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Abstract−− This paper presents a real-time im-

plementation of a multivariable predictive controller 
with constraints to regulate the downstream levels at 
the end of the pools in a four-pool open irrigation 
canal prototype. The objective of the controller is to 
maintain the downstream level at a constant target 
value despite inflow disturbances. The controller is 
designed using a “black box” identified linear model. 
The results show satisfactory closed-loop perform-
ances.  
Keywords−− Predictive control, automatic con-

trol, control applications, hydraulics, identification.  

I. INTRODUCTION 
In many countries open irrigation canals are used for the 
distribution of water in agriculture. In general the con-
trol structures on the canal are manually driven with 
poor efficiency results.  In our days, the best alternative 
to improve distribution efficiency and operation of irri-
gation canals is the use of automatic control structures. 
The main goal in canal operation is to supply the water 
flow rate to farmers in quantity and frequency.  

The present work is related to a real-time application 
of an automatic control in open irrigation canals. The 
automatization  of such systems is not simple, since: the 
dynamics of water through the canals are modeled  by 
nonlinear partial differential equations (Saint-Venant 
equations); they have a lot of inputs (typically gates) as 
well as outputs to be regulated (basically the levels); the 
dynamics of the water flow are characterized by delays 
between a control action and its effect on the levels 
along the canal,  and they are subject to disturbances, 
which are mainly due to water withdrawals or weather 
conditions. 
 A variety of methods have been proposed in order to 
deal with the problem of automatic control for canals. 
These works range from classical PI (Mareels et al., 
2005; Malaterre et al. 1998; Ruiz-Carmona et al., 1998) 
to advanced controllers handling partial differential 
equations (Chen and Georges, 2001) or nonlinearities 
(Dulhoste et al., 2004).  Model Predictive Control 
(MPC) strategy has also been considered by Rodellar et 
al. (1993) where a monovariable input/output model is 
used to design a predictive controller in order to control 
a single reach of canal. In Malaterre and Rodellar 

(1997) or Pages et al. Sau (1997), centralized multivari-
able controllers for canal automation are derived based 
on predictive control techniques. In Sawadogo et al. 
(1998) a decentralized predictive controller is devel-
oped. A recent and interesting work in MPC applied to 
irrigation canals is found in Wahlin (2004). In that work 
an MPC is tested in a Benchmark canal, the “ASCE 
Test canal 1” (Clemmens et al., 1998).  This canal is an 
eight-pool trapezoidal canal.  The model used to design 
the MPC is the model called the “integrator-delay” (ID) 
(Schuurmans et al., 1995).  The MPC designed is tested 
under scheduled and unscheduled flow rate. For the case 
of the scheduled flow variations, a feedforward control-
ler is also considered. In some tests realized in that pa-
per, the minimum gate movement of the control gate  is 
set to zero when the opening gate is less than a mini-
mum specified value.  The level performance is satisfac-
tory when the gate opening is not constrained, but it 
decreases when it is constrained.  

In all these works, the performance of the closed-
loop (canal/controller) is tested only in computer simu-
lation but not in any physical canal. As far as we know, 
no application of a predictive control to regulate some 
real irrigation canals or canal prototypes has been re-
ported so far1.  

In this paper we present the design and real-time 
implementation results of a  recent centralized Model 
Predictive Control algorithm (MPC) (Maciejowski, 
2002) for a four-pool open canal prototype  that takes 
into account operational constraints  (e.g. bounds in 
control actions and output variables) to regulate the 
downstream levels of each pool. The model used to de-
sign the MPC is a transfer matrix obtained by identifica-
tion. The control actions are calculated by an optimizer 
taking into account a cost function  where the future 
tracking error is considered together with the opera-
tional constraints (Maciejowski, 2002; Camacho and 
Bordons, 1999). Since the MPC technique is capable to 
handle system constraints and delays, as those existing 
in long canals, this work aims at evaluating the perfor-
mance obtained with this algorithm and at assessing the 
easiness/difficulty as well as the required equipment to 

                                                           
1 Various ideas and results on irrigation systems have however 

been very recently summarized in the nice overview of Mareels et al. 
(2005). 
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implement this kind of algorithms in some real irriga-
tion system. 

