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Abstract— In this paper we propose a new method 

based on adjoint systems for parametric sensitivity 
analysis of DAE’s. This method is employed in a 
series of experiments, and the results are compared 
with the estimation of sensitivity by a finite 
differences method, widely used because of the 
simplicity of its implementation. In addition, we 
propose a method extension based on the use of 
estimation functions that allows transforming the 
original adjoint system into an algebraic system, 
making it suitable for many efficient numerical 
methods. 
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I. INTRODUCTION 
The mathematical models that are currently being used 
to investigate physical phenomena are becoming more 
and more realistic. The new characteristic of these 
models is that they often use parameters whose values 
may not be accurately known calling for parametric 
sensitivity analysis. Areas of application include 
optimization, parameter estimation, optimal control, 
model simplification, process sensitivity, uncertainty 
analysis, and experimental design for a wide range of 
scientific and engineering problems. 

Recent work on methods and software for 
sensitivity analysis of differential algebraic system 
(DAE) (Cao et al., 2003; Feehery et al., 1997; Li and 
Petzold, 2000; Li and Petzold, 1999; Li et al., 2000; and 
Maly and Petzold, 1997), has demonstrated that 
subsequent sensitivity values can be computed reliably 
and efficiently via automatic differentiation in 
combination with DAE solution techniques. 

However, there are some difficult issues when 
trying to make sensitivity analysis of DAE systems with 
a large number of parameters compared with the 
number of variables. In these cases, the extension of the 
original system with the equations required for the 
sensitive analysis makes the resulting system grow 
significantly, and therefore, the calculation efficiency 
decreases. 

The first contribution of this paper is the 
employment of a new method based on adjoint systems 
for parametric sensitivity analysis, whose theory was 
recently proposed for differential algebraic equations 
(Cao et al., 2003). Following this method, it has been 
proved that it is possible to calculate the sensitivity of 

parameters using linear adjoint systems, with no need to 
extend the original system, what allows improving the 
calculation efficiency considerably. 

This method is used in a series of experiments, 
where the results are compared with the estimation of 
sensitivity by the finite differences method, widely used 
for the simplicity of its implementation. 

The second contribution of this paper is to propose 
an extension of the method based on the use of 
estimation functions that allows transforming the 
original adjoint system into an algebraic system, making 
it suitable for the implementation of many efficient 
numerical methods. 

II. SENSITIVITY CALCULATION FOR 
DIFFERENTIAL ALGEBRAIC SYSTEMS BY 

ADJOINT METHOD 
The numerical solution of initial value problems 
modeled by DAE has attracted the interest of the 
numerical community for the last 30 years (Brenan et 
al., 1996 and Kees and Millen, 1999). Many 
engineering and scientific problems can be naturally 
modeled with DAE’s, mostly for balance equations of 
the general form: 

 
0 0

( , , , ) 0,
( ) ( ),

F x x p t
x t x p

=
=

&
 (1) 

composed by a combination of differential and algebraic 
equations, where xNx R∈  is the state variable vector, 
and pNp R∈  is a parameter vector. 

The problem of calculating the sensitivity of 
parameters of a DAE system takes the following form: 
for a parameter dependent DAE system of type (1), find 

j

dx
dp

 at time T , for :1,.., pj N . 

Their solution requires the simultaneous solution of 
the original DAE system with the pN  sensitivity 
systems obtained by differentiating the original DAE 
with respect to each parameter in turn (Cao et al., 2003). 

For large systems this may look like a lot of work, 
but it can be done efficiently, if Np is relatively small, 
by exploiting the fact that the sensitivity systems are 
linear and all share the same Jacobian matrices with the 
original system (Li et al., 2000). 

However, some problems require calculating the 
sensitivities with respect to a large number of 
parameters. For these problems, particularly if the 
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number of state variables Nx  is also large, the previous 
sensitivity approach is out of reach. 

