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Abstract−− The results of a study of effect of mag-
netic field on natural convection along an isothermal 
wavy cone embedded in a fluid-saturated porous 
medium are obtained. A coordinate transformation 
is used to transform the complex wavy conical sur-
face to a smooth conical surface, and the trans-
formed non-similar boundary layer governing equa-
tions are then solved numerically by means of the 
Runge-Kutta integration scheme with the Newton-
Raphson shooting method. The boundary layer un-
der consideration is concerned with the regime 
where the Darcy-Rayleigh number Ra is very large. 
Detailed results of the effect of magnetic field, half 
cone angle, and the sinusoidal wavy surface on the 
velocity, temperature and the wall heat flux are pre-
sented. 

Keywords−− Magnetic field, wavy cone, porous 
media. 

I. INTRODUCTION 
The study and analysis of heat transfer in porous media 
have been the subject of many investigations due to 
their frequent occurrence in industrial and technological 
applications. Examples of some applications include 
geothermal reservoirs, drying of porous solids, thermal 
insulation, enhanced oil recovery, packed-bed catalytic 
reactors, and many others. There has been considerable 
work done on free convection flow over conical sur-
faces which is based on the laminar boundary-layer ap-
proach. See, for instance, Cheng and Minkowycz 
(1977), Chamkha (1996), Kafoussias (1992), Yih 
(1999), Alamgir (1979), Na and Chiou (1979a, b), El-
kabeir et al. (2006), Hering and Grosh (1965) and Roy 
(1974), and many other papers can be found in Nield 
and Bejan (1999). Most early studies on convection heat 
transfer in porous media have used regular surfaces. 

The study of heat transfer near irregular surfaces is 
of fundamental importance; that is because it is often 
met in many practical applications and devices such as 
flat-plate solar collectors and flat-plate condensers in 
refrigerators. The presence of roughness elements dis-
turbs the flow past surfaces and alters the heat transfer 
rate. Yao (1983) studied the natural convection heat 
transfer from isothermal vertical wavy surfaces, such as 
sinusoidal surfaces, in Newtonian fluids. He proposed a 
simple transformation to study the natural convection 
heat transfer from isothermal vertical wavy surfaces. 
Rees and Pop (1994a, b) and (1995) carried out some 

studies to analyze natural convection from vertical and 
horizontal wavy surfaces embedded in a porous me-
dium. Hady et al. (2006) analyzed the problem of MHD 
free convection flow along a vertical wavy surface in 
presence of magnetic field and generation absorption. 
Pop and Na (1994) and (1995) studied the natural con-
vection flow along a vertical wavy cone and a frustum 
of a wavy cone in porous media. Hossain and Pop 
(1996) studied the magnetohydrodynamic boundary 
layer flow and heat transfer on a continuous moving 
wavy surface in Newtonian fluids. Cheng (2000a, b) and 
Cheng (2007) reported the phenomenon of natural con-
vection heat and mass transfer near a vertical wavy sur-
face and near a wavy cone and a frustum wavy cone 
with constant wall temperature and concentration in a 
porous medium. 

Motivated by the works mentioned above, the 
steady, laminar, free convection flow along a wavy cone 
and immersed in an electrically conducting fluid-
saturated porous medium in the presence of a transverse 
magnetic field is considered. The surface temperature of 
the cone is assumed to be constant. The applied mag-
netic field is assumed to be uniform and the magnetic 
Reynold's number is assumed to be small so that the 
induced magnetic field can be neglected. In addition, it 
is assumed that the external electric field is zero and the 
electric field due to polarization of charges is negligible. 

II. MATHEMATICAL ANALYSIS 
Consider the steady-state boundary layer flow near a 
wavy cone with transverse sinusoidal undulations em-
bedded in a fluid-saturated porous medium, as illus-
trated in Fig. (1). The wavy surface profile is given by 

),/ˆ(sinˆˆˆ lxay πδ ==      (1) 
where a is the amplitude of the wavy surface, l is the 
length scale of the wavy surface. The origin of the coor-
dinate system is placed at the leading edge of the wavy 
cone. We assume that the temperature of the wavy cone 
is held at constant value Tw and a uniform ambient tem-
perature T∞. The fluid properties are assumed to be con-
stant except for density variations in the buoyancy force 
term. 