The canal considered in this paper is represented in 
Fig. 1, here the controlled variables are the downstream 
levels of the first three pools and the control variables 
are the openings of the slide gates along of the canal. At 
the head of the canal, a servo valve drives inflow distur-
bances. The considered pool operation method and con-
trol concept are constant downstream level and up-
stream control respectively (Buyalski et al., 1991). 

This paper is organized as follows. In section II, the 
characteristics of the laboratory canal which is used are 
presented. In section III, the methodology to obtain a 
“black box” linear input-output model is given. In sec-
tion IV, the synthesis of the proposed Model Predictive 
Controller is described. Section V shows some real-time 
results from the closed-loop system. Finally, the conclu-
sions are stated.  

II. FOUR-POOL LABORATORY CANAL  
For this application a zero slope rectangular canal with 
glass walls and concrete bottom, of 60 cm wide, 50 m 
long and 1 m high, available at Mexican Institute of 
Water Technology (IMTA) laboratory is used. As con-
trol structures, three slide gates are installed and they 
divide the canal into four pools, see Fig. 1. The inflow is 
adjusted with a servo-valve. At the downstream end of 
the canal the level is regulated by a manual overshot 
gate.  

Each slide gate is equipped with a linear actuator, 
two pressure sensors (upstream and downstream), a po-
tentiometer for gate position and limit switches (maxi-
mum and minimum gate opening). The flow regime 
through the slides gates is submerged with gate influ-
ence (Chow, 1988). This prototype does not have any 
lateral outlets. 

The system is designed considering manual opera-
tion and RTU (Remote Terminal Unit) operation. The 

(a) 

 ( b ) 
Fig. 1. (a) Irrigation canal prototype scheme, (b) Irriga-

tion canal prototype photo 

RTU operation can be remote manual operation or local 
automatic operation. The RTU which is used is a 
MODICOM PLC E984-245 at gates 2 and 3, and a 
SCADAPack from Control Microsystems at gate 1. A 
Pentium PC is used as a master station where the man–
machine interface was installed using Lookout software 
from National Instruments Inc. The master station is 
relayed by radio to the SCADAPack (MODBUS proto-
col) and by wire to the PLC (MODBUS+ protocol). 

III. MODEL  
In open irrigation canals the water dynamics are mod-
eled by two nonlinear partial differential equations 
named the Saint Venant equations (Chow, 1988). This 
model is used to study the level and flow behavior, but 
in general, it is not used for control design due to its 
complexity. Instead, several authors propose simple 
models such: state-space linear models obtained by dis-
cretization of the Saint Venant’s equations (Malatererre 
and Rodellar, 1997), state-space nonlinear models (Be-
sançon et al., 2004), input-output (I/O) nonlinear mod-
els (Euren and Weyer, 2005) or I/O linear models (Be-
govich, 2005), for example.  

In this section a simple input-output linear model is 
obtained by identification, and it will be used to design 
an MPC controller. The proposed linear model is a 
transfer matrix and  the identification is carried on to 
estimate the parameters of the transfer functions, entries 
of the transfer  matrix. These transfer functions ap-
proximate the water dynamics. Identification follows 
the next procedure (Ljung, 1987):  

A. Selection of input and output variables.  
In an irrigation canal, the control action can be the gate 
opening or indirectly the flow through the gate. If the 
control variable is considered to be the flow, a second 
control loop (slave) is usually required in order to main-
tain the flow when the level upstream and/or down-
stream the gate is changed. The main advantage in using 
the flow as a control variable is to reduce the cross-
coupling interaction between the controlled pools in a 
canal, which can be of particular interest when a decen-
tralized control is projected. Looking for the simplest 
solution that could actually be implemented on some 
operating canal, we rather choose the gate opening as 
the control variable for the prototype as well as the ac-
tual application carried on at the Colorado River irriga-
tion district in Mexico. The use of flow as control vari-
able and downstream control concepts is under study. 

