
A QUASI-COULOMB MODEL FOR FRICTIONAL CONTACT

INTERFACES. APPLICATION TO METAL FORMING
SIMULATIONS.

C. GARCIA GARINO† and J.-P. PONTHOT‡

†Instituto Tecnológico Universitario, UNCuyo Casilla de Correo 947, 5500, Mendoza, Argentina
cgarcia@itu.uncu.edu.ar
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Abstract— Frictional contact interfaces have
to be modeled in practice when industrial prob-
lems such as metal forming operations, crash-
worthiness, and so on, have to be simulated.
Usually a Coulomb model is used in order
to describe the constitutive law for the fric-
tional case. Following a standard non associ-
ated plasticity approach to Coulomb law a non-
symmetric tangent operator results, and so a
non-symmetric solver has to be used in order
to take full advantage of consistent operators.
With respect to symmetric ones, these non-
symmetric operators lead to prohibitive com-
putational times. However, in practice dif-
ferent schemes have been proposed in order
to recover the symmetric operator, and con-
sequently, use a symmetric solver. In this work
an alternative approach based on an idea due
to Garćıa Garino and Oliver (1992) is defined
in order to avoid to deal with non-symmetric
solvers and thus save a large amount of com-
putational time, which renders the computa-
tional simulation more attractive to industry.
Applications to metal forming simulations and
crashworthiness analysis are considered.

Keywords— Friction, Contact, Plasticity,
Large deformations, Metal Forming.

I. INTRODUCTION

The Finite Element Method (Zienkiewicz and Taylor,
1989; Bathe, 1996) can be considered as a valuable tool
in order to simulate large industrial applications. In
the last few years very important progress has been re-
ported in the simulation of non linear problems involv-
ing plasticity, large strains and metal forming simula-
tions, as can be seen in the proceedings of Computa-
tional Plasticity (Owen et al., 1987, 1989, 1992, 1995,
1997) or NUMIFORM conferences (Thomson et al.,
1989; Chenot et al., 1992; Shen and Dawson, 1995 and
Huetink and Baaijens, 1998). In many cases the sim-
ulation of manufacturing processes like metal forming

requires to take into account, besides non linear consti-
tutive models, complex boundary conditions like fric-
tional contact behavior (Huetink and Baaijens, 1998;
Chen and Kikuchi, 1985; Wriggers and Vu Van, 1990).
Another important field of research where this kind of
interfaces are required is Crashworthiness analysis.

The contact problem involves the interface of two
deformable bodies or a deformable body against a rigid
tool (unilateral contact). In both cases one body is
prevented from penetrating the other. Consequently
the possible configuration and displacement fields are
constrained in the admissible values to be reached.

From the mathematical point of view, the mechan-
ical problem stated in the previous paragraph can
be considered like an optimization problem and sev-
eral methods can be found in the literature: Penalty
method (Ponthot and Graillet, 1999; Hallquist, 1982,
1986), Lagrange Multipliers (Hughes et al., 1976;
Bathe and Chaudary, 1985, 1986) and Perturbed La-
grange Formulations (Simo et al., 1985), from which
the two others method can be derived, and Augmented
Lagrangian formulations. (Wriggers et al., 1985; Simo
and Laursen, 1992; Laursen and Simo, 1993).

The frictional behavior is usually taken into account
in Computational Mechanics by mean of elastoplastic-
ity analogy (Curnier, 1984), and in the last years Wrig-
gers and coauthors (Wriggers, 1987; Wriggers and Vu
Van, 1990) have derived very efficient numerical tools,
extending the Radial Return algorithm to this context.
A review of the subject can be found, among others,
in Agelet de Saracibar (1990) and Zhong and Mackerle
(1992).

The frictional contact problem can be stated en-
hancing the variational unconstrained problem in or-
der to include the contact and friction contributions.
The Finite Element Method leads to write the corre-
sponding discretized problem adding to the Stiffness
Matrix K and residual forces R the contact contri-
butions Kc and Rc respectively and friction is taken
into account by mean of Ff , vector of nodal forces
resulting from frictional interactions and Rf respec-
tively. The standard treatment of frictional problem is
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usually taken into account by using a Coulomb model
that leads to a non-symmetric Stiffness matrix. Con-
sequently non-symmetric solvers have to be used in the
numerical simulations.

