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Abstract−− Analysis of heat and mass transfer in 
a burning vertical surface exposed to a fluid flow 
parallel to the surface is presented. The combustion 
process considered is steady and the burning surface 
is in equilibrium vaporization. A fast gas phase reac-
tion is assumed to occur between the fuel and the 
oxidizer. The flame sheet approximation is used to 
describe the reacting flow. The governing equations 
describing the conservation of mass, momentum, 
energy, and species concentrations were solved nu-
merically along with appropriate boundary condi-
tions. Schvab-Zeldovich variables were used to 
eliminate the mass and energy generation terms 
from the governing equations. Calculations were 
done for two different fuels and for a range of Rey-
nolds number. Computed results included the distri-
butions of velocity components, enthalpy, and con-
centration of fuel, oxidizer, products, and inert gas, 
and the position of the flame sheet. 

Keywords−− Diffusion flame, conjugate heat 
transfer, heat and mass transfer.  

I. INTRODUCTION 
Diffusion flames are observed during the combustion of 
a solid, liquid, or gaseous fuel.  Some common exam-
ples include fires, furnaces, and burners. Many of these 
combustion processes occur under the combined influ-
ence of a vertical buoyant flow and an external forced 
flow. The analysis of such a mixed convective flow is 
the objective of the present investigation. 

The laminar natural convective burning of a vertical 
fuel surface was first addressed by Spalding (1954). 
After making several simplifying assumptions, a simi-
larity solution was obtained for the boundary layer flow 
on a flat surface. Williams (1985) introduced a mathe-
matical transformation, known as the Schvab-Zeldovich 
transformation, to simplify the governing equations. 
Shih and Pagni (1978) described a laminar, free and 
forced, mixed-mode diffusion flame adjacent to a verti-
cally burning fuel slab using Schvab-Zeldovich vari-
ables, boundary layer and local similarity approxima-
tions. The solution presented flame position, concentra-
tions, velocity profiles and surface fluxes, and showed 
that the flow characteristics were more complicated than 
superposition of two limiting flame cases. Kinoshita and 

Pagni (1980) performed a numerical analysis of a 
steady, laminar, two-dimensional, non-radiative bound-
ary layer. Based on the results, explicit functional fits to 
numerical flame heights were obtained for free and 
mixed-mode flows. The comparison with theoretical 
results indicated quantitative agreement. Liu et al. 
(1981) solved the two dimensional laminar thermo-
buoyant flow diffusion flame with the gaseous fuel in-
jected uniformly through the vertical surface. Fernan-
dez-Pello and Pagni (1983) performed an analysis for 
mixed, forced, and free convective combustion on a 
vertical fuel surface which made use of the laminar 
boundary layer approximation to describe the gas flow 
and the flame sheet approximation to describe the gas 
phase reaction. They used a parameter as a function of 
Reynolds and Grashof number to develop a solution that 
is uniformly valid over the entire range of mixed flow 
intensities. Kodama et al. (1987) investigated the proc-
ess of extinction and stabilization of a diffusion flame 
on a flat combustible surface for oxidizing gas flow 
parallel to the fuel surface. Theoretical results were vali-
dated using a simplified experimental approach. Di 
Blasi (1994) developed a two dimensional, unsteady 
model of the degradation of porous cellulosic fuels to 
volatiles and chars to simulate downward flame spread. 
Ray and Wichman (1998) numerically investigated a 
diffusion flame using a model heat loss profile. The 
radiative intensity, width, and location of the heat loss 
profile were parametrically varied to assess the sensitiv-
ity of the flame to heat losses. The emphasis was placed 
in the extinction of the flame due to increased heat 
losses. Costa (1998) studied the effects of differential 
diffusion on unsteady one-dimensional diffusion flame. 
Bula and Rahman (1998) analyzed a diffusion flame 
adjacent to a burning vertical surface exposed to a hori-
zontal fluid flow parallel to the surface. Calculations 
were done for two different fuels and for a variety of 
Reynolds numbers. The computed results included the 
distributions of velocity components, enthalpy, and con-
centration of fuel, oxidizer, products, and inert gas in 
the entire boundary layer region. Ramadan (2003) stud-
ied the effect of the Damkohler number and non-unity 
Lewis number on a two-dimensional, steady, laminar 
diffusion flame anchored by a dividing plate in a rec-
tangular channel. The results showed that an increase in 
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the Da causes the flame to exist closer to the trailing 
edge of the divider and to increase the reactivity. A non-
unity Lewis number creates a non-symmetrical flame by 
forcing the flame to exist on the fuel side. Nayagam and 
Williams (2002) employed activation-energy asymptot-
ics to explore effects of the Lewis number, the ratio of 
thermal to fuel diffusivity, in a one-dimensional model 
of steady motion of edges of reaction sheets. The results 
show that increasing the Lewis number increases the 
propagation velocity at large Damkohler numbers and 
decreases it at small Damkohler numbers. Advancing-
edge and retreating-edge solutions are shown to exist 
simultaneously, at the same Damkohler number, if the 
Lewis number is sufficiently large. Liu et al. (2005) 
presented the soot inception processes in nonpremixed 
flames in a spherical flame stabilized by a spherical 
porous burner to understand the effects of flame struc-
ture (stoichiometric mixture fraction) and hydrodynam-
ics (flow direction). They presented three distinct reac-
tion zones. The analysis yields a solution giving the 
flame response to the variations of the soot formation 
and consumption reaction rates, the mass-flow rate is-
sued from the burner, the Lewis numbers, and the inert 
distribution.  