Moreover, although the choice of gate opening as a 
control variable does not reduce the cross-coupling in-
teraction in the same way as the inflow control action 
can do, the cross-coupling interaction remains quite 
small in our case and a successful decentralized control 
can still be implemented in real time as shown in Bego-
vich (2007).   

On the other hand, the output variable is usually 
considered to be the level at the downstream end, since 
it is there that one generally finds the outlets when the 
farmers take water from the canal. Maintaining constant 
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this level can thus guarantee a constant flow for the us-
ers. This is the situation indeed found in Mexican ca-
nals, and for this reason the downstream level of each 
pool is selected here as the output variable (variable to 
be controlled). 

Summarizing, the input variables are selected as the 
opening deviations from the set point of the gates lo-
cated at the downstream end of the pools. They are de-
noted by: ui (i=1, 2, 3), where i is the i-pool. The output 
variables are the level variations at the downstream end 
of the pools. They are denoted by yj ( j = 1, 2, 3). The 
linear model will be identified around the set point 
given in Table 1. 

Table 1. Canal set point 

 
B. The Data.  
During the second phase, the variations in the water 
level yj (j=1, 2, 3) are registered when we apply a binary 
signal of random duration: first on gate 1, next on gate 2 
and finally on gate 3, see Fig. 2d. The amplitude of this 
signal is of the 20% with respect to the set point of each 
gate. The fast changes in the binary signal ensure that 
this signal has a large bandwidth. In this way, the most 
significant canal frequencies will be excited and a good 
parameter identification will be achieved. The order of 
frequencies in this canal is 10-2 rad/s, and the time con-
stants range from 70s to 120s (Begovich et al., 2002). 

To register the data, in  this experiment the sample 
time was chosen equal to 10 seconds, since this value 
represents a good compromise between acceptable 
opening gate rates and an accurate rebuilding (Shan-
non’s Sampling Theorem). In Fig 2 the downstream 
levels evolutions obtained are presented. Notice that the 
signals are normalized with respect to each respective 
set point (see Table 1).  
C. Proposed model.  
From Fig. 2, it is observed that downstream level re-
sponses are very similar to those of linear systems, and 
that is why we propose the following structure:  
                                ( ) ( ) ( )y z H z u z=                           (1) 
where 
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[ ])()()()( 321 zuzuzuzu = , 
hij represents the transfer from uj to yi. Each hij is esti-
mated through the identification of an output error 
model structure (Ljung, 1987) 
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Fig. 2. Levels registered  (y1, y2, y3) when  the binary signal in 
(d) is applied only to  (a) first gate (b)second gate (c) third 

gate (d) input binary signal  
 

                 
11 1

1 2

1 1
1 1

( ) ...

( ) 1 ...

B q b b q b q

F q f q f q

− +− −

−− −

= + + +

= + + +

b

b

f

f

n
n

n
n

                 (4) 

are polynomials  in the shift operator q-1, nk are the de-
lay,  nb and  nf  are the orders of polynomials B and F 
respectively, e is the residual, and k is the discrete time.  
D. Parameter estimation.  
To estimate the values of coefficients bi and fi , in this 
work we use the instruction oe (output error) of the Mat-
lab System Identification toolbox. The values of nk, nb, 
nf  being determined by optimizing some corresponding 
performance index within the toolbox facilities (via the 
function compare). As soon as the output error models 
are obtained for each couple of data (uj, yi), they are 
expressed as transfer functions, finally giving: 