However, recovering a symmetric operator is possi-
ble. In that sake, Garcia-Garino and Oliver (1992) and
Garca-Garino (1993) proposed an algorithm, called
Quasi-Coulomb model, able to integrate the frictional
equations in time and that leads to a symmetric tan-
gent operator. Simo and Laursen (1992) and Laursen
and Simo (1993) have proposed another idea in order
to get a symmetric operator for the contact frictional
problem based on Coulomb law.

The capabilities of this new algorithm are analyzed
in this paper by solving several large deformation prob-
lems pertaining to metal forming simulation and crash-
worthiness analysis. A penalty formulation and two
different large strain elastoplastic numerical models
developed by the authors are used (Garćıa-Garino,
1993; Ponthot, 1995). The goal of the numerical ex-
amples solved is at first sight to discuss the quality
of results obtained with the new model in comparison
with standard Coulomb law and the to compare the
respective computational cost.

A brief discussion in order to highlight differences
and similitudes in between Augmented Lagrangian
procedure and the proposed model is provided. Both
methods relay on a delay of dependence of frictional
forces on the contact pressure. However numerical al-
gorithms are completely different. Some commentaries
about comparative numerical perfomance is provided
when possible.

Anyway, in order to simulate realistic industrial
forming simulations, a bulk model is not sufficient and
a frictional algorithm has to be implemented. The
role of this algorithm is to manage the contact and
frictional forces that appear due to material-tools in-
teractions.

The contact algorithms are generally based on a
standard plasticity approach (see Curnier, 1984) but
with a non-associated flow rule. If one uses an implicit
algorithm in order to integrate the motion equations in
time, the resulting tangent operator is non-symmetric,
due to the non-associated flow rule. This leads to pro-
hibitive computational times.

II. FRICTIONAL CONTACT INTERFACE

A. Governing equations

In many practical problems the boundary conditions
have to include the case of frictional contact problems
such as the interface between solid and tools. In this
case the unconstrained finite strain quasi-static elasto-
plastic problem written in terms of the internal forces
resulting from the straining of the material (i.e. the so-
called stress-divergence term resulting from the strain-
ing of the material), denoted by G(u) as a function
of the nodal displacements u and the external load
pattern F results in (see e.g. Zienkiewicz and Taylor

(1989) and Bathe (1996) for details):

G(u) − F = 0. (1)

Equation (1) is then enhanced by means of contact
and frictional nodal forces respectively denoted by RC,
and RF to account for contact interactions with tools
or other material (see Zong and Mackerle (1992) and
the references therein for details). The constrained
problem results:

G(u) + RC(u) + RF (u) − F = 0. (2)

In case of a dynamic problem, inertia forces have to be
taken into account. In such a case, the semi-discretized
equation to be integrated reads, see Bathe (1996) and
Belytschko (1983) for details:

Mü + G(u) + RC(u) + RF (u) − F = 0, (3)

where M is the mass matrix and ü is the vector of
nodal accelerations.

Because of combined geometrical, material and con-
tact non linearities, the systems of Eqns. (2) and
(3) are highly non linear in u. The methods of so-
lution of these systems are standard (Bathe, 1996;
Belytschko, 1983) and, in numerous cases Newton-
Raphson’s method has proved to be advantageous.

B. Frictionless contact problem

Attention is now focused on the plane and axisymmet-
ric case of a straight rigid tool boundary x2

T − x1
T

(where T stands for tool), for simplicity. The exten-
sion to three dimensional problems is straightforward
and all the following formula are valid in 2D, as well
as 3D situations.

The constraint equations resulting from contact in-
teractions are based on nodal imposition of the con-
straint for every slave node pertaining to the boundary
of the finite element mesh. In this context, and with
reference to figure 1, the gap or penetration is approx-
imated by the finite element method nodally. Here,
the gap g, associated with a typical slave node xs is
given by:

g = (xs − x1
T ) . N , (4)

where N denotes the unit outward normal to the tool
segment. Similarly T denotes the unit tangent to this
segment. In 3D situations, T defines the local tangent
plane to the contact point.