From the above literature review, it is noticed that 
the Lewis number equal to 1 to simplify the analysis has 
been changed, considering the appropriate Lewis num-
ber at the combustion area. In the present investigation a 
two-dimensional boundary layer flow adjacent to a ver-
tical pyrolyzing wall is analyzed when buoyancy-driven 
reacting flow and transport is superimposed on a forced 
flow in the vertical direction, and Lewis number differ-
ent from one is used to calculate different parameters 
involved in the problem. Equations governing the con-
servation of mass, momentum, energy, and species con-
centration were solved numerically to predict velocity, 
temperature, and concentration distributions across the 
boundary layer and the variation of heat and mass trans-
fer rate over the plate. A parametric analysis is per-
formed to study the effects of Re, Sc, and Le. The com-
bustion characteristics of two different materials: poly-
methylmethacrylate (PMMA) and heptane were simu-
lated in order to explore the effects of Schmidt number.  

II MATHEMATICAL MODEL 
A laminar, steady state, two dimensional boundary layer 
flow, and the diffusion flame adjacent to a pyrolyzing 
fuel slab, as shown in Fig. 1 is considered.  It is as-
sumed that the combustion process is steady and the 
burning surface is in equilibrium vaporization, i.e., the 
activation energy in the surface pyrolysis is sufficiently 
large that the variation in the surface mass flux, required 
by the boundary layer, can be accommodated with neg-
ligible change in surface temperature. In addition, a fast 
gas phase reaction is assumed to occur between the fluid 
and the oxidizer. Since the characteristic time of gas 
phase reaction is much longer than the chemical kinetics 
time scale the combustion zone is thin and the reactants 
(fuel and oxidizer) do not coexist and are at either side 
of the flame sheet. The equations describing the conser-

vation of mass, momentum, energy, and species concen-
tration can be written as: 
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where h and Cp of the mixture can be defined  as: 
( )∞−= TTCh p   and  ∑=

i
ipip CmC )(    (5) 

In Eqs. (4) and (5), the subscript ‘i’ refers to the spe-
cies under consideration. Even though the chemical re-
actions occurring in a combustion process are fairly 
complicated, in a very simplified form, a mathematical 
model can be developed by considering only four spe-
cies, namely, fuel, oxidizer, products, and inert gases. In 
Eq. (3), the viscous dissipation and pressure work terms 
are neglected because they are of lower order of magni-
tude compared to convection terms in a low speed gas 
flow. An equation of state is required for the fluid. Con-
sidering the fluid to be an ideal gas with no change in 
the average molecular weight leads to:  