Based on Boussinesq approximations, the equations 
governing the steady-state conservation of mass, mo-
mentum, and energy for Darcy flow through a homoge-
neous porous medium near the wavy cone can be given 
as 
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Fig. 1.  Physical model and coordinates. 
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The boundary conditions to be considered are: 

,TTu:y
,TT:)x(y w

∞==∞→

===

,0ˆˆ
,0ˆˆˆˆ υδ (5) 

where û and υ̂  are the volume-averaged velocity com-
ponents in the x̂  and ŷ directions respectively. T is the 
volume-averaged temperature; Ω and r are the half an-
gle and the local radius of the smooth surface of the 
cone. α, β are the thermal diffusivity of the saturated 
porous medium and thermal expansion coefficients of 
the fluid; K is the permeability of the porous medium. 
Properties ν  and μ  are the effective kinematic viscos-
ity, and dynamic viscosity of the fluid, respectively, g is 
the acceleration due to gravity, σ, B are the electrical 
conductivity and the applied magnetic flux density. 

Because the boundary layer thickness is small, the 
local radius to a point in the boundary layer )ˆ(ˆ xr  can 
be represented by the radius of the cone, 

Ω= sinˆˆ xr . 

Introducing the stream function Ψ̂  defined by 
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Equations (2)-(4) convert to the following equations: 
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where ναβ /cos)( Ω−= ∞TTKgRa wl  is the modi-

fied Rayleigh number, and μσ /2BKM =  is the 
magnetic field parameter. 

Equations (8) and (9) can be rewritten as follows: 
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The boundary conditions are now: 
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Now let us assume that the Darcy-Rayleigh number 
Ra is very large so that natural convection takes place 
within a boundary layer whose cross-stream width is 
substantially smaller than the amplitude a of the wavy 
surface of the cone. Accordingly, we define new vari-
ables by subtracting out the effect of the wavy surface 
and then introduce the usual boundary layer variables 
defined as: 

.*,*)*(*, 2/12/1 Ψ=Ψ−== −RaRayyxx δ  (12)  
Substituting Eq. (12) into Eqs. (10)-(11) and 

∞→Ra , we get the following boundary layer equa-
tions. 
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Again, we may reduce Eqs. (13)-(14) to a form more 
convenient for numerical solution by the transformation: 
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Fig. 2.  Effect of M on the velocity  against η , x = 1.0 
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Fig. 3.  Effect of  M on the temperature against η , x = 1.0 
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Fig. 4.  Effect of   M on the local Nusselt number against x 
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Substituting Eq. (15) into Eqs. (13)-(14), we obtain 

the following equations: 
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Note that primes denote differentiation with respect 
to η  only, while xdd /δδ =& . 

The associate boundary conditions are: 
.0,0,,1,0,0 →→′∞→== θηθη ff (18) 

An important physical quantity for this problem is 
the local Nusselt number 
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where k is the effective thermal conductivity of the 
fluid-saturated porous medium and wq̂  is the local heat 
flux at the wall, and is defined by: 

Tnkqw ∇⋅−= ˆˆ ,      (20) 
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is the unit vector normal to the wavy surface of the 
cone. 

Employing transformation (6), (12), (15) with (20) 
we get the local Nusselt number from the following 
expressions: 
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III. RESULTS AND DISCUSSION 

The transformed partial differential Eqs. (16) and (17) 
subject to the boundary conditions (18), are solved nu-
merically by means of the Runge-Kutta fourth-order 
integration scheme with the Newton-Raphson shooting 
technique with a systematic guessing of ),0,(xf ′  

)0,(xθ ′  for a range values of the governing physical 
parameters. In this section, a representative set of nu-
merical results for the velocity, temperature, as well as 
the local Nusselt number, is presented graphically in 
Figs. (2) through (10). These results illustrate the effects 
of the amplitude-wavelength a, the magnetic field pa-
rameter M, and half angle of smooth conicalΩ .  