11 122 2

-0.295 z + 0.2273  -0.1247 z + 0.09362h ( ) ;   h ( )
z  - 1.019 z + 0.1136 z  - 1.435 z + 0.4709

z z= =  

Inflow (l/s) Pool 1 (cm) Pool 2 (cm) Pool 3 (cm)
y1=74.50 y2=68.50 y3=59.50  

80 u1=22 u2=22 u3=22 
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2

13 212 3 2

 -0.04284 z - 0.01261  0.2707 z  - 0.1244 z - 0.1546h ( ) ;   h ( )
z  - 1.185 z + 0.2433 z  - 0.4205 z  - 0.4921 z

z z= =

2 2

22 233 2 3 2

0.287 z  - 0.429 z + 0.1439  -0.2981 z  - 0.07314 z + 0.2291h ( ) ; h ( )
z  - 1.5 z + 0.5439 z z  + 0.09253 z  - 0.9266 z

z z= =  

2 2

31 323 2 3 2

0.1268 z  - 0.1019 z - 0.02763  0.287 z  - 0.429 z + 0.1439h ( ) ;  h ( )
z  - 1.123 z  + 0.1658 z  z  - 1.5 z  + 0.5439 z

z z= =  

               2

33 3 2

-0.2981 z  - 0.07314 z + 0.2291h ( )
z + 0.09253 z  - 0.9266 z

z =             (5) 

It can be noticed that the order of the obtained transfer 
functions is two or three. This is specifically due to the 
fact that the model is here obtained directly by identifi-
cation. This identification captures the gate and actuator 
dynamics (since the input variable is gate position in-
stead pool inflow) and the small delays of the consid-
ered prototype. These effects are approximated in the 
interpolation carried out by identification and result in 
the respectively obtained orders. Models of similar or-
der could be obtained from those of Mareels et al. 
(2005), or Clemmens and Schuurmans (2004) for in-
stance, if delays were approximated by some expansion, 
such as Pade expansion.   

E. Validation.  
To verify the model accuracy, the measured outputs of 
the actual canal system are compared with the outputs 
of the identified model, when the same input is applied 
to both systems. This comparison is shown in Fig. 3, 
where it can be seen that the model responses (dotted 
lines) indeed follow the measured ones (solid lines). 
F. State-Space Representation.  
To design the predictive controller, the transfer matrix 
representation is transformed to a state-space represen-
tation. To do that, first we obtain the state space of each 
transfer function in (5). After we use all the individual 
realizations to obtain the state space realization of the 
matrix transfer following the more simple methodology 
stated in Kailath (1980). Finally, the realization ob-
tained needs to be transformed into a minimal one (i.e. a 

realization that is controllable and observable) for its 
use in the controller design. This can be done with func-
tions tf2ss and minreal from the Control Toolbox of 
Matlab. The representation which is finally obtained is 
denoted by: 
                  ( 1) ( ) ( )                    

( ) ( )                        
p p

p

x k A x k B u k

y k C x k

+ = +

=
 

where x is the state, u is the input vector, y is the output 
vector, and Ap, Bp, Cp, are matrices of appropriate di-
mensions. In practice the dimension of the obtained 
observable and controllable realization was n=20. Val-
ues of Ap, Bp, Cp, are omitted due to space limitation, but 
they can be found in Aldana (2004). This reference is 
available from the authors via e-mail.  

IV. CONTROLLER SYNTHESIS  
A. Preliminaries on Predictive Control 
Predictive control uses an available system model to 
incorporate the predicted future behavior of the process 
into the controller design procedure. This method of 
control design usually combines: 1) A process model; 
often a linear discrete one 2) A predictor equation; this 
is run forward for a fixed number of time steps to pre-
dict the likely process behavior 3) A known future ref-
erence trajectory 4) A cost function; this is usually a 
quadratic function which penalizes future process output 
errors with respect to the known reference and control 
values. Optimizing the cost function subject to future 
process outputs and controls leads to an explicit expres-
sion for the control. One further capability of the 
method is that it can incorporate operational process 
constraints. If these constraints are given in linear ine-
quality form, the optimization problem in the predictive 
control takes the form of a Quadratic Programming 
(QP) problem which can be solved using standard 
methods of optimization. 