∞∞= TT ρρ                               (6) 
The chemical reaction can be represented as: 
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The molecular coefficients of Eq. (7) can be calculated 
from a chemical balance. The species mass production 
rate is related to the energy generation rate by: 
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Figure 1. Schematic of geometry considered 
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To complete the set to be solved, Eqs. (1-4) are subject 
to the following boundary conditions: 

at x = 0:υ = 0 , T Tw= , whh = , 
mo = 0 , m mf fw= , nwn mm =               (9) 

The remaining boundary conditions at 0=x  are ob-
tained from pyrolysis at the wall. From energy balance: 
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From mass balance: 
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at x → ∞ : ∞= υυ ,  T T= ∞ , h = 0, 
 m mo o= ∞ ,  mf = 0 , m mn n= ∞             (12) 

at y = 0 :   ∞= υυ ,   ∞= TT , 
 0=h , ∞= oo mm , 0=fm , ∞= nn mm         (13) 

It may be noted that both mass and energy balance 
have to be satisfied at the wall. The rate of heat transfer 
to the wall determines the rate of pyrolysis, which in 
turn controls the blowing velocity at the wall. The 
volumetric energy generation rate q’’’ and the volumet-
ric rate of species generation mi’’’, are complicated 
functions of at least temperature and species mass frac-
tion. Even in the presence of a single step, second-order 
Arrhenius expression, uncertainties in the values of the 
expression remain. Nevertheless, in order to solve this 
problem, the mass and energy generation terms are re-
moved from the equations through the use of the 
Schvab-Zeldovich variables (Shih, 1984). The major 
assumption associated with this formulation is that the 
mass fluxes of reactants are in stoichiometric proportion 
at the flame position. For a laminar diffusion flame, this 
imposes the condition that the reactants do not coexist. 
The advantage is that only one species equation needs to 
be solved in any part of the computational domain. 
These two variables can be defined as: 
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With these new variables, Eqs. (3) and (4) can be 
written as: 
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The second term in the right-hand side of Eq. (15) 
drops out in the fuel region (next to the wall), but it 
cannot be neglected in the oxidant region. In order to 
avoid this inconvenience, a new Schvab-Zeldovich vari-
able was defined, but using quantities relevant to the 
fuel.  
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With this new variable, Eq. (3) becomes  
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In this equation, the second term on the right-hand 
side drops out in the oxidant region, but cannot be ne-
glected in the fuel region. It is convenient to define the 
following nondimensional parameters at this point: 
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The value of J
flζ is calculated using the flame loca-

tion determined from J
flβ , which depends only on the 

properties of the pyrolyzing fuel and the ambient me-
dium. The position of the flame can be obtained from 
(Fernandez-Pello and Pagni, 1983) 
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The governing Eqs. (1-2,15,16,18), can be expressed in 
terms of the dimensionless variables as: 
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The boundary conditions in terms of dimensionless 
variables are: 
At X = 0 : 

V = 0 , J
oζ
= 1, Jβ = 1                      (30) 
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At X → ∞ :  
1=V ,  Jβ = 0 , J fζ = 0 .            (34) 

At Y = 0 : 
1=V , Jβ = 0 , J oζ = 0 , J fζ = 0 .      (35) 

At X = X fl :  

J J f lβ β= , J Jo f lζ ζ= , flJJ
f ζζ =   (36) 

From Eq. (31), the mass transfer number can be ex-
pressed as: 
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It should be noted that if Eq. (27) is solved for the 
fuel region and Eq. (28) is solved for the oxidant region, 
then the second term on the right-hand side of each 
equation drops out, and the two equations are identical. 
Therefore, these equations can be expressed as a single 
equation and can be solved with boundary conditions 
relevant to each region. However, to evaluate the buoy-
ancy term and recover the values for enthalpy and den-
sity, Eq. (14) and Eq. (17) must be used according to the 

region under consideration (fuel or oxidizer). We will 
now refer to the energy equation only with ζJ : 
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The enthalpy and the mass concentration for oxidant 
and fuel can be obtained from the following equations: 
for J J f lβ β≥ :      
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To recover the concentration of oxidant, fuel, inert 
gas (nitrogen), and products the following equations are 
required. 
If flJJ ββ ≥ : 
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Since nitrogen is an inert gas, its nondimensional-
ized mass fraction also satisfies the Jβ transport equation 
if mnw  is considered constant. Consequently, 

m J m m mn n w n n= − +∞ ∞β ( )            (43) 
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pwfwnw mmm −−= 1               (44) 

