
Latin American Applied Research 37:53-58 (2007)

53

AN OPEN-SOURCE TOOL FOR SYSTEMC TO VERILOG
AUTOMATIC TRANSLATION

J. CASTILLO, P. HUERTA and J. I. MARTÍNEZ

Universidad Rey Juan Carlos,
C/ Tulipan S/N, 28933, Mostoles, Spain,

{javier.castillo, pablo.huerta, joseignacio.martinez}@urjc.es,

Abstract−− As the complexity of electronic sys-

tems increases, new ways for describing these sys-
tems are proposed. One actual trend involves the use
of system level languages that allows the description
of the whole system in a higher abstraction level.
This type of methodology helps a designer to obtain
an appropriate Hw-Sw partition, where the Sw is
compiled to the target platform and the Hw is re-
fined to bring it down to a lower level of abstraction
in order to be synthesized. This last step usually re-
quires the use of a translation tool that from a de-
scription of the system in a system level modeling
language, converts it to an equivalent one in a stan-
dard Hardware Description Language, usually Ver-
ilog or VHDL. This works presents a tool that from a
SystemC RTL description generates its equivalent
Verilog code ready to be synthesized by any stan-
dard Verilog Synthesis Tool.

Keywords−− SystemC, Verilog, Translation.

I. INTRODUCTION
The increasing complexity of the electronic systems has
made necessary the exploration of new solutions in or-
der to reduce its development time.

One of this solutions is to use new description lan-
guages (OSCI, 2002; Celoxica, 2005; Xilinx,2006; Pel-
lerin and Thibault, 2002) which allow the designer to
describe the system in a higher level of abstraction.

From this high level description of the system, a tool
must provide a flow to reach the final silicon implemen-
tation. Following a traditional hardware-software
codesign flow (Chiodo et al, 1994) (Fig.1), the system
level description is profiled, and an appropriate hard-
ware-software partition is proposed. Then the software
has to be compiled to the targeted microprocessor. The
hardware high level implementation can be directly con-
verted into a working hardware using a proprietary syn-
thesizer, like Handel-C or CatapultC. Another approach
consist of rewriting it to obtain a lower and more de-
tailed level of abstraction appropriate for hardware syn-
thesis tools. This step is commonly made by hand with
the problems it represents (time cost, prone to errors,
etc.).

This work presents an open-source tool that taking
as input a hardware module described using a high level
description language, SystemC, gives as a result an

equivalent description in Verilog. This Verilog descrip-
tion can be synthesized using any standard RT synthesis
tools.

Hardware-Software
Partition

(Profiling)

Software Model Hardware Model

SynthesisCompilation

CoSimulation

Translation to a
standard HDL

Software
Generation

Software HardwareCoSimulation

Final System

System Level
Description

Figure 1. Traditional Hardware-Software CoDesign Flow

II. SYSTEMC

A. SystemC Overview
Nowadays hardware is usually described using HDLs
such as VHDL and Verilog. However, software and
system designers develop their code in C/C++. Hard-
ware/software codesign becomes a very hard task due to
the use of different languages at each abstraction level,
or even in the same level (IP exchange). In this context,
a single language that can be used in all the design
stages is needed.

SystemC is a library of classes for C++ and a simu-
lation kernel that provides all the features needed to
describe a system in all its abstraction levels and a ref-
erence platform for IP exchange. SystemC also provides
a library called the SystemC Verification Standard
(SCV, 2002). This library provides classes and methods
to build a verification methodology called Transaction
Model Style (TLM) based on the use of transactors
(Yuri et al, 2005). This verification methodology can be
used with designs made with other HDLs. Many EDA
vendors provide tools that allow SystemC to be mixed
with different languages.

Latin American Applied Research 37:53-58 (2007)

54

B. SystemC Design Flow
Estimations say that the main bottleneck of a traditional
design flow is the verification stage (Semiconductor
Industry Association, 2001). It is considered that at least
60% of the design effort is made in the verification
stage. Traditional verification schemes (Fig. 2) also
have the problem that the System Level Verification is
the last stage of the design, extending the critical path
and making architectural redesign almost impossible.