In Cao et al. (2003) it was demonstrated that these 
problems can often be handled more efficiently by the 
adjoint method (Errico 1997). In this approach, we are 

interested in calculating the sensitivity dG
dp

 of an 

objective function of the perturbed solution and the 
parameter: 

 
0

( , ) ( , , )
T

G x p g x t p dt= ∫ , (2) 

or alternatively the sensitivity dg
dp

 of a function g(x,t,p) 

defined only at time T. For example, in the 
mathematical models of nuclear reactors, a common 
analysis is calculating the sensitivity of speed ui of the 
cooling liquid, product of the perturbation of the 
demanded thermal power Q. Thus, the following 
objective function can be formulated:  

  ( )2

0

( , ) ( , ) ( , )
T

i i iG u Q u t Q u t Q dt= −∫ ,  (3) 

where u  is the average of the speed of the liquid. Next, 
we describe how to employ the adjoint method to 
compute the sensitivity. 
A. Sensitivity of ( , )G x p  

To find an expression for dG
dp

, we define the 

augmented objective function I(x,p) as: 

 
0

( , ) ( , ) ( ) ( , , , )
T

I x p G x p t F x x p t dtλ= − ∫ & , (4) 

where λ is a Lagrange multiplier, and ( , , , ) 0F x x p t =&  by 
(1). Formally differentiating both members with respect 
to p, the sensitivity of G(x,p) with respect to p is: 

( ) ( )
0 0

( )
T T

p x p p x p x p
dI dG g g x dt t F F x F x dt
dp dp

λ= = + − + +∫ ∫ & & . (5) 

Then, using integration by parts we obtain an 
equivalent expression for the term ( ) x pt F xλ & &  depending 
on xp instead: 

 ( )'

0
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T T

T
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If the Eq. (6) is replaced in (5) and the terms 
regrouped, we obtain that: 
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and if we require that the following (adjoint) equation 
be satisfied 

 
( )( ) ' ( ) ,

( ) 0,
x x x

x t T

t F t F g

t F
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− = −
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&
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 (8) 

Eq. (7) becomes 

 
0

0

( ( ) ) ( ) ,
T

p p x p t

dG g t F dt t F x
dp

λ λ
=

= − +∫ &  (9) 

Note that (8) is the adjoint equation, and λ is the 
adjoint variable of the system. In this work we used the 
notation of augmented adjoint system corresponding to 
(8): 
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where we have introduced the function α(t). 
From (10) onwards, it is observed that the adjoint 

DAE must be solved backward in time. To calculate the 

integral term 
0

( ( ) )
T

p pg t F dtλ−∫  of the Eq. (9), we use a 

quadrature variable β, expanding again the adjoint 
system: 
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In this way, for t=0, 

 ( )
0

0 ( ( ) )
T

p pg t F dtβ λ= − −∫ , (12) 

yielding the sensitivity equations for dG
dp

: 

 ( )
0

0 ( ) x p t

dG t F x
dp

β λ
=

= + & . (13) 

B. Sensitivity of ( , , )g x t p  

Now let us consider the computation of dg
dp

. 

Interchanging differentiations we have that 
dg d dG d dG
dp dp dT dT dp

= =  and from (9), we obtain: 

 

0
0

( ( , ) )

( ( , ) ) ( , ) ,

p p t T

T

T p T x p t

dg g t T F
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t T F dt t T F x

λ

λ λ

=

=

= −

− +∫ &

 (14) 

where the adjoint variable λ(t,T) depends on both t and 

T, and λT(t,T) denotes ( , )d t T
dT
λ . The corresponding 

adjoint equation is: 
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and it is solved in a similar way to system (10).  
Again, to calculate the integral term of Eq. (14), we 

used a quadrature variable β, and we defined the 
following adjoint system: 

 ( ) ( )
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( ) ( , ) 0,
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 (16) 

Finally, the expression of the sensitivity equation 
dg
dp

 is given by 

 ( )
0

( ( , ) ) 0 ( , )p p T x pt T t

dg g t T F t T F x
dp

λ β λ
= =

= − − + &
.(17) 

III. NUMERICAL EXPERIMENTS 
Nowadays, there is a variety of numerical methods for 
solving IVP’s given by DAE’s, which can be classified 
into three classes: single-step, multistep, and 
extrapolation methods. The efficiency of each type of 
approximation depends on the specific problem 
characteristics. 

