 ( ) 0''2''''1 =+Δ+Δ+ FGF η , (57) 
 02'2'' =++ GGG ηλ , (58) 
Subject to the boundary conditions  
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where the primes denote differentiation with respect to 
η. The analytical solutions of these equations are 

 

,
)1(

)1(
221

)1(
2

)1(
)('

2
1

1

2
1

2
1

2
1

⎪
⎩

⎪
⎨

⎧

⎪
⎭

⎪
⎬

⎫

⎥
⎦

⎤
⎢
⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Δ+
×

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
Δ+

+−×

⎥
⎦

⎤
⎢
⎣

⎡
Δ+

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Δ+
=

−

λ
ηη

λββ

λβηη

erferf

erfF

 (60) 

 

.exp

1
221

)1(
2)(

2

1

2
1

⎥
⎦

⎤
⎢
⎣

⎡
−×

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥⎦
⎤

⎢⎣
⎡

Δ+
+−

Δ+
−

=

−

λ
η

λββ
π

βηG
 (61) 

Also, we notice that for n=1/2 (weak concentration 
of microelement), we can take 
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and the velocity profiles can be described by the follow-
ing equations 
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Subject to the boundary conditions 
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 The remaining results in this case are the local wall 
shear stress wτ , and local wall couple stress Mw which 
may be written as  
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V. RESULTS AND DISCUSSION 
A two parameter transformation group was applied to a 
system of equations governing the unsteady boundary 
layer flow of a micropolar fluid near the rear stagnation 
point of a plane surface in a porous medium. The simi-
larity representations and similarity transformations in 
the steady case was described by Eqs. (48) and (49). 
These equations with the boundary conditions (50) were 
solved numerically using a fourth–order Rung-Kutta 
method. Systematic “shooting" is required to satisfy 
their boundary conditions at infinity. Calculations were 
carried out for the indicated values of the micropolar 
parameter Δ and the permeability parameter m are 
summarized with λ=2.0 and σ=0.5. The step size 
Δη=0.05 is while obtaining the numerical solution with 
η∞=4 and five-decimal accuracy as the criterion conver-
gence. In order to assess the accuracy of the present 
results, it was found in a full agreement with the work 
of Lok et al. (2003b)”. 
 The effects of vortex-viscosity parameter ∆ and 
permeability parameter m on the variation of velocity 
for β=0 (strong concentration of microelement) are 
shown in Fig. 2 and 3. It is found that, the velocity dis-
tributions decrease with an increasing the values of mi-
cropolar parameter ∆ and permeability parameter m and  
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Fig. 2. Variation of velocity distribution with vortex-viscosity 
parameter when β=0(strong concentration of microelement) 
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Fig. 3. Variation of velocity distribution with permeability 
parameter when β=0(strong concentration of microelement) 
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Fig. 4. Variation of angular velocity with vortex-viscosity 
parameter when β=0(strong concentration of microelement) 
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Fig. 5. Variation of angular velocity with permeability pa-
rameter when β=0(strong concentration of microelement) 

the velocity distributions assumes a more uniform shape 
within the boundary layer. Figures 4 and 5 depicts the 
effects of material parameter ∆ and permeability pa-
rameter m on the variation of microrotation profiles for 
β=0 (strong concentration of microelement). From these 
figures, it can be seen that, as the values of ∆ and m 
increase the rotation of microelement increases until 
reach a maximum and then decrease to zero. 
 The variations of velocity and microrotation profiles 
with the material parameter ∆ for β=1/2 (weak concen-
tration of microelement) are shown in figures 6 and 7. It 
is observed from these figures that, for the same values  
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Fig. 6. Variation of velocity distribution with vortex-viscosity 
when β=0.5(weak concentration of microelement) 
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Fig. 7. Variation of angular velocity with vortex-viscosity 
when β=0.5 (weak concentration of microelement) 
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Fig. 8. variation of angular velocity with microrotation pa-
rameter  

of ∆ the velocity profiles are higher for β=0.5 than for 
β=0 and the microrotation profiles decrease from maxi-
mum values at the wall to zero. A figure 8 displays the 
effect of microrotation parameter λ on the variation of 
angular velocity profiles. It is shown that, as λ increase 
the angular velocity profiles decrease beside the wall 
and increase far from the wall.  
 The comparing between our work and the previous 
work for β=0 which reported by Lok et al. (2003b) is 
described in Fig. 9 and 10. We observed from these fig-

ures that, the obtained results agree very well with the 
previous studies for the same values of ∆. In addition, 
for the different values of the micro-gyration boundary 
condition β, the effects of variations in flow conditions 
and fluid properties on the variations of )0(''F  and 
G'(0) at the plate are illustrated in table 1. The refer-
enced case is λ=2.0 and σ=0.5. From this table, the re-
sults show that, increasing values of vortex-viscosity 
parameter ∆ and permeability parameter m results in a 
decrease of )0(''F  whereas increasing values of ∆ and 
m results in an increasing of G'(0). 