Figure 2. Traditional design flow

New solutions are proposed to overcome this prob-
lem. One is the Transaction Level Modeling Style (Fig.
3) described in the SystemC Verification Standard, that
starts the verification effort begins in parallel with the
system level design.

Figure 3. TLM design flow

The components developed in the system level de-
scription can be reused in the block verification step and
in the final verification step, where all the blocks are
replaced with their synthesizable models. Also, new
architectural optimizations can be evaluated with low
effort.

Using this methodology the verification effort can be
reduced significantly (Castillo et al, 2004) but still there
is a need for translating the SystemC hardware modules
to a synthesizable HDL after the block design and veri-
fication stages. Even though there are in the market
some tools that allow synthesizing SystemC, like Forte
Cynthesizer (Forte, 2004) or Synopsys Cocentric (Syn-
opsys), they are not free tools, which is especially rele-
vant for educational environments.

For an Open Source Language like SystemC seems
necessary to have the possibility of closing the design
flow using free tools. In the following sections an Open
Source Tool that produces a Verilog translation of the
SystemC RT hardware modules will be described.

III. SYSTEMC TO VERILOG TRANSLATION
The first version of the translator was entirely developed
using ANSI C. It was able of translating very simple
designs written under very strict rules. But when more
features were needed a new approach was necessary.
The version 0.1 of the translator was entirely rewritten
using Lex and Yacc (Levine et al., 1992) parsing tools.

Lex and Yacc tools help to extract the structure of
the SystemC files. Lex splits the source file into tokens.
These tokens are collected by Yacc, which recognizes
the tokens and executes the C code assigned to this to-
ken appearance.

The translator inputs are two files, called header and
implementation that describe a module. Only one mod-
ule can be declared in each header file.

The translation process is divided in two steps. In
the first step the implementation file is parsed. In the
second step the information from the first step is com-
bined with the information obtained by parsing the
header file to get the final Verilog translation.

A. Implementation File Parsing
In this first step the translator takes the module imple-
mentation file and uses the translatable RT subset de-
fined in (Synopsys, 2002). The implementation file con-
tains the implementation of the module and all the aux-
iliary functions required. The tool converts all the Sys-
temC code and functions inside the processes into Ver-
ilog. The local variables inside the modules and their
references are renamed, adding to the names the name
of the process in which they are declared. This is be-
cause Verilog doesn’t support local variables insides the
process, whilst in SystemC is not unusual to have dif-
ferent processes using local variables with the same
name, for instance, aux

Another task that is carried out in this first step is to
convert the structures data type into something Verilog
can understand because it is a data type not supported.
Structures are translated into local variables changing
the name of each element of the structure for the same
name plus the structure’s own name. All the references
to the structures inside the process code are also
changed to the new names.

Translating SystemC assignments to Verilog can be
difficult because SystemC can not distinguish between
signal blocking and non-blocking assignments. In Sys-
temC the only way to assign a value to a sc_signal is to
use the .write() method of the sc_signal class. The first
thing to analyze is that if this method produces a block-
ing or a non-blocking assignment to the signal. A simple
test to understand the behavior of the .write()method
was designed:
sc_signal < sc_uint < 8 > > a,b,c;

void test::test ()
{
if (reset.read ()){
 a.write(1);
 b.write(2);
 c.write(3);
 }else{
 a.write(c.read());
 b.write(a.read());
 }}

Running this simple piece of code shows that a is 3
and b is 1 after the first cycle signal. That means that the
.write() method has a non-blocking behavior and all

J. CASTILLO, P. HUERTA, J. I. MARTÍNEZ

55

assignments to a sc_signal in the Verilog translation
should use the non-blocking assignment operator (<=).

Another test was necessary to check the behavior of
the assignments to local variables:
void
test::test ()
{
 sc_uint<8> a,b,c;

 a=1;
 b=2;
 c=3;

 a=c;
 b=a;
}

As expected, the result was a is 3 and b is 3, there-
fore, the variable assignment states as a Verilog block-
ing assignment (=).

