
Latin American Applied Research 37:31-34 (2007)

31

ANALYSIS AND IMPLEMENTATION OF LOCALIZATION AND
MAPPING ALGORITHMS FOR MOBILE ROBOTS BASED ON

RECONFIGURABLE COMPUTING

M. C. SACCHETIN, J. J. LOPES, D. F. WOLF, J. L. SILVA and E. MARQUES

Computer Systems Department, University of São Paulo
Av. Trabalhador São-carlense, 400 – centro - CEP: 13566-970, São Carlos - SP, Brazil

e-mail:{sacchet.joelmir.denis.jsilva.emarques}@icmc.usp.br
http://www.icmc.usp.br

Abstract−− Localization and Mapping are fun-

damental problems in the field of mobile robotics
that have been receiving considerable attention of
the scientific community in the last ten years. Most
of the work in this area is developed using personal
computers and it still a challenge to execute these
algorithms on embedded systems. This paper de-
scribes the analysis and embedded implementation
of particle filter and occupancy grid algorithms, used
for localization and mapping respectively. Experi-
mental results and performance analysis were ob-
tained using the softcore Altera Nios II running on
Stratix II FPGA devices.

Keywords −− Embedded Systems, Mobile Robot-
ics, Localization, Mapping.

I. INTRODUCTION
In the last years a considerable amount of research in
mobile robotics has been focusing on localization and
mapping. Particularly, the problem of simultaneous lo-
calization and mapping (SLAM) has been receiving at-
tention from the researchers in the field. A large part of
the approaches for these problems are based on prob-
abilistic theory.

Some works describe theoretical proofs of the con-
vergence of the problem (Dissanayake et al., 1999); ex-
perimental verification of the adaptation of the robot
behavior to improve the precision (Leonard and Feder,
1999) and different implementations for robots in exter-
nal and internal environment (Leonard and Feder, 1999)
(Castellanos et al., 1999). However, those solutions are
developed to solve a conceptual problem that in most
cases requires a large amount of computation to be exe-
cuted in real time. As most of these implementations are
design to be executed on personal computers, embedded
solutions for these problems still pose challenges due to
their computation limitations.

This paper presents an embedded implementation for
particle filter and occupancy grid algorithms, used re-
spectively for mobile robot localization and mapping.
Our approach is based on code originally developed in C
language, which was analyzed and modified to be exe-
cuted on an embedded system based on a field pro-
grammable gate array (FPGA) device.

The rest of the paper is organized as follows. Section
II presents an introduction for the FPGA technology.

Section III describes the particle filter algorithm, used
for robot localization. A brief description of the occu-
pancy grid algorithm used for the mapping is presented
in the Section IV. Section V describes the implementa-
tion of the algorithms in FPGA. Section VI presents the
experimental results and Section VII shows the conclu-
sions and proposes some future work.

II. FPGA TECHNOLOGY
With the evolution of the micro-electronics, FPGA
becomes an intermediate element among the General
Purpose Processors and Application Specific Integrated
Circuit (ASIC) (Dehon,1996).

A specific application project, in general, is very
inefficient or inappropriate for others applications. Due
to the possibility of reconfiguration of the circuits, a
FPGA can operate as a variety of specific architectures
(Cappelatti, 2001).

A FPGA is a digital integrated circuit that contains a
regular structure of configurable cells and a
programmable interconnection, and can be used to
implement arbitrary digital systems, limited for the
number of cells and available interconnections. When a
FPGAs is configured for some application, it can be
viewed like ASICs (Hauck, 2000).

As in general-purpose processors, FPGAs are pro-
grammed after the production to solve many com-
putational tasks. However it is possible to explore the
parallelism of the application program implementing
different parts of the program, inside of the FPGA. As
an example, some parts of the program can be executed
in a regular general-purpose processor (which can be
placed inside the FPGA) and the intensive computa-
tional part of the code can be executed on dedicated
hardware parts of the FPGA. This can result on a
considerable performance gain when compared to
traditional software implementations executed on
general-purpose processors.