Once mn, mo, mf are calculated, the assumption that fuel 
and oxidant do not coexist yields: 
If J J f lβ β≥ : 
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If J J f lβ β< : 
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the mass transfer number B, Eq. (37), depends on the 
properties of the medium of diffusion and the diffusing 
substance.  
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Figure 2. Development of Jζ  and Jβ  for Le < 1. 

Equations (26) and (38) are similar except that one 
depends on Sc and the other depends on Pr. These two 
parameters can be related by Lewis number (Le = Pr / 
Sc). Depending on which of these is larger, the thick-
ness of the zone of influence will be larger. As the limit 
for J ζ  and Jβ  are equal (0 - 1), the derivatives can be 
equal only when Le = 1; and as the thickness of the in-
fluence zone increases, the first derivative decreases and 
vice versa. For Le < 1, the thickness of each influence 
zone is shown in Fig. 2. At a location “a,” the influence 
zone of Jζ  is larger than the zone of βJ , and 
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to a ratio less than one, which is in accordance with the 
Lewis number. The same procedure can be applied for 
Le > 1 and Le = 1. This relation between the ratio of the 
first derivatives with the Lewis number can be used to 
obtain an expression for the mass transfer number de-
pending only on characteristics of the fuel, oxidant, and 
the values of the concentration of the reactants at the 
wall and at the free stream. 

The derivatives of Jβ  and Jζ can be obtained as: 
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From mass balance expressed as a function of the mass 
transfer coefficient, the second factor on the right-hand 
side of Eq. (47) can be expressed as: 
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From energy balance expressed as a function of the 
convective heat transfer coefficient, the second factor on 
the right-hand side of Eq. (48) can be expressed as: 
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In order to obtain a relation between the heat and mass 
transfer coefficients, the Colburn’s analogy (Cheremis-
inoff, 1986) is used. This correlation is expressed as: 
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Substituting Eqs. (49) and (50) into Eqs. (47) and (48), 
and using Eq.  (51), the ratio can be expressed as: 
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    (52) 

To obtain the final equation for the mass transfer 
number, the expression obtained for the ratio of the first 
derivatives as shown in Eq. (52) is substituted into Eq. 
(37). After some simplifications, the following equation 
is obtained. 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∞

ffwftfwoo

offfwoo

v

w

C
Le

mmmnM
mnMmnM

L
hB

32

2'

' "      (53) 

From Eq. (52) it can be observed that the ratio is a 
function of the fuel concentration at the wall, which is 
also unknown. Therefore, the solution requires a trial 
and error procedure. The correction factor Cf can be 
obtained from the physics of the problem, i.e., Eq. (31) 
must be satisfied. First, Lewis number equal to one is 
assumed. This makes the ratio expressed in Eq. (52) to 
become 1. Therefore, the mass transfer number B, can 
be calculated from Eq. (37). Substituting B in Eq. (32) 
allows the calculation of the fuel concentration at the 
wall. This value is then used in Eq. (53) to get the cor-
rection factor. As soon as Cf  is obtained, the fuel con-
centration and the mass transfer number can be calcu-
lated for the real Lewis number. Using the fuel concen-
tration at the wall (starting with the solution for Le = 1), 
the mass transfer number is calculated from Eq. (32) 
and Eq. (53). Iterations are continued until the values of 
B returned from both equations are equal. 