If g is larger than zero, there is no contact interac-
tion between the considered slave node and the seg-
ment, and consequently RC = 0 and RF = 0. How-
ever, if g ≤ 0, there exists a contact interaction that
has to be accounted for, as described hereafter.

The nodal forces RC arising from contact are com-
puted using the penalty method (Ponthot and Graillet,
1999; Hallquis, 1982; Hallquist, 1986). In local axis the
normal contact force tN results in:

tn = εcg if g ≤ 0 (5)
tn = 0 if g > 0, (6)
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Figure 1: Geometry of the contact problem

where εc stands for normal penalty coefficient. This
resulting force is written in global coordinates as:

RC = tNN . (7)

In the case of a rigid flat tool there are no changes in
the geometry of the tool from one iteration to another
and the contact contribution to the stiffness matrix of
the problem, i.e. the derivative of RC with respect to
Δu, the incremental nodal displacement, reads:

KC =
∂RC

∂Δu
= εc NNT if g ≤ 0. (8)

C. Frictional contact problem

In this problem two cases can be distinguished: in
early stages of the process, where a full stick condition
between the solid and the tool is verified, a tangential
force that opposes to the relative slip appears. Once a
threshold value in the modulus of the force is reached,
a slip condition is verified. This behavior can be mod-
eled by means of the classical Coulomb law:

RF = −sign(u̇)‖tF ‖T (9)

and
‖tF‖ ≤ μ |tN |, (10)

where ‖tF‖ < μ|tN | in case of sticking contact and
‖tF ‖ = μ|tN | in case of sliding contact. In order to
perform a numerical integration of the frictional be-
havior, we proceed as follows. Starting from a known
configuration at time t, one is faced with determining
a new equilibrated configuration at time t+Δt. As far
as the frictional treatment is concerned, Coulomb’s law
can be regularized by introducing a penalty factor εF .
In this way, the problem can be treated similarly to an
elastoplastic one, see Curnier (1984). The tangential
slip s is thus decomposed into its elastic (reversible)
and plastic (irreversible) components

s = se + sp, (11)

so that, by analogy with elasto-plasticity, the consti-
tutive equation for the frictional component can be
written, in the tangential plane of contact

tF = εF se = εF (s − sp). (12)

Further, following Wriggers (1987), Wriggers and Vu-
Van (1990), an elastic predictor is evaluated first by
supposing that the entire incremental slip, resulting
from the finite element computation, is totally re-
versible (elastic). This results in an elastic (sticking)
predictor t+Δt tF

T R for the frictional force given by

t+ΔttF
TR = ttF + εF ΔsTR, (13)

where sTR is the total slip over the increment. This
elastic predictor is then compared with the Coulomb
criterion (10). If ‖t+ΔttF

T R‖ ≤ μ|t+ΔttN |, the state of
contact was clearly a sticking one and nothing more
is undertaken. On the contrary, if ‖t+ΔttF

T R‖ >
μt+Δt|tN |, i.e. Coulomb criterion is violated, the state
of contact is sliding and a correction has to be evalu-
ated to restore consistency with the Coulomb criterion.
This is done by integrating the following flow rule for
the frictional components:

sp = λT . (14)

So that, according to (12) the final frictional force will
be given by:

t+ΔttF = εF (se − λ T ) = t+ΔttF
T R − εF λ T . (15)

Assuming T = tF
T R

‖tF
T R‖ , an hypothesis consistent with

the radial return scheme of elastoplasticity, the norm
of (15) can be shown to be:

‖t+ΔttF ‖ = ‖t+ΔttF
T R‖ − εF λ. (16)

The unknown λ is computed by inserting (16) into the
Coulomb criterion (10), i.e.

‖t+ΔttF
T R‖ − εF λ − μ |t+ΔttN | = 0. (17)

If the friction coefficient μ is constant the latest equa-
tion has a closed form solution and the classical ex-
pression of the Coulomb law is recovered:

‖t+ΔttF‖ = μ |t+ΔttN |. (18)

Writing the nodal forces RF = −sign(u̇)‖tF ‖ T , the
frictional contribution to nodal forces and stiffness ma-
trix results (see Wriggers, 1987):

KF =
{

εF T T T if ‖tF‖ < μ |tN |
−μ εC T NT if ‖tF‖ = μ |tN | . (19)

In the second case, i.e. in the case of sliding contact,
KF is obviously non-symmetric.