  
Fig. 3. Comparison between measured system outputs and the model responses [H11 H12 H13; H21 H22 H23; H31 H32 H33] when the 

same input is applied to the system and the model 
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B. MPC Algorithm. 
In this work, the following predictive control algorithm 
incorporating operational process constraints (Macie-
jowski, 2002) is used: For the process model 
                      ( 1) ( ) ( )                    

( ) ( )                        
x k Ax k Bu k
y k Cx k

+ = +
=

    (6) 

the cost function is settled as 
12 2
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where 
χχχ Γ=

Γ
T2 ;  

Hp: Prediction Horizon; Hw: Beginning of prediction 
horizon;  Hu : Control Horizon;  
ˆ( )y k i k+ : Future value at time k+i of the output y, 

which is assumed at time k;   
( )r k i k+ : Future value at time k+i of the reference 

trajectory, which is assumed at time k 
ˆ( )u k i kΔ + : Future change of the input u, which is as-

sumed at time k; 
Qi≥0 and Ri>0 are diagonal weighting matrices that pe-
nalize the differences between the outputs and refer-
ences, and the changes in the input vector respectively. 
In this work Qi =Q and Ri =R i∀ , i.e. the weighting ma-
trices are constant matrices on the considered horizons.   

The predictor equation is given as: 
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where ˆ( )x k  is the estimated  state. 

The predictions of the outputs are obtained as:  
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For convenience the cost function (7) is rewritten as: 
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substituting  (8) in (9), we get 
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Now define E(k) as: 
                   E k T k x k u k( ) ( ) ( ) ( )= − −ϒ −Ψ 1 ,        (12) 
this equation represents the difference between the fu-
ture target trajectory and the response that would occur 
over the prediction horizon if no input changes were 
made, i.e. if ( )=0U kΔ . 

Using (11) and (12) in Eq. (10), the cost function 
can be rewritten as: 
                2 2( ) ( ) ( ) ( )V k U k E k U k= ΘΔ − + Δ

Q R
     (13) 
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where: 
                     2 ( )       T TG E k H= Θ = Θ Θ+Q Q R  

The present predictive control algorithm assumes 
that the constraints over outputs, inputs and actuator 
slew rates are represented in the following form: 
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T
u

T

w p

T
u

F u k k u k H k a

G y k H k y k H k b

D u k k u k H k c

⎡ + ⎤ ≤⎣ ⎦

⎡ ⎤+ + ≤⎣ ⎦

⎡Δ Δ + ⎤ ≤⎣ ⎦

         (15) 

where D, F, G are matrices whose values  are obtained 
when the restrictions are taken to the form of (15). Note 
that equation (15a) represents actuator constraints, (15b) 
output constraints and (15c) constraints over actuator 
slew rates. 

Since the cost function (13) is minimized with re-
spect to ∆U(k), the constraints (15a) and (15b) must be 
rewritten, to express them as constraints of ∆U(k) as 
follows:   
(a) To express (15a) as a function of ∆U(k), F is divided 
as follows: 
                    

1 2 uHF F F F f⎡ ⎤= ⎣ ⎦                 (16) 

where each Fi  is of size q × m (q number of restrictions 
on u and m dimension of u) and f is the last column of 
F, so that (15a) can be written as: 

                              
1

ˆ( 1 ) 0
uH

i
i

F u k i k f
=

+ − + ≤∑             (17) 

but 
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   1

0

ˆ ˆ( 1 ) ( 1) ( ); 1, ,
i

u

j

u k i k u k u k j k i H
−

=

+ − = − + Δ + = …∑     (18) 

and combining (17) with (18) yields: 

1 1 2 3

ˆ ˆ ˆ( 1) ( ) ( 1 ) ( 2 )

ˆ( 1 ) 0

u u u u

u

H H H H

l l l l
l l l l

H u

Fu k F u k k F u k k F u k k

F u k H k f
= = = =

− + Δ + Δ + + Δ + +

+ Δ + − + ≤

∑ ∑ ∑ ∑
…

(19) 