III. RESULTS AND DISCUSSION 
The mathematical model developed in the last section 
was solved using a control volume based finite-
difference method. In each cell, the velocity compo-
nents were stored at downstream boundaries, whereas, 
pressure, enthalpy, and concentrations were stored at the 
center of the cell. In order to keep the relative contribu-
tion of convection and diffusion to a cell from its 
neighbors in terms of cell Peclet number, the hybrid 
difference scheme demonstrated by Patankar (1980) was 
used. The discretized equations were solved using the 
SIMPLEST algorithm (Spalding, 1980). Computation 
was done in an iterative fashion starting with a guessed 
pressure field. The momentum equations were solved to 
obtain the velocity components. The continuity equation 
was modified to a pressure correction equation 
(Patankar, 1980) that updated the pressure field. In the 
present model, the buoyancy force couples the energy 
and momentum equations. In addition, energy and spe-
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cies transport equations are coupled to each other via 
nondimensional variables Jζ  and Jβ. Therefore, all equa-
tios had to be solved simultaneously. The momentum 
and continuity equations were solved slab-by-slab using 
a slabwise linear solver. The solution marched on the z-
direction and solved for each slab at a particular z posi-
tion. This procedure was repeated for a number of 
sweeps from the lowest to the highest z position. The 
energy and concentration equations, in their dimen-
sionless form, were solved simultaneously for the entire 
computational domain.  

The iterative solution was continued until the sum of 
the residuals for all computational cells became negligi-
ble (less than 0.001%) and the velocity components and 
other scalar variables did not have any significant 
change (less than 0.0001 %) between iterations. Nu-
merical simulations were done for the burning of a ver-
tical wall of PMMA (Polymethylmethacrylate) and the 
combustion of heptane injected from a porous vertical 
wall (Perry, 1984). A typical grid independence analysis 
is shown in Fig. 3. It can be noticed that the solution 
becomes grid independent when 90 divisions are used in 
the x-direction. Values of Jβ remain identical when 
number of grids in the x-direction is increased to 120. It 
was found that 60 divisions in the y-direction are ade-
quate to produce grid independent numerical solution 
over the entire computational domain. Despite having 
an independent solution with the grid size mentioned 
before, the number of divisions in the x-direction and y-
direction were increased to 120 and 80 respectively in 
order to obtain a very smooth variation of solution over 
the computation domain. 
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Figure 3. Grid analysis 

In order to validate the model presented in this pa-
per, the flame position was compared with the results 
given by Fernandez-Pello and Pagni (1983). This com-

parison was carried out using Le=1, and pyrolyzed 
PMMA as the fuel and it is presented in Fig. 4. Com-
puted results are presented for Re = 250, 500, and 
19500. Also shown are natural and forced convection 
limits from the analytical solution of Fernandez-Pello 
and Pagni (1983). It may be noted that flame sheets for 
mixed convection at all Reynolds numbers are bounded 
by natural and forced convection limits. At Re = 250, 
the flame position above 0.08 m matches the solution of 
Fernandez-Pello and Pagni (1983) for natural convec-
tion. At this Reynolds number, the forced flow velocity 
is small, and therefore its effects are limited to a small 
region near the leading edge. The flow is driven primar-
ily by buoyancy induced motion. The flame position 
corresponding to Re = 19500 is not too far from the 
analytical solution for the forced convection limit. It 
may be noted that, while in the analytical solution, the 
buoyancy effects can be terminated by assuming Re 

∞→ , in a practical combustion process, the effects of 
buoyancy can not be neglected entirely because of large 
temperature difference between the flame sheet and the 
ambient. Moreover, at higher Reynolds number the flow 
becomes turbulent which was not accounted for in the 
mathematical model. Considering these limitations, the 
comparison between the analytical solution of Fernan-
dez-Pello and Pagni (1983) and the present numerical 
solution is quite satisfactory. 
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Figure 4. Flame position for Le = 1 and different Reynolds 
number 