To avoid the use of non symmetric solvers, which
are computationally much more expensive than sym-
metric ones, the standard procedure, described above,
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is modified and the modulus of the normal reaction is
no longer updated at each equilibrium iteration. This
modulus remains constant all over the load step and
equals to the latest converged value. Then the fol-
lowing equation describes a Quasi-Coulomb friction
law (Garćıa-Garino and Oliver, 1992; Garćıa-Garino,
1993) of the type:

‖t+ΔttF ‖ = μ |ttN |, (20)

and the discretized Coulomb law (17) can be approxi-
mated by:

‖t+ΔttT R

F
‖ − εF λ − μ |ttN | = 0. (21)

In practice this simplificative assumption is equivalent
to approximate in a step wise way the yield function
given by equation (10), as can be seen in figure 2.

Figure 2: Original (solid line) and modified (dotted
line) yield criteria

Remark: the constitutive model proposed in Eq. (20)
delays the dependence of friction forces on contact
pressure by one time step. The assumed value of con-
tact pressure is hold fixed for the complete iteration
loop performed for each time step, but it is updated
from one time step to another.

It is important to mention that the flow rule is not
changed and the problem becomes associated, con-
sequently a symmetric stiffness matrix is obtained.
Moreover if the three following conditions are fulfilled:

• i) Elastic-perfectly plastic problem (μ constant).

• ii) A Quasi-Coulomb law is used.

• iii)Linear geometry (rigid tools).

the frictional matrix KF becomes trivial,since in this
case:

KF =
∂RF

∂Δu
=

∂μ

∂Δu
|ttN | T + μ

∂|ttN |
∂Δu

T

+ μ |ttN | ∂T

∂Δu
= 0 (22)

because all the variables are fixed. In this way a sym-
metric tangent operator is recoverd in a full agreement
with the assumption made in the approximation of
normal contact pressure.

The numerical implementation of the proposed
models preserves the complete structure of the well
known penalty method with the condition that contact
pressure is hold constant during the iteration loops
necessary to reach equilibrium in each time step.

The Augmented Lagrangian procedure is based on
two iterative loops: an external augmented loop, when
the contact normal pressure is updated and a inner it-
eration loop that holds contact pressure value fixed. In
practice it is very difficult to get the correct choice of
the parameters the Augmented Lagrangian algorithm:
maximum number of augmentations, strategy about
when and how to automatically update the penalty
parameters and the Lagrangian multipliers etc. More-
over, the choice of these parameters is very problem-
dependent.

Therefore, though the Augmented Lagrangian algo-
rithm seems very attractive at first glance, it is not
easy at all to use efficiently for complex industrial
simulations and generally requires quite a few runs to
get a correct answer (a hidden cost that is generally
not explained or commented in the papers!). In such
cases the algorithm proposed in this study is not only
much easier to implement but also much easier to use
since it is not more complex to use than the classi-
cal penalty algorithm. Morover in this case no new
numerical user defined parameter that has to be intro-
duced. From the second’s author experience (Graillet
et al., 2001 ; Chabrand et al., 2005 ) can be stated
that, globally, the cost of Augmented Lagrangian is
similar to the cost of the classical penalty algorithm
(sometimes, it can be cheaper, but sometimes it can
also be more expensive), without taking into account
the difficulty to tune numerical parameters associated
to the Augmented Lagrangian algorithm as already
mentioned above.

III. NUMERICAL SIMULATIONS

In order to investigate the effects of the symmetriza-
tion process on the accuracy of the results, three
benchmarks have been tested. They are presented be-
low. Of course, in case of frictionless problems, this
symmetrization process has no influence since the Hes-
sian is already symmetric.