For the unsteady case the similarity representations 
are found in system (54) and (55) with the boundary 
conditions (56). The analytical solutions form for the 
initial velocity in this case was formulated by the inte-
gration of equations (57) and (58) with the boundary 
conditions (59). The most important results in this case 
are the local wall shear stress τw and the local wall cou-
ple stress Mw which may be written in Eqs. (65) and 
(66). 
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Fig. 9. Variation of velocity distribution with vortex-viscosity 
when β=0 
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Fig. 10. variation of angular velocity with vortex-viscosity 
when β=0 

VI. CONCLUSIONS 
A solution methodology based on the group theoretic 
method has been applied to solve the problem of un-
steady boundary layer flow of a micropolar fluid near 
the rear stagnation point of a plane surface in a porous 
medium. The carried out analysis, in this problem, 
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shows the effectiveness of the method in obtaining in-
variant solutions for the system of partial differential 
equations. The main difficulty of the problem is due the 
nonlinear boundary conditions, and consequently the 
analysis of the problem faces many difficulties that were 
an essential obstacle in many other analytical methods. 
 In this problem, we have used via-chain rule under 
translation group of transformations to reduce the num-
ber of independent variables of the problem by two and 
consequently the governing partial differential equations 
with the boundary conditions to ordinary differential 
equations with the appropriate corresponding boundary 
conditions.  Numerical technique based on the shooting 
method was used. The obtained results were presented 
and discussed. It is found that, as the values of material 
parameter ∆ increase, the velocity distribution becomes 
more linear and as the permeability parameter increase, 
the velocity distribution assumes a more uniform shape 
within the boundary layer. In addition, it was found that 
as the values of ∆ and m increase the rotation of micro-
element increases until reach a maximum and then de-
crease to zero. The form of the local wall shear 
stress wτ  and the local wall couple stress Mw in steady 
and unsteady cases was derived. The analytical form for 
the initial velocity in unsteady case was formulated. 
Comparisons with previously published work on various 
special cases of the general problem were performed 
and the results were found to be in excellent agreement. 

Table 1. Variation of F'' (0),-G'(0) at the plate with m, ∆: 

 
At β=0, (strong concen-

tration of microele-
ment) 

At β=0.5, (weak con-
centration of micro-

element) 

m ∆ F''(0) -G'(0) F''(0) G'(0) 
0.5 0.5 1.50237 0.51645 1.64712 0.70334 
0.5 0.8 1.35988 0.49407 1.54924 0.64098 
0.5 1 1.28366 0.48115 1.49398 0.60646 
0.5 1.5 1.13582 0.45391 1.38036 0.53715 
0.5 1.8 1.06730 0.44018 1.32455 0.50398 
0.5 2 1.02760 0.43187 1.29123 0.48446 
0.5 2.5 0.94411 0.41345 1.21862 0.44270 
0.5 2.8 0.90236 0.40373 1.18095 0.42147 
0.5 3 0.87726 0.39770 1.15785 0.40860 
0.5 3.5 0.82223 0.38401 1.10592 0.38011 
0.5 4 0.77595 0.37193 1.06084 0.35587 
0.5 4.5 0.73636 0.36117 1.02118 0.33495 
0.5 5 0.70201 0.35149 0.98593 0.31667 
0.5 0.5 1.50237 0.51645 1.56960 0.65357 
0.6 0.5 1.42802 0.50571 1.46660 0.58840 
0.8 0.5 1.32946 0.49073 1.40097 0.54748 
1 0.5 1.26680 0.48072 1.30806 0.49042 

1.5 0.5 1.17829 0.46590 1.27550 0.47068 
1.8 0.5 1.14734 0.46052 1.25889 0.46066 
2 0.5 1.13156 0.45773 1.24513 0.45238 

2.2 0.5 1.11850 0.45540 1.22841 0.44236 
2.5 0.5 1.10262 0.45255 1.20763 0.42997 

NOMENCLATURE  
F reduced stream function 
G reduced microrotation 
j micro inertia density [m2]  
α ratio of the microrotation vector component 
N component of the microrotation vector normal to x-y 

plan [s-1]  
t time [s] 
u,v velocity components along x and y axes [ms-1]  
Ue uniform stream velocity [ms-1]  
x,y Cartesian coordinates along the wall and normal to it 

[m] 
Greek symbols 

γ spin gradient viscosity [kg.m.s-1]  
η pseudo-similarity variables 
k vortex-viscosity [kg.m.s-1] 
μ viscosity [kg.m.s-1] 
υ  kinematic viscosity [m2.s-1]  
ρ density [kg.m3]  
ψ stream function 

Subscripts 
e boundary layer edge condition 
∞ far field condition 

Superscript 
‘ differentiation with respect to η  
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