Figure 5 presents the flame position for different 
values of Lewis number and Re = 250. It can be seen 
that when Le = 1 (Pr = Sc = 0.7), the shape of the flame 
matches nicely with the analytical solution from (Fer-
nandez-Pello and Pagni, 1983). But when the parame-
ters are changed to Le = 1 (Pr = Sc = 1.7), the curve gets 
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closer to the one predicted for Le = 0.4 (Pr = 0.7, Sc = 
1.7). This shows that Schmidt number is the primary 
factor that determines the position of the flame and must 
be accounted for during the simulation of a combustion 
process. In Fig.  5 it can be observed that the flame posi-
tion stands further away from the burning fuel slab 
when Le = 1 (Pr = Sc = 0.7) is used. Even though the 
assumption of Le = 1 has been made in several past ana-
lytical as well as numerical work, the error introduced 
with this assumption appears to be fairly large. The 
other point to be considered is that the approximation of 
Le = 1 is hardly obtainable when burning a pyrolyzed 
fuel. The lightest fuel considered would be Methane 
(CH4), which has Sc = 0.84, giving Le = 0.83. As the 
molecular weight of the fuel increases, the Schmidt 
number increases too, for example, Heptane (C7H16), 
with Sc = 1.22 and Le = 0.57. For an n-Octane fuel, 
Schmidt number is approximately equal to 2.62 and this 
results in Le = 0.26. Therefore, Le = 1, is never present 
in a real diffusion flame. Therefore, it will be always 
advisable to use the real Lewis number in the analysis of 
a combustion process. 
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Figure 5. Flame position for Re = 250 and different Lewis 
number  

The present analysis was done for two different ma-
terials: Polymethylmethacrylate (PMMA), with Le = 
0.4; and heptane, with Le = 0.56. The Reynolds number 
used for both was 250. The mass transfer number and 
the fuel concentration at the wall were calculated for 
both materials. The values obtained were B = 0.95239 
and mfw = 0.42645 for PMMA, and B = 1.237 and mfw = 
0.524 for heptane. For the case of PMMA the flame 
position was located at Jβfl = 0.3041 and for heptane it 
was situated at Jβfl = 0.1899. It is observed that for Le = 
0.56 the flame sheet is located farther away from the 
wall than for Le = 0.4. This result was expected because 
the value of Jβfl for heptane is smaller compared to the 

value for PMMA. It can be noticed in Fig. 6 that as 
Reynolds number increases, the flame sheet (the plane 
where the reaction takes place), moves closer to the py-
rolyzing wall. This happens because, as the forced flow 
velocity increases, it pushes the flame sheet against the 
wall. 
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Figure 6. Flame position for Le = 0.4 and different Reynolds 
number  

On the other hand, Fig. 7 shows that the increment 
of the Reynolds number does not have any effect on the 
concentration of species at the wall, flame sheet, or am-
bient. This can be explained by the fact that none of the 
boundary conditions for oxidant, fuel, inert gases, or 
product are changed. At the flame sheet both fuel and 
oxidant reaches zero concentration due to complete 
combustion. The concentration of the products is deter-
mined by the chemical reaction and therefore not af-
fected by the Reynolds number. 

In Fig. 8 can be seen that the effects of Reynolds 
number on the enthalpy and density of the mixture are 
similar to that observed for concentration. This figure 
shows that the maximum enthalpy and minimum den-
sity are located at the flame sheet. This is in line with 
the physics of the problem. The chemical reaction takes 
place at the flame sheet liberating the maximum energy 
and reaching the maximum enthalpy. At the same place, 
the density reaches its minimum value. It is interesting 
to note, that the Reynolds number does not have any 
influence on the maximum dimensionless enthalpy 
reached by the reaction, in all cases analyzed this turned 
out to be 4.93. This is expected because of the rate of 
energy generation that controls the flame sheet tempera-
ture is determined by chemical kinetics. 

The magnitude of enthalpy obtained in the solution 
is very close to the value reported by Kodama et al. 
(1987) for the combustion of PMMA. The minimum 
value for density was 0.14; equivalent to 0.165 kg/m3, 
which is consistent with the tabulated value for air at the 
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same temperature, 0.168 kg/m3 (Kays and Crawford, 
1993) 
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Re = 19500
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Figure 7. Concentration variation along the X axis at Y = 0.8 
for Le = 0.4 and different Reynolds number  