III. PARTICLE FILTER
Particle filter is a sampling-based estimated method de-
rived from the Bayes filter (Dellaert et al., 1999). In the
mobile robotics localization context, each particle corre-
sponds to the possibility of the robot being at a specific
position. This localization method requires some previ-
ous knowledge about the environment, usually repre-
sented as a map. Particles propagation (action model) is

Latin American Applied Research 37:31-34 (2007)

32

based on odometric information plus an added Gaussian
noise to compensate for possible odometry errors. As
robot’s sensors acquire information about the environ-
ment, that information along with the map data is used
to weight the particles according to their likelihood to be
in the correct position (observation model). After the
particles being weighted, a resample step takes place.
All the particles are sampled based on their weight. High
weighted particles have more chanced to be chosen for
the resampling than the low weighted ones. In this man-
ner, only height weighted particles (high likelihood to
represent the correct) will remain and given enough
number of particles, this technique is proved to con-
verge.

IV. OCCUPANCY GRID
Occupancy grid mapping is a very popular technique
introduced by Elfes (1986). In this algorithm, the envi-
ronment is represented by a two-dimensional grid of
small cells. Each cell can assume one of the 3 possible
states: occupied, free, or unknown. The state of each cell
is determined based on the probability of it being occu-
pied or not. The occupancy probability of each cell is
updated as range information is obtained from the sen-
sors. For each range bean, a line is traced between the
robot's position and the next obstacle on that particular
direction. Every cell crossed by the line is considered
empty and the cell in which the line ends is considered
occupied.

Due to its probabilistic formulation, the occupancy
grid algorithm can successfully handle range sensor
noise. A disadvantage of this approach is the scalability.
In order to have a good representation for the environ-
ment the size of the grid cells has to be small. Large
environments require a very high number of grid cells,
which imply in a huge amount of memory. This algo-
rithm can handle indoor environments well but it is not
suitable for large outdoors or 3D maps. Another disad-
vantage of the occupancy grid mapping is the incapabil-
ity to manage uncertainty in the robot's pose. This algo-
rithm assumes that the robot's position is known during
the mapping task, which is not true in most real situa-
tions. The environment representation by grid cells still
widely used by the mobile research community, mostly
in conjunct with other mapping techniques. The occu-
pancy grid implementation presented in this paper is
based on Howard (2004).

V. EMBEDDED IMPLEMENTATION
The original software implementations for localization
and mapping described in the previous section were ana-
lyzed to accomplish the embedded implementation. For
that, we analyzed the codes to identify intensive compu-
tational functions that could be optimized through recon-
figurable computing.

The Altera gprof tool (Gprof, 2005) was used to
identify the most computing intensive functions and to
modify them for partial execution in hardware. Based on
the results generated by gprof, it was possible to identify
very intensive computational functions, such as particle

filter sampling, normal distribution calculation, and
mean calculation used through the algorithms. Figure 1
illustrates the processing percentage of the most relevant
functions of the software.

Data Flow Graphs (DFGs) of the mean and normal
functions were generated for better understanding and
analysis of the execution of the most intensive computa-
tional functions. The original code of the filter of parti-
cles developed by (Wolf et al., 2005) in C was modified
suppressing the threads of the function, so that could be
analyzed correctly with the Gprof (Gprof, 2005) of
Linux.

Fig. 1. Percentage of the execution time for each function of

the particle filter algorithm

The three most intensive computational functions in
the original implementation are responsible for the exe-
cution of several operations in flotation point. To im-
prove the execution of the algorithm in FPGA for an
embedded solution the unit of flotation point, developed
in the Reconfigurable Computing Laboratory (LCR) of
the University of Sao Paulo denominated FPMU (Rodri-
gues, 2002), was added as a custom instruction to the
Nios II (Fig 3).

The FPMU is a unit of flotation point developed in
VHDL (IEEE-754 standard) capable to execute the fol-
lowing instructions directly in hardware: addition, sub-
traction, division and multiplication with real numbers
of 32 bits. In the implementation in VDHL, the signs
dataa[31 ..0] and datab[31 ..0] receives the entrance op-
erands, result[31 ..0] receives the result and n[7 ..0] is
the code of the instruction to be executed. The main
component in the FPMU also presents control signs,
such as clk (clock), clk_en (clock enable) start, reset and
done. The specification of the FPMU is compatible with
the extended architecture of personalized instructions of
the Nios II, and described in Fig. 2.