A. Stretching of an axisymmetric sheet with
an hemispherical punch

The first example studied is a benchmark problem pro-
posed by Lee et al. (1990) from OSU (Ohio State
University). The problem is a sheet forming simula-
tion and consists of the stretching of an axisymmet-
rical sheet with an hemispherical punch whose geom-
etry is given in Fig. 3. The material is supposed to
behave like a J2 elastic-plastic material with non lin-
ear isotropic hardening. The material parameters are
given in Table 1. This kind of material exhibits a very
large hardening rate in the neighborhood of the initial
yield stress.
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Table 1: Material properties for the OSU benchmark
Young Modulus E = 69004 MPa
Poisson ratio ν = 0.3
Hardening law σv = 589(0.0001 + ε̄p)0.216 MPa

Figure 3: OSU Sheet forming problem: geometry

The finite element mesh used is a rather coarse fi-
nite element mesh as imposed by the benchmark de-
signers. It is shown in figure 4 and consists of 2 lay-
ers of 14 elements each. The elements are bilinear
and use a constant pressure to avoid locking. Bound-
ary conditions are also shown in Fig. 4. Contact
conditions are imposed through a penalty formulation
with the following parameters: εC = 105N/mm and
εF = 104N/mm. Three friction coefficients have
been considered in the present study, i.e μ = 0.0;
μ = 0.15 and μ = 0.30. Many results and compar-
isons with other authors regarding this problem can be
found in the works of Garćıa-Garino (1993) and Pon-
thot (1995). However, we will concentrate here on the
Quasi-Coulomb algorithm.

The comparison of the total force applied by the
punch as a function of punch displacement is given in
Fig. 5 for μ = 0.30 (upper curves) and μ = 0.15
(lower curves) for both classical non-symmetric opera-
tor and the symmetric Quasi-Coulomb algorithm pre-
sented here. This figure shows an excellent agreement
between both algorithms. This agreement in turn
proofs the higher efficiency of the Quasi-Coulomb algo-
rithm since it only requires a symmetric solver which
is much cheaper to use than a non-symmetric one.

However, using a symmetric operator where the ac-
tual tangent operator is non symmetric can affect the
rate of convergence of the Newton-Raphson algorithm.

Figure 4: OSU Sheet forming problem: Initial Finite
Element mesh
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Figure 5: Axisymmetric OSU benchmark: Applied
punch force as a function of punch displacement. Top:
μ = 0.30, bottom μ = 0.15.

As shown in Table 2, using a symmetric operator only
affects moderately this rate of convergence.

Table 2: OSU benchmark. Rate of convergence.
μ = 0.0 μ = 0.15 μ = 0.30

Operator Steps Iter. Steps Iter. Steps Iter.
Sym 101 301 65 173 67 194

Non sym 101 301 58 158 66 189

The agreement between Coulomb and Quasi-
Coulomb models is not only excellent for the forces
(see Fig. 5), but also as far as local values, like the
effective plastic strain are concerned (see Figs. 6 and
7). On these figures, the results obtained by the classi-
cal Coulomb and the Quasi-Coulomb models are com-
pared. Results obtained by Agelet de Saracibar (1990)
are also plotted.

From the obtained results it can be stated that
the proposed (symmetric) model compares very well
with the (unsymmetrical) Coulomb law: numerical re-
sponse is practically the same and the number of total
equilibrium iterations is similar except for the case of
μ=0.15. However computational cost is saved because
a symmetric tangent matrix is factorized in this case.

B. Shock absorber device

This second example deals with the numerical mod-
eling of a shock absorber device. It is based on the
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Figure 6: Axisymmetric OSU benchmark. Compar-
ison of plastic strain profile, as a function of initial
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Figure 7: Axisymmetric OSU benchmark. Compar-
ison of plastic strain profile, as a function of initial
radius, for punch displacements of 10, 20, 30 and 40
mm. μ = 0.30.

turning inside-out of a thin walled ductile metal tube.
This is generally called an ”invertube” device. In this
case (Fig. 8), a plain tube is confronted with a hard
die to produce the inversion. This inversion, in turn,
produces very large plastic strains which form an effi-
cient energy absorbing mechanism during impact. In
this way, the kinetic energy of the impacting bodies is
dissipated through plastic deformation, in a controlled
fashion at an acceptable rate. The yield limit of the
material keeps the transmitted force below an accept-
able upperbound. Hence, the deceleration is slower
and less harmful for the people inside the car.

Numerical modeling of the collapse of such energy
dissipating structures requires not only to take into
account the plastic behavior of the tube material, as
well as inertial forces, but also to consider very large
strains and large amplitude rigid body motions that
develop and also, in this case, the accurate prediction
of frictional forces. Thus a great number of advanced
code capabilities are tested by running this kind of
problems.