The module implementation file could also contain a
set of directives for the translator. These directives al-
low to set up and tune the behavior of the translator,
indicating which sections of the code should or
shouldn’t be translated (translate on/off) or specifying
code that has to be copied without translation into the
Verilog file (verilog begin/end).

Apart from translating processes and functions, this
first step also stores some information needed in the
final assembly step. This information concerns the sig-
nals that have been written inside the processes and will
be used later on to decide whether a signal is a reg or a
wire in the Verilog translation.

The output of this step is a set of files with the fol-
lowing information:

- name.sc2v and name_reg.sc2v: the Verilog
equivalent code and registers declaration of the
processes and functions of the module

- file_defines.sc2v: the C preprocessor calls inside
the module

- file_writes.sc2v: the signals written inside the
module

B. Header File Parsing
The second step of the translation takes the header file
of the module and the information generated by the first
step as input and generates the Verilog file.

The translator second step reads all the information
of the header file first using another Yacc parser and
stores it into linked lists data structures. Each of these
lists can include other lists. For example, the translator
has a list for all the processes of one module, where
each entry of that list includes information of its name,
type (sequential or combinational) and another list with
the signals in the sensibility list of the process.

There is a list for each of the following objects:
- Module Ports
- Module Signals
- Processes

- Sensitivity List of the Process
- Instantiated Modules

- Port Bindings
- Enumerated Types

- Enumerated members
- Auxiliary Functions

- Inputs and outputs for each function
When the parser has finished collecting information,

the generation of the Verilog file can start.
After writing the module name, all the ports with its

associated types have to be written. The translator has to
decide for each output if it has an associated register or
not. If the output is directly connected to an instance,
the output should not have an associated register. If not,
this output will be written to from a process and should
have the associated register. This is very easy to analyze
just looking at the instances list and the bindings of each
instance.

After the ports are declared the enumerated data
types have to be translated. This feature was incorpo-
rated at the request of many users and has been included
in version 0.2 to ease the design of state machines. Ver-
ilog doesn’t allow enumerated data types but as in the
case of structures it is not difficult to mimic its behav-
ior, using parameters in this case. For example the Sys-
temC enumerated variable:
 enum {S0,S1,S2,S3} state;

is translated into:
 parameter S3=0, S2=1, S1=2, S0=3;

 reg [1:0] state;

The translator automatically calculates the register
length to fit the number of elements of the enumerated
data type. It is necessary to be careful with enumerated
types because using the same element name in more
than one enumerated type will produce an error.

The signals used by the module are declared next. It
is compulsory to decide if the SystemC sc_signal should
be translated into a Verilog wire or reg signal type. The
way of doing this is to look at the file_writes.sc2v file
generated during the implementation file parsing. If the
signal has been written inside any process, the signals
will be translated into a reg type. If not, the signal was
declared to be connected to an instance and it is trans-
lated into a wire.

After finishing with all the signals and ports, the
next step is to write the hierarchy instantiations. This
step requires to read the list with all the information
about the instances and its bindings and write the
equivalent code to the Verilog file.

Next, the file_defines.sc2v which has all the pre-
processor directives (defines, conditional compilation
directives and macros) is read and written to the transla-
tion.

Finally the functions and processes code are written
down in the translation from the files generated during
the implementation file parsing, concluding with a Ver-
ilog equivalent file ready to be simulated and/or synthe-
sized.

Latin American Applied Research 37:53-58 (2007)

56

IV. DESIGN OF AN SYSTEMC AES-DES
CRIPTOPROCESSOR USING SC2V

 This section describes the complete design flow of an
AES/DES crypto processor, from the System Level
specification of the design, to the final implementation
on a prototype board using the SystemC to Verilog
translation tool.