In this work the systems (11) and (16) are solved 
transforming the DAE’s into purely algebraic systems 
by means of numerical approximations computing 
through estimating functions as in Boroni and Clausse 
(2005). In order to do that, let us define the functions 

1 2( , , ,...)n n nλ λ λ− −Λ  and 1 2( , , ,...)n n nD λ λ λ− −Λ , that 
represent multistep estimators of the state vector and its 
derivatives, i.e., λ and λ& . Thus: 

 0

0

( ) ( )

( ) ( )

k

i
i

k

i
i

t a t i t

t b t i t

λ λ

λ λ

=

=

→ − Δ

→ − Δ

∑

∑&
. (18) 

Specifically, in this work we use the adjoint variable 
and implicit linear multistep estimator (Jackson and 
Sacks-Davis, 1980) for the derivatives: 
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α λ
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To analyze the application of the adjoint method in 
the calculation of sensitivity, a series of experiments 
was made, where the numerical results and errors were 
examined. In this study two systems were defined: a 
linear differential system with explicit solution, and a 
nonlinear conservative oscillating system. So as to 
simplify the presentation of the results, only the 
calculation of the sensitivity of the objective function 

( , )G x p  is considered. 

A. Linear System 
An example of a linear differential equation of the first 
order is set out, given by: 

 
0 0

( , , , ) 0
( ) ( )

F x x p t x px
x t x p p

= + =
= =

& &
. (20) 

This system has only one parameter p , and the 
explicit solution is: 
 ( , ) tpx t p pe−= . (21) 

The purpose of working with this system was to 
study the error between the explicit solution and the 
numerical solution of the sensitivity computed as in 
(13), for the following objective function 

 
0

( , ) ( , )
T

G x p x t p dt= ∫ . (22) 

Using (13) and (22), we obtain that: 

 (1 )Tp
TpdG d e Te

dp dp

−
−−

= = . (23) 

The temporary evolution of the sensitivity dG
dp

 can 

be seen in Fig. 1, where it has the form of a left-biased 
distribution. 

 

Fig. 1. Temporal evolution of the sensitivity 
dG
dp

. 

In Fig. 2 we can see the absolute error ε  between 
the exact value and the computed value of the 
sensitivity dG/dp with respect to the explicit solution. In 
this figure it can be seen that the calculation of the 
dG/dp generates a error with a maximum close to 

41.0 10−× , which stabilizes for a time 3t ≥ . 

 
Fig. 2. Calculation of the absolute error for 

dG
dp

. 
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B. Elastic pendulum 
The second example is the elastic pendulum (Fig. 3), 
consisting of a no-linear differential equation system of 
the fourth order whose natural variables are the string 
length, the inclination angle with respect to the vertical, 
and their respective temporal derivatives, that is: 

 2 ( ) cos( )

2 ( )

r z
w

kz rw r L g
m

rw zw g sen

θ

θ

θ

=

=

− =− − +

+ =−

&

&

&

&

. (24) 

 
Fig. 3. Elastic Pendulum. 
 

Since in this case, no explicit solution is available, 
relative comparisons were made between the explicit 
and implicit numerical solutions for the following 
parameters and initial conditions: 

7k = , 1L = , 0.1m = , 9.8g = , (0) 1r = , (0) 2
πθ = , 

(0) 0r =&  y (0) 0θ =& . 
Figure 4 shows the trajectory of the mass in the (x, 

y) plane. 

 
Fig. 4. Trajectory of the mass in the (x, y) plane. 