VI. EXPERIMENTAL RESULTS
The gprof tool was used to compare the original soft-
ware to the embedded implementation. The original
code was compiled and executed on a PC loaded with a
AMD Athlon (TM) XP 2000+ (1660MHz) processor,
256 KB of cache, 1G of RAM, and Linux operating sys-
tem. The embedded implementation was tested in Altera
stratix FPGA device. The robot and sensors input data
for the experiments was obtained at the USC campus

M. C. SACCHETIN, J. J. LOPES, D. F. WOLF, J. L. SILVA, E. MARQUES

33

(Wolf et al., 2005), using a segway RMP robot and laser
range finders. The trajectory followed by the robot dur-
ing the data collection consists of a 2 km run, which
included 3 complete loops.

Fig. 2. The block diagram of hardware FPMU extended to the

Altera Nios II processor

Although the execution time of the functions exe-
cuted in FPGA was longer, the results were satisfactory
considering that the clock of the processor Nios II used
to execute the embedded implementation was consid-
erably slower than the one in the PC (50MHz and
1666MHz respectively). Table 3 shows the processing
time of the three embedded functions that were modified
to execute instructions of flotation point in hardware.
Other important point to be taken to account is the en-
ergy consumption, which is much smaller in the Nios II
than in the PC processor. Similar analysis was generated
for the algorithm occupancy grid. The three more inten-
sive computational functions were identified and ana-
lyzed in the Table 4.

Fig. 3. NIOS II connected to the FPU.

Research projects related to this subject are still in
process in the Laboratory of Reconfigurable Computing
at USP (Gonçalves et al., 2003). The use of the unit of

flotation point FPU was not used as personalized in-
struction of Nios II as shown in the Fig 3 but as an ex-
ternal component to the processor.

Our laboratory very recently obtained a Pioneer ro-
bot with a laser range finder (Fig. 4). Soon the localiza-
tion and mapping experiments will be performed at USP
campus, allowing experiments on different types of en-
vironment and with different parameter combinations
(Figs. 5).

Table 1. Profile generate by nios2-elf-gprof through of exe-
cution of the particle filter on a PC

Function % Time Time(sec.) N Call
rand_position() 0.41 0.24 100

rand() 0.26 0.15
normal() 0.24 0.14 9900

calc_lh_map() 0.21 0.12 1
floor() 0.20 0.12

do_action_model2() 0.19 0.11 9900
sample() 0.08 0.05 9900

run_filter() 0.06 0.03 1
calc_mean() 0.04 0.02 99

Table 2. Profile generate by gprof through of execution in
FPGA

Function % Time Time(sec.) N Call
rand_position() 50.00 0.11 100

normal() 18.18 0.04 9900
run_filter() 9.09 0.02 1
sample() 4.55 0.01 9137

do_action_model2() 0.00 0.00 9900
arred() 0.00 0.00 1191

round_angle() 0.00 0.00 198
update_data_file() 0.00 0.00 100

calc_mean() 0.00 0.00 99

Table 3. Performance comparison of the particle filter exe-
cuted on a PC and in the Altera NIOS II processor

 Function (Wolf, et al., 2005) Embedded
 % of time Time (s) % of time Times (s)

normal() 45.16% 0.04 s 0.24% 0.14 s
sample() 18.89% 0.01 s 0.08% 0.05 s

calc_mean() 16.23% < 0.01 s 0.04% 0.02 s

VII. CONCLUSIONS
In this paper we presented embedded implementa-

tions for localization and mapping algorithms (particle
filter and occupancy grid respectively) for mobile ro-
bots. FPGA technology was used in the embedded im-
plementations to validate the experiments. Analyses of
the original code (designed to run on a PC) were gener-
ated to identify intensive computational functions of the
program to be executed in reconfigurable hardware. The
execution in hardware obtained considerable perform-
ance gain. It is also important to mention that the em-
bedded implementation of the localization and mapping
algorithms present much smaller energy consumption
when compared to the PC equivalent ones. It is a very
important point since energy is obtained from batteries
on most autonomous mobile robots.

