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Abstract−− Localization and Mapping are fun-

damental problems in the field of mobile robotics 
that have been receiving considerable attention of 
the scientific community in the last ten years. Most 
of the work in this area is developed using personal 
computers and it still a challenge to execute these 
algorithms on embedded systems. This paper de-
scribes the analysis and embedded implementation 
of particle filter and occupancy grid algorithms, used 
for localization and mapping respectively. Experi-
mental results and performance analysis were ob-
tained using the softcore Altera Nios II running on 
Stratix II FPGA devices.  

Keywords −− Embedded Systems, Mobile Robot-
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I. INTRODUCTION 
In the last years a considerable amount of research in 
mobile robotics has been focusing on localization and 
mapping. Particularly, the problem of simultaneous lo-
calization and mapping (SLAM) has been receiving at-
tention from the researchers in the field. A large part of 
the approaches for these problems are based on prob-
abilistic theory.   

Some works describe theoretical proofs of the con-
vergence of the problem (Dissanayake et al., 1999); ex-
perimental verification of the adaptation of the robot 
behavior to improve the precision (Leonard and Feder, 
1999) and different implementations for robots in exter-
nal and internal environment (Leonard and Feder, 1999) 
(Castellanos et al., 1999). However, those solutions are 
developed to solve a conceptual problem that in most 
cases requires a large amount of computation to be exe-
cuted in real time. As most of these implementations are 
design to be executed on personal computers, embedded 
solutions for these problems still pose challenges due to 
their computation limitations.  

This paper presents an embedded implementation for 
particle filter and occupancy grid algorithms, used re-
spectively for mobile robot localization and mapping. 
Our approach is based on code originally developed in C 
language, which was analyzed and modified to be exe-
cuted on an embedded system based on a field pro-
grammable gate array (FPGA) device.  

The rest of the paper is organized as follows. Section 
II presents an introduction for the FPGA technology. 

Section III describes the particle filter algorithm, used 
for robot localization. A brief description of the occu-
pancy grid algorithm used for the mapping is presented 
in the Section IV. Section V describes the implementa-
tion of the algorithms in FPGA. Section VI presents the 
experimental results and Section VII shows the conclu-
sions and proposes some future work.     

II. FPGA TECHNOLOGY 
With the evolution of the micro-electronics, FPGA 
becomes an intermediate element among the General 
Purpose Processors and Application Specific Integrated 
Circuit (ASIC) (Dehon,1996).     

A specific application project, in general, is very 
inefficient or inappropriate for others applications. Due 
to the possibility of reconfiguration of the circuits, a 
FPGA can operate as a variety of specific architectures 
(Cappelatti, 2001).       

A FPGA is a digital integrated circuit that contains a 
regular structure of configurable cells and a 
programmable interconnection, and can be used to 
implement arbitrary digital systems, limited for the 
number of cells and available interconnections. When a 
FPGAs is configured for some application, it can be 
viewed like ASICs (Hauck, 2000).     

As in general-purpose processors, FPGAs are pro-
grammed after the production to solve many com-
putational tasks. However it is possible to explore the 
parallelism of the application program implementing 
different parts of the program, inside of the FPGA. As 
an example, some parts of the program can be executed 
in a regular general-purpose processor (which can be 
placed inside the FPGA) and the intensive computa-
tional part of the code can be executed on dedicated 
hardware parts of the FPGA. This can result on a 
considerable performance gain when compared to 
traditional software implementations executed on 
general-purpose processors.   

III. PARTICLE FILTER 
Particle filter is a sampling-based estimated method de-
rived from the Bayes filter (Dellaert et al., 1999). In the 
mobile robotics localization context, each particle corre-
sponds to the possibility of the robot being at a specific 
position. This localization method requires some previ-
ous knowledge about the environment, usually repre-
sented as a map. Particles propagation (action model) is 
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based on odometric information plus an added Gaussian 
noise to compensate for possible odometry errors. As 
robot’s sensors acquire information about the environ-
ment, that information along with the map data is used 
to weight the particles according to their likelihood to be 
in the correct position (observation model). After the 
particles being weighted, a resample step takes place. 
All the particles are sampled based on their weight. High 
weighted particles have more chanced to be chosen for 
the resampling than the low weighted ones. In this man-
ner, only height weighted particles (high likelihood to 
represent the correct) will remain and given enough 
number of particles, this technique is proved to con-
verge. 