Similar problems were investigated by Beltran and
Goicolea (1989), by Garcia-Garino (1993) with an ex-
plicit scheme and by Ponthot and Hogge (1994) who
compared the performances of explicit and implicit al-

gorithms for impact problems. However, all the pre-
vious references dealt with frictionless contact. In the
present paper, implicit schemes, as described in the
cited work of Ponthot and Hogge (1994) have been
used to integrate the equations of motion in time. The
initial geometry of the system is given in figure 8.

Figure 8: Axisymmetric shock absorber device. All
dimensions are in mm. The shaded area is considered
to be rigid

The material consists of an aluminum tube of 50.8
mm outside diameter times 63.5 mm length times
1.63 mm wall thickness. The material is supposed
to behave like a J2 elastic-plastic material with lin-
ear isotropic hardening. The material parameters are
given in Table 3.

Table 3: Material properties for the shock-absorber
Young Modulus E = 67000 MPa
Poisson ratio ν = 0.33
Density ρ = 2700 kg/m3

Hardening law σv = 15 + 44.7 ε̄p MPa

The tube has been modeled using 300 quadrilateral
elements (3 x 100) with 4 Gauss points and constant
pressure to avoid locking. It is driven against a 3.97
mm radius die made of mild steel at a velocity of 44
m/s (144 Km/h). Thus a 50 mm prescribed vertical
displacement over a time period of 0.00125 seconds is
imposed on the upper nodes of the tube.

The history of the deformation is given in Figs. 9,
10 and 11 for μ = 0, μ = 0.15 and μ = 0.30 cases
respectively, and a comparison of the final configura-
tions for the three different friction coefficients is given
in figure 12. For this simulation, the following penalty
parameters have been used: εC = 107N/mm and
εF = 106N/mm.

In Fig. 13 are displayed the time/load curves ob-
tained for the three coefficients of friction and, in each
case, for the classical non-symmetric Coulomb opera-
tor as well as the presented symmetric Quasi-Coulomb
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Figure 9: Deformed configurations (frictionless case)
for t=0.00, t=0.25, t=0.50, t=0.75, t=1.00 and t=1.25
milliseconds.

Figure 10: Deformed configurations μ = 0.15 for
t=0.00, t=0.25, t=0.50, t=0.75, t=1.00 and t=1.25
milliseconds.

Figure 11: Deformed configurations μ = 0.30 for
t=0.00, t=0.25, t=0.50, t=0.75, t=1.00 and t=1.25
milliseconds.

model. As can be seen on this figure, the proposed al-
gorithm does not affect the results in any significant
way. On the other hand from Table 4 follows that
the number of total equilibrium iterations is similar in
both cases, but for the Quasi-Coulomb model the ad-
vantages of a symmetric solver allowed to reduce the
computer time by a factor larger than two.

�����

������

������

Figure 12: Comparison of the final configurations as a
function of the friction coefficient.

Table 4: Shock absorber device. Rate of convergence.
μ = 0.0 μ = 0.15 μ = 0.30

Operator Steps Iter. Steps Iter. Steps Iter.
Sym 145 411 150 428 147 432

Non sym 145 411 143 411 153 430
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Figure 13: Applied load as a function of time. Upper
curves: μ = 0.30; middle curves: μ = 0.15, and
lower curve: μ = 0.00

Again, in this case, the obtained results compare
very well with the ones computed with the Coulomb
law and the number of total equilibrium iterations is
similar for both procedures.

C. Conical extrusion

The considered problem is the quasi-static conical ex-
trusion of an aluminum billet. It has been previously
studied by Simo and Laursen (1992) and Laursen and
Simo (1993). It consists of an initially cylindrical bil-
let (length = 25.4 cm & diameter = 10.16 cm) that is
pushed by a ram through a conical rigid die. The total
displacement of the die is 17.8 cm and a friction coef-
ficient of 0.1 is assumed between the rigid die and the
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aluminum. Contact constrains are imposed through
the penalty formulation described above. The penalty
parameters used are respectively εC = 108N/cm
and εF = 107N/cm. The aluminium is supposed
to behave like a J2 elastic-plastic material with lin-
ear isotropic hardening whose material properties are
given in Table 5.