Now define  
Fi ll i

H
Fu=

=∑ ;   i=1,…,Hu,   F F F F= 1 2 Hu
  (20) 

Using (20) in (19), we have that (15a) can be expressed 
as a function of ∆U(k) as: 
           1( ) ( 1)  U k u k fΔ ≤ − − −F F                     (21) 

(b) Note that (15b) is equivalent to ( ) 1 0
TTG Y k⎡ ⎤ ≤⎣ ⎦ , 

then using (11) this constraint is written as: 
                 ˆ( ) ( 1) ( )

0
1

x k u k U k
G

Ψ + ϒ − +ΘΔ⎡ ⎤
≤⎢ ⎥

⎣ ⎦
              (22) 

Now writing G as G = [Γ  g], where g is the last column 
of G and Γ the matrix composed by the other columns 
of G, then (22) is expressed as: 
       ˆ( ) [ ( ) ( 1)]U k x k u k gΓΘΔ ≤ −Γ Ψ + ϒ − −      (23) 
(c) Finally, if in (15c) D is divided into 

1 1...
uHD D D w−⎡ ⎤= ⎣ ⎦

, where each Di is a q×m matrix, 

i=1,…,Hu-1  and w is the last column of D, this equation 
can be written as  
          

1 1... ( ) 1 0   
u

TT
HD D w U k−⎡ ⎤ ⎡ ⎤Δ ≤⎣ ⎦⎣ ⎦           (24) 

defining W D DHu
= −1 1 , equation (24) results in 

                                       ( )W U k wΔ ≤                      (25) 
Then, inequalities (21), (23), and (25) are gathered into 
the following single inequality: 

           1 ( 1)
ˆ( ) [ ( ) ( 1)]

u k f
U k x k u k g

W w

− − −⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ΓΘ Δ ≤ −Γ Ψ + ϒ − −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

F F
     (26) 

Therefore, the solution to this predictive control 
problem consists in the minimization of (14) in relation 
to ∆U(k), subject to the inequality constraint (26). This 
is a standard QP optimization problem and standard 
algorithms can be used for its solution. 

The control law is used in the receding horizon 
sense, i.e., at each sample time only the first m (where m 
is the control variable vector dimension) elements of 
ΔU(k) are used, i.e. 
         [ ]( ) 0 0 ( )opt m m m optu k I U kΔ = Δ         (27) 

where Im is an  identity matrix and 0m is a zero m × m 
matrix. 
C. Disturbance Model and Disturbance Rejection 
In irrigation canals, the main sources of disturbances 
are: implementation of a new distribution irrigation 
schedule, user withdrawals and weather variations, and 
they have influences on the pool levels observed as con-
stant disturbances in steady state. Thus, these distur-
bances can roughly be modeled as step variations. In our 

prototype, there is no withdrawal, but inflow variations 
at the head of the canal can be produced as disturbances, 
and such variations propagate to the downstream pools, 
modifying their inflows, and then their downstream lev-
els, under the form of constant disturbances. 

In Control Theory it is well known that the internal 
model producing a constant disturbance is an integrator 
(Ogata, 1991) and from the Internal Model Principle 
(Wonham, 1985) that in order to reject a constant dis-
turbance it is necessary that an integrator (i.e. the inter-
nal model of the constant disturbance) appears in the 
open loop transfer function. From the above discussion, 
we can propose as internal model of canal disturbances 
an integrator for each pool, and it is expressed as   
                  ( ) , ,        

1 1 1
s s sT T TIM z diag

z z z
⎛ ⎞= ⎜ ⎟− − −⎝ ⎠

       (28) 

where Ts is the sampling time. 
To satisfy the Internal Model Principle, the control-

ler will be designed using the augmented linear model, 
i.e. the identified linear model of the canal (2) and (5) 
plus the internal model of the disturbances (28). The 
state space realization of this augmented plant was ob-
tained as a serial connection between the linear model 
realization and the realization of the internal model of 
the disturbances resulting into the next state model rep-
resentation: 

                  ( 1) ( ) ( )       
( ) ( )                        

x k Ax k Bu k
y k Cx k

+ = +
=

                 (29) 

Now x represents the sate of the augmented plant. Val-
ues of A, B, C, are omitted do to space limitation, but 
they can be found in Aldana (2004).  