IV. OCCUPANCY GRID 
Occupancy grid mapping is a very popular technique 
introduced by Elfes (1986). In this algorithm, the envi-
ronment is represented by a two-dimensional grid of 
small cells. Each cell can assume one of the 3 possible 
states: occupied, free, or unknown. The state of each cell 
is determined based on the probability of it being occu-
pied or not. The occupancy probability of each cell is 
updated as range information is obtained from the sen-
sors. For each range bean, a line is traced between the 
robot's position and the next obstacle on that particular 
direction. Every cell crossed by the line is considered 
empty and the cell in which the line ends is considered 
occupied.  

Due to its probabilistic formulation, the occupancy 
grid algorithm can successfully handle range sensor 
noise. A disadvantage of this approach is the scalability. 
In order to have a good representation for the environ-
ment the size of the grid cells has to be small. Large 
environments require a very high number of grid cells, 
which imply in a huge amount of memory. This algo-
rithm can handle indoor environments well but it is not 
suitable for large outdoors or 3D maps. Another disad-
vantage of the occupancy grid mapping is the incapabil-
ity to manage uncertainty in the robot's pose. This algo-
rithm assumes that the robot's position is known during 
the mapping task, which is not true in most real situa-
tions. The environment representation by grid cells still 
widely used by the mobile research community, mostly 
in conjunct with other mapping techniques. The occu-
pancy grid implementation presented in this paper is 
based on Howard (2004). 

V. EMBEDDED IMPLEMENTATION 
The original software implementations for localization 
and mapping described in the previous section were ana-
lyzed to accomplish the embedded implementation. For 
that, we analyzed the codes to identify intensive compu-
tational functions that could be optimized through recon-
figurable computing.   

The Altera gprof tool (Gprof, 2005) was used to 
identify the most computing intensive functions and to 
modify them for partial execution in hardware. Based on 
the results generated by gprof, it was possible to identify 
very intensive computational functions, such as particle 

filter sampling, normal distribution calculation, and 
mean calculation used through the algorithms. Figure 1 
illustrates the processing percentage of the most relevant 
functions of the software.     

Data Flow Graphs (DFGs) of the mean and normal 
functions were generated for better understanding and 
analysis of the execution of the most intensive computa-
tional functions. The original code of the filter of parti-
cles developed by (Wolf et al., 2005)  in C was modified 
suppressing the threads of the function, so that could be 
analyzed correctly with the Gprof (Gprof, 2005) of 
Linux.   

 
Fig. 1. Percentage of the execution time for each function of 

the particle filter algorithm 

The three most intensive computational functions in 
the original implementation are responsible for the exe-
cution of several operations in flotation point. To im-
prove the execution of the algorithm in FPGA for an 
embedded solution the unit of flotation point, developed 
in the Reconfigurable Computing Laboratory (LCR) of 
the University of Sao Paulo denominated FPMU (Rodri-
gues, 2002), was added as a custom instruction to the 
Nios II (Fig 3).    

The FPMU is a unit of flotation point developed in 
VHDL (IEEE-754 standard) capable to execute the fol-
lowing instructions directly in hardware: addition, sub-
traction, division and multiplication with real numbers 
of 32 bits. In the implementation in VDHL, the signs 
dataa[31 ..0] and datab[31 ..0] receives the entrance op-
erands, result[31 ..0] receives the result and n[7 ..0] is 
the code of the instruction to be executed. The main 
component in the FPMU also presents control signs, 
such as clk (clock), clk_en (clock enable) start, reset and 
done. The specification of the FPMU is compatible with 
the extended architecture of personalized instructions of 
the Nios II, and described in Fig. 2.   

VI. EXPERIMENTAL RESULTS 
The gprof tool was used to compare the original soft-
ware to the embedded implementation. The original 
code was compiled and executed on a PC loaded with a 
AMD Athlon (TM) XP 2000+ (1660MHz) processor, 
256 KB of cache, 1G of RAM, and Linux operating sys-
tem. The embedded implementation was tested in Altera 
stratix FPGA device. The robot and sensors input data 
for the experiments was obtained at the USC campus 
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(Wolf et al., 2005), using a segway RMP robot and laser 
range finders. The trajectory followed by the robot dur-
ing the data collection consists of a 2 km run, which 
included 3 complete loops.   