Table 5: Material properties for the conical extrusion
Young Modulus E = 68956 MPa
Poisson ratio ν = 0.32
Hardening law σv = 31 + 261.2 ε̄p MPa

The initial mesh consists of 80 (4x20) axisymmetric
bilinear elements with constant pressure. The initial
configuration, as well as deformed configurations cor-
responding to a ram displacement of 4.45 cm; 8.9 cm;
13.5 cm and 17.8 cm are depicted in figure 14. In the
final configuration, the cumulated slip of the first con-
tact node is larger than 25 cm whereas the maximum
penetration due to the penalty treatment is smaller
than 1/500 of the initial radius.

Figure 14: Initial mesh and deformed configurations
for a ram displacements of 4.45 cm; 8.9 cm; 13.5 cm
and 17.8 cm

The force applied by the ram as a function of ram
displacement is plotted in figure 15. The results ob-
tained by Simo and Laursen (1992) and Laursen and
Simo (1993) are also plotted. The results for both op-
erators are identical until a ram displacement of 12
cm. After that, the friction force increases exponen-
tially and the force obtained with a symmetric oper-
ator exhibits a small ”delay” with respect to the non
symmetric one. This delay is due to the extreme vari-
ation of the normal force. The difference is originated
in the fact that the friction force is computed with re-
spect to the previous converged normal force and not
the current one. Such an extreme variation shows the
limitations of the proposed algorithm. This distance
between the two curves could be canceled out by us-
ing smaller time steps in the symmetric case. However,
doing so would annihilate the benefits of the proposed
methodology.

The final configuration was obtained in 115 time
steps and 264 iterations for the classical non-
symmetric operator and in 136 time steps and 348 it-
erations for the Quasi-Coulomb symmetric operator.
However, the CPU is still 25% lower in the latter case.
It is difficult to compare the total computational cost
with the Augmented Lagrangian proposed by Simo
and Laursen (1992) and Laursen and Simo (1993) pro-
cedure because in their papers only the total number
of time steps and augmentations are provided, but no
information is given about the number of iterations
performed. However a qualitative comparison can be
found in Ponthot’s Thesis (1995).
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Figure 15: Conical extrusion process: Force applied
by the ram as a function of its displacement.

IV. CONCLUSIONS

A very simple constitutive frictional model which is
able to deal with both general large strain plastic-
ity problems, as well as specialized ones such as sheet
metal forming problems and crashworthiness has been
presented and tested. This model is very easy to code
in any non linear general purpose finite element, or
finite difference code and there is no new numerical
parameter introduced. A symmetric tangent operator
is obtained in a fully consistent way the assumption
made in the approximation of normal contact pres-

Latin American Applied Research 38:95-104 (2008)

102



sure, hold fixed for the complete time step and equals
to the last converged value.

In problems when thin bodies are simulated, like the
sheet forming operation and to a dynamic shock ab-
sorber device simulation, the proposed quasi-Coulomb
algorithm presented here shown the same results than
standard procedure. Morover, total number of iter-
ations are similar for proposed Quasi-Coulomb and
classical Coulomb laws. Consequently large amounts
of computational time can be saved, because the pro-
posed procedure allows to use a much cheaper sym-
metric solver rather than an expensive non-symmetric
one, a feature which is very important for industrial
applications.

In the case of conical extrusion, the extreme varia-
tions of the forces encountered prevent a totally suc-
cessful application of the proposed algorithm and a
carefull study of obtained results are advised for bulk
forming cases. However, this kind of situation does not
prevail in general in sheet metal forming and crashwor-
thiness applications where the quasi-Coulomb algo-
rithm allows substantial gains in computer time with-
out decreasing the accuracy of the computed response.

V. ACKNOWLEDGEMENTS

The financial support provided by Argentinian Agency
for R&D activities (ANPCyT), projects PICT 12-
03268 and PICTR 184, and International Cooperation
Project BEPA04-EXII003, granted by SECyT (Argen-
tine) and FNRS (Belgium), is gratefully acknowlegded.

REFERENCES

Agelet de Saracibar, C., Analisis por el Método de los
Elementos Finitos de Procesos de Conformado de
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