A. System Design
The first step of the design process is to develop a

functional model which is a behavioral description of
the system. This model has no time and no implementa-
tion details about the final system. It only reflects the
required functionality of the whole system, and it will
be used in later verification stages as the golden model
for the designed blocks. This kind of model is called an
"Untimed Functional Model" (UTF) for the reasons
explained before.

Figure 4. Functional model

One of the most important parts of the verification
methodology is the testbench generation. Using SCV
features, a testbench that generates random keys and
data for the AES/DES models was designed. The trans-
actor takes the stimuli generated by the random test-
bench and applies them to the model. If the abstraction
level of the model is changed, the same testbench can
still be used by simply changing the transactor.

At this stage the cryptoproccesor model is a set of
C++ functions with a SystemC wrapper and sc_fifo
channels to connect them to the testbenches and the
display.

Before the module design phase can begin, it is nec-
essary to go down in the abstraction level. In this level,
information about the interfaces of the modules is
added, as well as a clock. In this case no accurate time
information is added to the model at this stage, because
no time specifications exist.

Figure 5. Pin accurate model

After the interfaces and time is added to the model
the blocks that compose the systems are described using
the SystemC language Synthesizable subset. To have a

synthesizable model of the system it was necessary to
describe the following blocks:

- Bus interface
- Controller of AES/DES module
- Random number generator
- DES encryption/decryption module
- AES encryption/decryption module

Figure 6. Cryptoprocessor modules

The bus interface depends on the system bus, it con-
nects the crypto-processor to a master. In this case, the
selected bus is a Wishbone compatible one.

The controller of AES/DES modules takes the con-
figuration word of the cryptoprocessor and generates the
signals to manage the AES/DES modules. It also takes
the data and the keys from the data registers and applies
them to the modules, writing back the ciphered block in
the output registers.

The random number generator is based on the
scheme (Tkacik, 2002) below, where an LFSR and a
CASR in parallel are used to generate a random number
generator with good statistical properties and a cycle
length of 2^80. It is important to notice that the seed of
the random number generator can be changed writing in
the data register of the random generator.

B. System Verification
To guarantee the IP quality, a complete verification en-
vironment must be developed.

Three verification levels are proposed:
- Block Level Verification
- Module Level Verification
- System Level Verification

A block is a component of the system that must be
verified before being integrated in a module. An exam-
ple of block could be the key generation block of the
DES and AES modules. In order to verify these blocks,
classic signal-oriented testbenches were applied.

Another verification level is the module one. In this
level the modules that compose the cryptoprocessor are
verified using a classic testbench as in the block level,
and also a random verification in the case of DES and
AES blocks. This module random verification is very
similar to the one used in the System level verification.
In both cases the random testbench applies stimuli to the
RT model to be verified and to the C code used as a
golden model.

The outputs of both modules are passed to the
checker that compares them. If a mismatch between the
data is found, an error is reported and the simulation

J. CASTILLO, P. HUERTA, J. I. MARTÍNEZ

57

ends. The test was executed with several different seeds
during long periods of time.

In the System Level case the testbench developed
for the System Level specification is reused by simply
changing the transactor functionality. At this level, the
transactor applies the stimuli to the RT synthesizable
design and to the C++ model of the cryptoprocessor
used as a golden model.

Figure 7. System Level Verification environment

B. Translation and On-Board Verification
After the design is validated using the simulation envi-
ronment, the design is translated to Verilog using the
translator. Now the design can be synthesized by any
standard tool, for example, Xilinx XST.

In Table 1, the number of SystemC lines of each
module that compose the system is presented. These
data offers an idea about the crypto-processor complex-
ity.

Table 1. Number of lines of translated cores

Core SystemC Lines
AES-128 2638
DES 4225
RNG 303

The advantages of using a design methodology
based in the use of Transaction Level Modeling Style
were described earlier. One of the main advantages
shown was that the verification environment could be
reused in other stages by only changing the transactor
functionality. In this work this concept is extended in
order to verify the functionality of the physical imple-
mentation over a development board.

Figure 8. On board verification

The Physical Transactor concept is the main fact in-
troduced in this level of verification.