 
For the calculation of the sensitivity we defined an 

objective function related with the energy of the 
pendulum: 

 2 21 1 ( ) (1 cos( ))
2 2

E mv k r L mgr θ= + − + − , (25) 

where the term 21 ( )
2

k r L−  is associated to the 

harmonic potential energy, mgr(1-cos(θ)) represents the 

gravitational potential energy and 21
2

mv  is associated 

to the kinetic energy. Initially, when the pendulum is 
standing, the total energy is: 

 2
0

1 ( )
2

E k r L= − . (26) 

The purpose of this example is to determine an 
error’s measure, considering that the objective function 
has an explicit solution given by the principle of 
conservation of the energy. Therefore, the following 
objective function is defined: 

 0

0
0

( , , , , , ) ( , , , , , , )

( , , , , , , )

T

T

G r r k m E r r k m t dt

E r r k m t dt

θ θ θ θ

θ θ

=

=

∫

∫

& && &

&&

. (27) 

Developing (27) for the pendulum in movement, we 
obtain that: 

 
2 2

0

( , , , , , )

1 1 ( ) (1 cos( )) ,
2 2

T

G r r k m

mv k r L mgr dt

θ θ

θ

=

+ − + −∫

&&

 (28) 

where 2 2 2 2v r r θ= + && . When the pendulum is standing, 

the sensitivity dG
dk

 is: 

 
2

0( ( ) / 2)
0

d k r L TdG
dk dk

−
= = , (29) 

obtaining as a result a constant value equal to 0 
( 0r L= ). With respect to parameter m , the sensitivity 
dG
dm

 is expressed by: 

 0 0
0

( (1 cos( )) )d mgr TdG gr T
dm dm

θ−
= = . (30) 

For (30) the results indicate that sensitivity grows 
linearly with time. Using the sensitivity expressions (29) 
and (30), we made a comparative analysis of the 
numerical results obtained employing the adjoint 
method and the finite differences method. In the finite 
difference method, the system DAE is solved 
numerically with different values of parameter: a value 
of perturbed parameter and the rest of the parameters 
with original values. Thus, it is possible to obtain for 

example an estimation of the sensitivity dG
dk

 equal to: 

 0 0

( , , , , , , ) ( , , , , , , )
T T

k

k

E r r k m t E r r k m t
dG
dk

θ θ δ θ θ

δ

+ −
≈
∫ ∫& && &

. (32) 

The advantage of this method is the simplicity of its 
implementation, whereas the main disadvantage is that 
the estimation error is significant. 

Figure 5 shows the error defined by the absolute 
difference DGDKε  between the explicit solution and 
numerical solution. In this figure it can be seen that 
when adopting the adjoint method the error is close to 1, 
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whereas when adopting the finite differences method, 
the error is tripled with respect to the adjoint method. 

Figure 6 shows the error defined by the absolute 
difference DGDMε , where the absolute error calculated 
by the adjoint method is very small if we compare it 
with the error obtained by finite differences. It can also 
be observed that for values of time T  between 7.7 and 
7.9, the sensitivity by finite differences reaches values 
between 125 and 130, with an DGDMε error between 55 
and 60, what practically represents a 50%. This is a 
clear indicator that the adoption of the finite difference 
method can produce wrong results. 

 
Fig. 5. Absolute error of 

dG
dk

. 

 
Fig. 6. Absolute error of  dG

dm
. 

IV. CONCLUSIONS 
It can be seen in the previous examples that the 
calculation of sensitivity is very often obtained with 
quite small precision errors. For the linear system 
(III.A), the proposed method allows obtaining a 
reasonably accurate solution. When the DAE system is 
nonlinear (III.B), the calculation of parametric 
sensitivity by the adjoint method produces a quite 
acceptable solution. 

Finally, the most important advantage of the 
proposed method is the possibility of calculating the 
sensitivity of parameters of DAE´s using linear adjoint 
systems, with no need to extend the original system, 
thus improving the efficiency in the calculation. 
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