Figures (2) and (3) present typical profiles for the 
velocity along the cone f ′ , and temperature θ  for vari-
ous values of the magnetic field parameter M, with 

030=Ω , 2.0=a . Application of a magnetic field 
normal to the flow of an electrically conducting fluid 
gives rise to a resistive force that acts in the direction 
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opposite to that of the flow. This force is called the Lor-
entz force. This resistive force tends to slow down the 
motion of the fluid along the cone and causes increases 
in its temperature. This is depicted in Figures by the 
decreases in the values of f ′  and increases in the val-
ues of θ .  Figure (4) shows the axial distribution of the 
heat transfer coefficient in terms of the local Nusselt 
number 2/1/ RaNu  as a function of axial coordinate x 
for various values of the magnetic field parameter 

,0.1.,0.0=M  and 2.0, where 2.0,0.0=a  and 
010=Ω . It is observed that this quantity varies peri-

odically in the direction of x when 0≠a  (wavy sur-
face), also one can see that increasing the magnetic field 
M tends to decrease the amplitude of the local Nusselt 
number (decrease the heat transfer rate as compared 
with the limiting case of a smooth cone). Again, the 
range of x in the figure is from 0 to 4 which corresponds 
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Fig. 5.  Effect of a on the velocity against η , x = 1.0 

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

a  =   0.4, 0.3, 0.2, 0.1, 0.0

 

 

M  =  1.0,   Ω  =  30o

θ

η

 
Fig. 6.  Effect of a on the temperature against η , x = 1.0 
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Fig. 7. Effect of a on the local Nusselt  number against x 
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Fig. 8.  Effect of Ω  on the velocity against η , x = 1.0 

to two complete cycles of the undulations as shown in 
Fig. (1). The raise and fall of the curves is seen to fol-
low the change of the surface contour. 

Figures (5) and (6) illustrate the effect of wave am-
plitude on velocity and temperature profiles, it is clear 
that as the amplitude-wavelength a, increases the veloc-
ity increases while the temperature decreases. Fig. (7) 
shows the streamwise distribution of the local Nusselt 
number 2/1/ RaNu  for various values of amplitude-–
wavelength ratio 2.0,1.0,0.0=a  and 0.3, with 

010=Ω  and M = 1.0. Increasing the amplitude–
wavelength ratio a leads to a greater fluctuation of the 
local Nusselt number with the streamwise coordinate x. 
Moreover, the increase of the amplitude–wavelength 
ratio, on the average, tends to decrease the local heat 
transfer rate as compared with the limiting case of a 
smooth cone. In addition, the harmonic curves for the 
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local Nusselt number as functions of streamwise coor-
dinate have a frequency twice the frequency of the wavy 
conical surface. 

Figures (8) and (9) display the effect of the half an-
gle of the smooth conical Ω , with increasing Ω  tends 
to increase the velocity profile and decrease the tem-
perature profiles. Fig. (10) illustrates the effect of the 
half cone angle 00 20,10=Ω  and 030  where  

2.0,0.0=a  and M = 1.0 on the rate of heat transfer in 
terms of local Nusselt number. As expected, the effects 
are more pronounced for larger full cone angles. 
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Fig. 9.  Effect of Ω  on the temperature against η , x = 1.0 
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Fig. 10. Effect of  Ω  on the local Nusselt number against x   

IV. CONCLUSION 

The problem of steady-state, laminar heat transfer by 
natural convection boundary layer flow around a per-
meable wavy cone in the presence of magnetic field 
effect was considered. A set of non-similar governing 
differential equations was obtained and solved numeri-
cally by Runge-Kutta method. A representative set of 

numerical results for the velocity, temperature, as well 
as the local Nusselt number was presented graphically 
and discussed. It was found that the magnetic field re-
tards the heat transfer process by decreasing the local 
Nusselt number and increasing the fluid temperature. In 
addition, the velocity field was strongly affected by the 
presence of the magnetic field. Increasing the magnetic 
field parameter leads to a greater fluctuation of the local 
Nusselt number with the streamwise coordinate x. 
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