 
Fig. 2. The block diagram of hardware FPMU extended to the 

Altera Nios II processor 

Although the execution time of the functions exe-
cuted in FPGA was longer, the results were satisfactory 
considering that the clock of the processor Nios II used 
to execute the embedded implementation was consid-
erably slower than the one in the PC (50MHz and 
1666MHz respectively). Table 3 shows the processing 
time of the three embedded functions that were modified 
to execute instructions of flotation point in hardware. 
Other important point to be taken to account is the en-
ergy consumption, which is much smaller in the Nios II 
than in the PC processor. Similar analysis was generated 
for the algorithm occupancy grid. The three more inten-
sive computational functions were identified and ana-
lyzed in the Table 4.  

 
Fig. 3. NIOS II connected to the FPU.  

Research projects related to this subject are still in 
process in the Laboratory of Reconfigurable Computing 
at USP (Gonçalves et al., 2003). The use of the unit of 

flotation point FPU was not used as personalized in-
struction of Nios II as shown in the Fig 3 but as an ex-
ternal component to the processor.  

Our laboratory very recently obtained a Pioneer ro-
bot with a laser range finder (Fig. 4).  Soon the localiza-
tion and mapping experiments will be performed at USP 
campus, allowing experiments on different types of en-
vironment and with different parameter combinations 
(Figs. 5). 

Table 1. Profile generate by nios2-elf-gprof through of exe-
cution of the particle filter on a PC 

Function % Time Time(sec.) N Call 
rand_position() 0.41 0.24 100 

rand() 0.26 0.15  
normal() 0.24 0.14 9900 

calc_lh_map() 0.21 0.12 1 
floor() 0.20 0.12  

do_action_model2() 0.19 0.11 9900 
sample() 0.08 0.05 9900 

run_filter() 0.06 0.03 1 
calc_mean() 0.04 0.02 99 

Table 2. Profile generate by gprof through of execution in 
FPGA 

Function % Time Time(sec.) N Call 
rand_position() 50.00 0.11 100 

normal() 18.18 0.04 9900 
run_filter() 9.09 0.02 1 
sample() 4.55 0.01 9137 

do_action_model2() 0.00 0.00 9900 
arred() 0.00 0.00 1191 

round_angle() 0.00 0.00 198 
update_data_file() 0.00 0.00 100 

calc_mean() 0.00 0.00 99 

Table 3. Performance comparison of the particle filter exe-
cuted on a PC and in the Altera NIOS II processor 

 Function  (Wolf, et al., 2005) Embedded 
 % of time Time (s) % of time  Times (s)

normal() 45.16% 0.04 s 0.24% 0.14 s 
sample() 18.89% 0.01 s 0.08% 0.05 s 

calc_mean() 16.23% < 0.01 s 0.04% 0.02 s 

VII. CONCLUSIONS 
In this paper we presented embedded implementa-

tions for localization and mapping algorithms (particle 
filter and occupancy grid respectively) for mobile ro-
bots. FPGA technology was used in the embedded im-
plementations to validate the experiments. Analyses of 
the original code (designed to run on a PC) were gener-
ated to identify intensive computational functions of the 
program to be executed in reconfigurable hardware. The 
execution in hardware obtained considerable perform-
ance gain. It is also important to mention that the em-
bedded implementation of the localization and mapping 
algorithms present much smaller energy consumption 
when compared to the PC equivalent ones. It is a very 
important point since energy is obtained from batteries 
on most autonomous mobile robots. 
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As future work, we plan to improve the performance 
of the embedded algorithms combining pure hardware to 
sets of general-purpose processors on the same FPGA 
chip. Other mobile robotic algorithms such as potential 
fields and topological mapping are currently being ana-
lyzed to have their implementation embedded on FPGA 
devices. 
 
Table 4. Performance comparison of the occupancy grid exe-
cuted on a PC and in the Altera NIOS II processor 

Function (Howard, 2004) Embedded 
 % of 

time 
Time (s) % of 

time 
Time 

(s) 
omap_add() 84.62% 0.11 s 0.04% 0.20 s 

pose2_add_pos() 15.38% 0.02 s 0.01% 0.10 s 
omap_alloc () < 0.01% < 0.01 s < 0.01% 0.01 s 

 

 
Fig. 4. Laser unit connected to the Stratix FPGA board.  

 

 
Fig. 5. Stratix FPGA board connected to a Pioneer 3 - 

DX robot 
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