Figure 9 shows the distribution of velocity compo-
nents across the boundary layer. It can be noticed that U 
velocity has a magnitude much smaller than V velocity, 
where U and V are the components of the velocity in the 
x, and y directions, respectively. This is consistent with 
the boundary layer approximation used for the formula-
tion of the problem. V becomes maximum at the flame 
sheet, while U becomes minimum at the same location. 
The maximum U velocity is reached at the edge of the 
boundary layer. The local Grashof number at the flame 
position turned out to be 2.21x106, which is within the 

range of the laminar buoyant flow assumed for the 
simulation (Gebhart et al., 1988). It can be noticed in 
Fig. 9 that the U velocity changes significantly with 
Reynolds number while the maximum value of the V 
velocity in the nondimensional form reduces as the 
Reynolds number increases. With the increase of Rey-
nolds number, the values for V gets closer to w∞ , this 
is expected because the forced flow gets stronger while 
the natural flow remains constant. A larger magnitude 
of velocity near the flame sheet is due to larger tempera-
ture and smaller density in that region. 

 

Re = 250

0,00

1,00

2,00

3,00

4,00

5,00

0,00 0,04 0,08 0,12 0,16 0,20

Dimensionless Horizontal Distance (X)

D
im

en
si

on
le

ss
 E

nt
ha

lp
y

0,00

0,24

0,48

0,72

0,96

1,20

D
im

en
si

on
le

ss
 D

en
si

ty

ENT
DEN

 
R e =  500
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Figure 8. Enthalpy and density variation along the X axis at Y 
= 0.8 for Le = 0.4 and different Reynolds number   
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Figure 9. Velocity variation along the X at Y = 0.8 axis for Le 
= 0.4 and different Reynolds number  

Figure 10 compares the enthalpy and density varia-
tion for the two fuels considered for this analysis. For 
both cases the maximum enthalpy is obtained at the 
flame sheet. It is important to note that the maximum 
value of the enthalpy in the non-dimensional form is 
reached by the heptane, but the corresponding dimen-
sional value shows that the enthalpy of the PMMA is 
higher (2152 kJ/kg), compared to 540 kJ/kg for heptane. 
This is due to the higher value of the heat of reaction for 
the PMMA-air combination, which is 13.57x103kJ/kg. 
The heat of reaction for the heptane-air combination is 
3.03x103kJ/kg. The flame temperatures are 2092 K for 
PMMA-air and 748 K for heptane-air. The minimum 

values of density are obtained at the flame sheet; in the 
non-dimensional form it is 0.14 for PMMA  and 0.44 
for heptane. In the dimensional form, these values are 
0.165 kg/m3 and 0.49 kg/m3. These results are in good 
agreement with the ideal gas assumption. 
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Le = 0.57 (Pr = 0.7, Sc = 1.22)
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Figure 10. Enthalpy and density variation along the X axis at 
Y = 0.8 for Re = 250 and different Lewis number 

The velocity distributions for the two fuels are com-
pared in Fig. 11. The velocities for PMMA are some-
what higher than heptane because of larger flame tem-
perature. Figure 12 presents the concentration variation; 
it is seen that the variation of products and inert gases 
change when the concentration of the fuel at the wall is 
changed. For heptane, the concentration of products is 
higher than PMMA. 

Figure 13 compares the results obtained with the 
present model to the experimental data of Kodama et al 
(1987) for the burning of PMMA in air. It is observed 
that the numerical prediction of flame position is quite 
accurate. The maximum deviation is only about 9%. 
The maximum thickness of the boundary layer recorded 
in their experiment was 0.75 cm, while the one obtained 
in the simulation was 0.76 cm. The maximum velocity 
measured experimentally was 0.65 m/s compared to 
0.59 m/s obtained numerically. The maximum tempera-
ture showed reasonably good agreement as well; 2200 K 
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experimentally, while 2100 K from numerical predic-
tion. 
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Le = 0.57 (Pr = 0.7, Sc = 1.22)
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Figure 11. Velocity variation along the X axis at Y = 0.8 for 
Re = 250 and different Lewis number  