Latin American Applied Research 37:31-34 (2007)

34

As future work, we plan to improve the performance
of the embedded algorithms combining pure hardware to
sets of general-purpose processors on the same FPGA
chip. Other mobile robotic algorithms such as potential
fields and topological mapping are currently being ana-
lyzed to have their implementation embedded on FPGA
devices.

Table 4. Performance comparison of the occupancy grid exe-
cuted on a PC and in the Altera NIOS II processor

Function (Howard, 2004) Embedded
 % of

time
Time (s) % of

time
Time

(s)
omap_add() 84.62% 0.11 s 0.04% 0.20 s

pose2_add_pos() 15.38% 0.02 s 0.01% 0.10 s
omap_alloc () < 0.01% < 0.01 s < 0.01% 0.01 s

Fig. 4. Laser unit connected to the Stratix FPGA board.

Fig. 5. Stratix FPGA board connected to a Pioneer 3 -

DX robot

REFERENCES
Cappelatti, E.A., “Implementação do Padrão de

Barramento PCI para Interação Hardware/Software
em Dispositivos Reconfiguráveis”, Master Thesis,
Pontifícia Universidade Católica do Rio Grande
do Sul (2001).

Castellanos, J.A., J.M.M. Montiel, J. Neira and J.D.
Tardos, “Sensor influence in the performance of
simultaneous mobile robot localization and map
building”, In Proc. 6th International Symposium on
Experimental Robotics, Sydney, Australia, 203-212
(1999).

Dehon, A., "Reconfigurable Architecture for General-
Purpose Computing", Ph.D. thesis, Massachusetts
Institute of Technology (1996).

Dellaert, F., D. Fox, W. Burgard and S. Thrun, “Monte
Carlo Localization for Mobile Robots”, In proceed-
ings of IEEE International Conference on Robotics
and Automation, 99-114 (1999).

Dissanayake, M.W.M.G, P. Newman, H.F. Durrant-
Whyte, S. Clarck and M. Csobra, “An Experimen-
tal and Theoretical Investigation Into Simultaneous
Localization and Map Building (SLAM)”. In Proc.
6th International Symposium on Experimental Ro-
botics, Sydney, Australia, 171-180 (1999).

Elfes, A., “Sonar-based real-world mapping and naviga-
tion”, IEEE Transactions on Robotics and Automa-
tion, 3, 249-265 (1986).

Gprof, online documentation http: //www.gnu.org/
software/binutils/manual/gprof-2.9.1/html_mono /
gprof. html (2005)

Hauck, S., “Reconfigurable Computing: A Survey of
Systems and Software”, ACM Computing Surveys,
34, 171-210 (2000).

Howard A., “Simple Mapping Utilities” http://www-
robotics.usc.edu/~ahoward/pmap/. (2004).

Leonard, J.J. and H.J.S. Feder, “Experimental Analysis
of Adaptive Concurrent Mapping and Localization
Using Sonar”. In Proc. 6th International Sympo-
sium on Experimental Robotics, Australia, 213-222
(1999).

Rodrigues, M.I., “Projeto de uma unidade aritmética de
ponto flutuante - Padrão IEEE 754 - implementada
em computação reconfigurável”, Dissertação
(Mestrado) - Instituto de Ciências Matemáticas e
de Computação ICMC-USP (2002).

Wolf, D.F., A. Howard and G. Sukhatme, “Towards
Geometric 3D Mapping of Outdoor Environments
Using Mobile Robots", In Proceedings of IEEE/
RSJ International Conference on Intelligent Robots
and Systems, 1258-1263 (2005).

Gonçalves, R.A., P.A. Moraes, J.M.P. Cardoso, D.F.
Wolf, M.M. Fernandes, R.A.F. Romero and E.
Marques, “Architect-R: A System for Reconfigur-
able Robots Design”. In ACM Symposium on Ap-
plied Computing-Embedded Systems: Applications,
Solutions, and Techniques, Melbourne, USA, 679-
683 (2003).

Received: April 14, 2006.
Accepted: September 8, 2006.
Recommended by Special Issue Editors Hilda Larrondo,
Gustavo Sutter.