The interested reader can verify that the previous in-
ternal model is also efficient to model withdrawals as 
shown in Begovich et al. (2005).   

D. Specifications 
    The closed-loop canal must satisfy the following 
specifications to guarantee  the supply to the consumers, 
to avoid water spillage, and to protect the control struc-
tures: 
• Level variations must be less than 15% with respect to 
the level of the operating points. 
• The gate-opening rate should not exceed 1 cm/s. 
• The gate-opening limit is 80 cm. 
Expressing the last specifications as operational con-
straints, results in: 

            

1 2

3

( ) 10 10                   1,  2,  3
( )     0 80                  
( )   67 82       61.50 75.50   
   53.50 65.50

i

i

a cm u cm i
b cm u cm
c cm y cm cm y cm

cm y cm

− ≤ Δ ≤ =

≤ ≤
≤ ≤ ≤ ≤
≤ ≤

   (30) 

E. Design of the Predictive Controller 
The predictive controller design is based on the algo-
rithm described earlier. Next we mention the require-
ments of the algorithm that could be done offline, and 
then summarize the steps followed by the algorithm at 
each sampling time.  
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Requirements: 
Sampling time k: chosen equal to 10 seconds. 
I/O data: vector of levels y(k); vector of control gate 
positions  u(k);  vector of level references r(k). 
Model: the augmented model (A,B,C) given in (29). 
Synthesis parameters: given in Table 2. 
Operational constraints: given in (30) and their trans-
formation into the inequalities (15). 
Estimation ˆ( )x k : given by a deadbeat observer 
(Åström and Wittenmark, 1997).  
 
The steps followed by the algorithm at each sampling 
time are:  
1) Updates of the vectors of levels y(k), and inputs 
u(k).  
2) Estimation ˆ( )x k  from the observer using the in-
formation (y(k), u(k)). 
3) Prediction of Y(k) by implementing the equations 
(8) and (9).  
4) Generation of  T(k), ( )U kΔ  
5) Update of the constraint matrix of inequality (26)   
6) Minimization of (14) subject to (26) using a QP 
algorithm. 
7) Implementation of the control law ( )optu kΔ using 
the receding horizon strategy. 

In this work, the transformation of the operational 
constraints in (30) to the form needed for the algorithm 
follows the procedure cited in Ch. 2 of Maciejowski 
(2002), this transformation as well as the observer and 
predictor are programmed in Matlab. The minimization 
of (14) subject to (26), is developed using the function 
dantzgmp of Matlab. 

The real-time implementation is carried out with 
Lookout software to get and deliver information from/to 
the process. This information is used by Matlab for the 
iterative calculation of the control algorithm at each 
sample time. 

V. EXPERIMENTAL RESULTS  
The following experiments were carried on the labora-
tory canal described in Section 2. The operating points 
are stated in Table 1; the sample time is 10 seconds and 
the disturbances are step variations on the nominal in-
flow (80 l/s).  The control design is tested with the syn-
thesis parameters showed in Table 2, where I is the 
identity matrix.  