This kind of transactor converts the data from the
UART on the board to the physical signals applied to
the cryptoprocessor ports. Another Physical Transactor
takes the outputs and send them back to the verification
environment through the UART.

This transactor in combination with the UART
works as a sc_fifo channel that blocks the simulation

until a data from the board arrives. This kind of model is
equivalent to an UTF model, where the sc_fifo channels
connected to the physical implementation are exchanged
by their equivalent models, made up of the UART and
the physical transactor.

As shown in the System Level verification stage, the
C++ model of the cryptoprocessor is connected in paral-
lel with the design under verification. The outputs gen-
erated by the board are sent back to the verification en-
vironment via the UART on the board and compared
with the ones generated by the C++ golden model by
the checker.

The system was downloaded to a Celoxica RC203
board with a VirtexII FPGA and tested successfully.

V. CONCLUSIONS AND FUTURE WORK
A tool that allows automatic translation from SystemC
RT to a Verilog equivalent description has been pre-
sented. The tool provides an easy path from a SystemC
description to a more appropriate HDL that can be syn-
thesized using any standard RT synthesis tools. This
allows closing the design flow using Open Source tools.

A complete design using SystemC design flow
which has been successfully implemented on a board
using the translator was also presented.

The tool is in a continuous improving process add-
ing new features and correcting bugs reported by the
people is using the tool around the world. Some of the
new features which would be included in the next re-
leases would be:

- Improved support for C preprocessor macros
- Support for C++ constructions:

- Templates
- Classes

- Improve support for structs:
- Arrays inside structs
- Nested structs

- Add up users requests!

The tool can be downloaded for free from:
http://www.opencores.org/projects.cgi/web/sc2v/overvi
ew.

This work has been supported by the Spanish
PROFIT and MEDEA+ program under FIT-0700000-
2003-930 contract.

REFERENCES
Castillo, J., P. Huerta and J.I. Martinez, “SystemC De-

sign Flow for a DES/AES CryptoProcessor”, In
WSEAS Transactions on Information Science and
Applications, Athens, 1, 193-198 (2004).

Celoxica, “Handel-C Language Reference Manual”,
(2005)

Chiodo, M., P. Giusto, H. Hsieh, A. Jurecska, L.
Lavagno and A. Sangiovanni-Vincentelli, “Hard-
ware-Software Codesign of Embedded Systems”. In
IEEE Micro, 26-36, August (1994)

Forte, “Cynthesizer Datasheet” http://www.forteds.com/
products/cynthesizer_datasheet.pdf (2004)

Latin American Applied Research 37:53-58 (2007)

58

Levine, J., T. Mason and D. Brown, “Lex & Yacc, Sec-
ond Edition”, Oreilly (1992)

OSCI, “SystemC 2.1”, http://www.systemc.org, (2002)
Pellerin, D. and S. Thibault, “Practical FPGA Pro-

gramming in C”, Prentice-Hall (2002)
SCV, “SystemC Verification Standard Specification”

(2002)
Semiconductor Industry Association, “International

Technology Roadmap for Semiconductors”, http://
public.itrs.net/Files/2001ITRS/home.htm, (2001)

Synopsys, “Cocentric System Studio Datasheet”,
http://www.synopsys.com/products/cocentric_studio
/cocentric_studio.html (2006)

Synopsys, “Describing Synthesizable RTL in SystemC”
(2002)

Tkacik, T., “A hardware random generator”. In Revised
Papers from the 4th International Workshop on
Cryptographic Hardware and Embedded Systems,
CHES 2002, LNCS 2523, 450-452, USA (2002)

Xilinx, “Xilinx System Generator for v.8.1 User Guide”
(2006)

Yuri, E., J. Tatsuda, N. Khan and C. Dietrich, “Transac-
tion- based simulation using SystemC/SCV”,
http://www.eetasia.com/ (2005)

Received: April 14, 2006.
Accepted: September 8, 2006.
Recommended by Special Issue Editors Hilda Larrondo,
Gustavo Sutter.