IV. CONCLUSIONS 
The effects of different parameters have been simulated 
for a laminar diffusion flame under aiding mixed con-
vection. It has been found that Reynolds number has a 
remarkable effect on the flame position and the size of 
the boundary layer. When the Reynolds number is in-
creased, the flame sheet moves closer to the wall, and 
the maximum value of the V velocity is reduced. The 
concentration values at the flame sheet were not af-
fected by the Reynolds number. The maximum enthalpy 
and minimum density always occurred at the flame 
sheet. The mass transfer number B, plays an important 
role. As it increases, the concentration of fuel at the wall 
and the concentration of products at the flame sheet 
increases. The flame moves away from the wall when B 
increases. The mass transfer number was found propor-
tional to Le2/3. Since the Prandtl number for air remains 
approximately constant, the variation of Lewis number 
essentially represents the effects of the variation of 
Schmidt number. For heptane, the rate of mass transfer 
is higher, and the maximum enthalpy reached by the 

reaction is 6 times the enthalpy at the wall. For PMMA 
this value was 4.92.  

In order to improve the model, the radiation heat 
transfer process should be included due to the high tem-
perature attained at the reaction zone. The addition of 
this term is expected to increase the amount of fuel gen-
erated by the pyrolizing wall.  
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Figure 12. Concentration variation along the X axis at Y 

= 0.8 for Re = 250 and different Lewis number  

NOMENCLATURE 
B Mass transfer number 
Cp Specific heat at constant pressure [kJ / kg K] 
Cf   Correction factor included in Eqs. (51-53) 
D Binary mass diffusion coefficient [m2/2] 
Dc Dimensionless heat of combustion, defined by 

Eq.(25) 
g Acceleration due to gravity [m2/s] 
G Buoyant force due to temperature and concentra-

tion, given by Eqs. (25) and (26) 
h Specific enthalpy [kJ / kg] 
hDp Mass transfer coefficient [kg/s m2] 
hHp Heat transfer coefficient [W/ m2 K] 
H Height of the plate ( in the y-direction ) [m] 
J Normalized Schvab-Zeldovich variable 
k Thermal conductivity [W / m.K] 
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Figure 13. Comparison between present numerical simulation 
and experimental data, Kodama et al (1987) 
 
L Height of the plate [m] 
Le Lewis number  (Pr / Sc or D/α) 
Lv Latent heat of vaporization [kJ / kg] 

"m&  Mass flux [kg/m2s] 
mi Species masss fraction [kg species/ kg mixture] 

'''
im  Volumetric species generation rate, [ kg / m3s] 

M Molecular weight   (kg / kmol) 
NX Number of grids in the x-direction 
NY Number of grids in the y-direction 
ni Stoichiometric coefficient 
Pr Prandtl number  (v/α) 

''q&  Heat flux at the solid fuel surface [W / m2] 
'''q&  Volumetric heat generation rate [W / m3] 

Q Heat of combustion [kJ / kg of oxidizer ] 
r Mass consumption number defined by Eq.(35) 
R Dimensionless density (ρ/ρ∞)  
Re Reynolds number  (υ∞L/v) 
Sc Schdmidt number (v/D) 
T Temperature [K] 
u Velocity component in the x-direction [m / s] 
U Dimensionless velocity in X-direction, u/υ∞ 
υ  Velocity component in the y-direction [m / s] 
V Dimensionless velocity Y-direction, υ/υ∞ 
x Normal coordinate [m] 
X Dimensionless normal coordinate, x / L 
y Vertical coordinate [m] 
Y Dimensionless vertical coordinate, y / L 
Greek symbols 
α Thermal diffusivity [m2/ s] 

β Schvab-Zeldovich variable for species 
μ Viscosity [kg / m s] 
v Kinematic viscosity [m2/ s] 
ρ Density [kg / m3] 
ζ Schvab-Zeldovich variable for energy 
Subscripts 
f fuel 
fl flame sheet 
i species 
n nitrogen (or inert) 
o oxidant 
p products 
t transferred 
w wall 
β concentration dependent 
ζ temperature dependent   
∞ free stream condition 
Superscripts 
'  reactants side ( stoichiometric ) 
' '  products side ( stoichiometric ) 
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