Figure 4, Fig. 5 and Fig. 6 show the downstream 
level responses (outputs) and the MPC control laws, 
when inflow disturbances act on the canal. The results 
of Fig. 4 are obtained when the first set of parameters 
showed at Table 2 is used. As it can be seen in Fig. 4,  a 

Table 2. MPC Synthesis parameters 
set Hw Hp Hu Q R 

1 1 100 10 300I 200I 
2 1 100 10 300I 50I 
3 1 100 10 600I 300I 

 
(a) 

 
(b) 

Fig. 4. Closed-loop system responses, when  the predictive 
controller is designed using the first set of parameters in 

Table 2: (a) Levels and the inflow disturbance (b) Predic-
tive control laws 

good compromise between speed in the disturbance 
rejection and smoothness in the control variables is ob-
tained. In Fig. 5, the second group of parameters of Ta-
ble 2 is tested. Faster disturbance rejection is presented 
but control variables are more demanded. In Fig. 6, the 
last group of parameters gives very smooth control law 
and not too fast disturbance rejection. In the three cases, 
adequate regulation of the downstream levels in pres-
ence of the input flow disturbances can be seen. Fur-
thermore, the gate openings do not exceed their physical 
limits, and the opening-rate remains below the specified 
maximum one. In general, an adequate performance is 
obtained in the closed-loop system. Moreover, from 
those experiments it can be seen, in a qualitative sense, 
that the characteristics of first and third groups of pa-
rameters are good options for a future MPC application 
in an irrigation canal in field. 

The inclusion of restrictions in the design allowed to 
satisfy easily the specifications, but as a counterpart, the 
algorithm is more complicated than an MPC without 
such restrictions. In our case, implementation in real-
time of this algorithm was relativity simple due to the 
use of a central computer and programs like Matlab and 
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Lookout. However, in many operational canals in irriga-
tion districts only PLC’s or SCADA systems are avail-
able. Then, an interesting future work is to evaluate the 
difficulty to implement the proposed algorithm in this 
context. Such implementation is indeed attractive due 
the potential capacity to manage long delays and con-
straints which are significant in those systems.  

 
(a) 

 
(b) 

Fig. 5. Closed-loop system responses, when  the predictive 
controller is designed using the second  set of parameters 
in Table 2: (a) levels and the inflow disturbance (b) Pre-

dictive control laws  

Even if in our prototype, delays are in fact quite 
small, this work has allowed to evaluate in real-time: the 
problem of implementation of the proposed algorithm, 
its regulation performance and its capacity to handle 
constraints.  

The interested reader can for instance consult refer-
ences Begovich et al. (2002) and Begovich, et al.  
(2005) to compare the performances here presented to 
those obtained on the same canal prototype when an 
LQG controller is applied on the one hand, or when a 
gain scheduling fuzzy control is implemented on the 
other hand. In those works the achieved performances 
are also quite satisfactory, but taking into account con-
straints in closed-loop operation requires a very careful 
choice in the design parameters, which makes it not 

obvious or systematic. This is even more difficult with 
more simple controllers such as PID.  

Although this work is not directly concerned with 
reducing water wastage, it is worth mentioning that this 
factor can be also improved via level regulation and a 
good irrigation schedule. 

 
(a) 

 

 
(b) 

Fig. 6. Closed-loop system responses, when  the predictive 
controller is designed using the third  set of parameters in 
table 2: (a) Levels and the inflow disturbance (b) Predic-

tive control laws  

VI. CONCLUSIONS 
A controller based on predictive control with constraints 
has been designed for a multi-pool irrigation canal pro-
totype, with the purpose to regulate the water level at 
the downstream end of each pool to a specified refer-
ence value, under inflow disturbances. The closed-loop 
real-time performance obtained with this control has 
been very satisfactory and the imposed constraints satis-
fied, although a simple linear model was used to design 
the controller. However, it is a subject for future studies 
to verify if such simple linear models obtained by iden-
tification are still capable to reflect all complex phe-
nomena such as infiltrations, slope changes, frictions, 
etc., found in actual operational canals. Although our 
model and prototype may appear to be quite simple 
w.r.t. an operational canal, the closed loop results which 
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have been obtained, represent a good starting point and 
show that significant efficiency could be achieved in 
irrigation canals by using Model Predictive controllers. 
Future work will be devoted to the design and imple-
mentation of an MPC controller for an operational 
Mexican Canal. 
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