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Abstract−− In this paper, a new procedure for the 

design and analysis of Heat and Power Plants is pre-
sented. In this formulation, thermodynamic solutions 
obtained by maximizing the plant efficiency are used 
to find the economic design of the plant. In fact, by 
applying the Karush-Kuhn-Tucker conditions it is 
possible to relate thermodynamic and economic solu-
tions. A formal context for the use of thermodynamic 
models in solving complex optimization problems 
that arise in the area of synthesis and design of 
chemical processes is introduced. The proposed 
methodology has been successfully applied for two 
plant arrangements. Rigorous models have been 
used to model the plant equipments. The obtained 
results are presented in order to illustrate the pro-
posed procedure. 

Keywords−− Thermodynamic solutions, optimal 
design of combined power and heat plants, optimiza-
tion.  

I. INTRODUCTION 
To address the problem of design of Combined Heat 

and Power plants, several methods have been reported 
in the literature. These methods generally follow two 
basic approaches: those based on thermodynamic targets 
and heuristic rules (Thermodynamic and Thermo-
economic approach), and those based on optimization 
techniques (Mathematical Optimization).  

The traditional way of designing Combined Heat 
and Power Plants is to maximize the thermal efficiency 
of the whole system. For this purpose analysis methods 
based on both the first and second law of thermodynam-
ics have been extensively discussed in the literature 
(Linnhoff and Townsend, 1982; Linnhoff et.al, 1982, 
Colmenares and Seider, 1987). The analysis reveals the 
thermal inefficiencies of the various subsystems of the 
plant. Once the inefficiencies have been identified, heu-
ristics rules are applied to improve the performance of 
the plant. These heuristics form the basis for both pa-
rameter and structural modifications to the plant. The 
capital cost of the plant is assessed after the thermally 
best design is achieved. 

Thermo-economic approach (Valero et.al, 1986, 
1989; Frangopoulos C., 1990a, 1990b; Tsatsaronis G. 
1990, 1991) is an extension of the thermodynamic ap-
proach. The capital cost of the units and the prices of 

product streams of the units are included in the second 
law analysis model in the plant. This approach tries to 
address the trade-off between thermal efficiency and 
capital expenditure. 

Mussati et al. (2001) recently presented a “hybrid 
methodology” involving thermodynamic solutions as 
starting points to optimize the Multiple Stage Flash 
(MSF) desalination system. This equiptment was rigor-
ously modelled and the objective was to find the con-
figuration and operating conditions to minimize the total 
annual cost of the system which is composed by the 
investment cost (heat transfer area and flashing chamber 
area) and operating cost (vapour consumption). 

In this paper the “hybrid methodology” presented in 
Mussati et al. (2001) is extended to the case of cogene-
ration plants. Precisely, an additional term ìn the objec-
tive function which includes investment cost of power 
production is introduced. New relationships between 
thermodynamic and economic solutions are derived for 
power and heat production plants. A formal context for 
the use of thermodynamic models in solving complex 
optimization problems that arise in the area of chemical 
processes design is introduced. 

This work is organized as follows. Section II intro-
duces the problem definition. Section III briefly de-
scribes the processes to be analyzed. Section IV pre-
sents the solution procedure and Section V illustrates a 
numeric example through a case study. Finally, Section 
VI presents the conclusions and major challenges for 
further research.   
 

II. PROBLEM DEFINITION 
The problem is stated as follows. Given are the cost 

data, the process heat demand (or fresh water produc-
tion and seawater conditions: temperature and composi-
tion). The goal of the problem is to determine the opti-
mal operating conditions of a cogeneration plant at 
minimum cost per unit time. Note that only the process 
heat demand (or fresh-water demand) is given while the 
electricity production is a free variable because a benefit 
of the electricity produced by the systems is considered.   

 

III. PROCESS DESCRIPTION  
Figure 1 shows the configuration system to be con-

sidered and analyzed in this paper.  
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Fig. 1. A simple configuration of a 
combined power and heat plant 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The configuration system to be considered and ana-

lyzed in this paper is illustrated in Fig. 1. As is shown, 
the cogeneration plant consists of a gas turbine followed 
by an air pre-heater that uses part of the thermal energy 
of the gases leaving the turbine, and a heat-recovery 
steam generator system in which the required steam is 
generated.  
 
 

IV. HYBRID METHODOLOGY  
In this methodology, thermodynamic optimal solu-

tions obtained from problem P2 are used as a starting 
point to achieve the “economic” optimal solution of 
problem P1. Both problems are presented in Table 1.1.  

 
Table 1. Economic and Thermodynamic problems. 

Economic Model (P1): 

Min. TAC = Min. [CA K1 At(x) + Cf K2 Mf(x)  + ... 

..+(CW K3  – PW  K4)  W(x) ] 

 subject to:   Gi(x) = 0 

                        Hj(x) ≤ 0 

x ∈ X       X is an open nonempty set 

Gi(x)        equality constraint i  

Hj(x)        inequality constraint j 

Gi(x) refer to the mass-energy balances and design 
equations while inequality constraints Hj(x), for exam-
ple, are used to avoid overcross of temperature.  

 

 

Thermodynamic Model (P2): 

          Maximize [W(x) / Mf (x)] 

          subject to:  At (x) - A0  ≤ 0  (a) 

Gi(x) = 0               (b) 

Hj(x) ≤ 0                (c) 

x ∈ X        X is an open nonempty set 

Gi(x)        equality constraint i  

Hj(x)        inequality constraint j 

 
where CA, Cf, CW and PW are known and refer to the 
unitary cost of heat transfer area ($/m2), fuel unitary 
cost ($/GJ), electricity production cost and sell price of 
the electricity produced by the system, respectively. 
W(x), Mf (x) and At(x) refer to the generated power 
(electricity), fuel consumption and total heat transfer 
area of the system. A0 is a model parameter. Finally, the 
constants K1, K2, K3 and K4 are unit conversion factors 
and involve the capital recovery factor, the lower heat-
ing value of the fuel and the number of hours of plant 
operating per year.    

Simplified cost functions were assumed to compute 
capital and operation costs. Both models were imple-
mented in General Algebraic Modeling System GAMS. 
The generalized reduced gradient algorithm CONOPT 
2.041 was used as NLP solver. The mathematical model 
involves more than 50 variables and 60 constraints (in-
cluding equality and inequality constraints). 

Under certain hypotheses, it is possible to obtain re-
lationships relating the solutions of P1 and P2 problems 
by applying the classical duality theory and the Karush-
Kuhn-Tucker KKT conditions. Refer to Appendix I for 
the complete derivations.  

According to Table 1, the objective of the proposed 
P2 problem is to find the optimal distribution of the total 
heat exchange area [At(x)] between the power genera-
tion cycle PGC (back-pressure cycle) and the process, in 
order to obtain the maximum efficiency of the system 
which is defined as the ratio between W(x) and Mf(x). 
The objective here is to maximize the efficiency of the 
system subject to different A0 values. 

Then, a family of thermodynamic solutions can be 
obtained by solving P2 problem for different At(x) val-
ues. Then, these solutions can be efficiently used not 
only to initialize the “economic” problem P1 but also to 
predict the range for the optimal values of the main 
variables of the model (power, total heat transfer area, 
fuel, among others). The idea is based on the thermody-
namic optimization subject to physical size constraints 
[Mussati et al. (2001), Bejan A. (1999), Aguirre P. and 
Scenna N. (1991)].  
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According to Appendix I, the following conditions 
must hold in order to assure that solutions obtained from 
problem P1 and problem P2 are identical: 
 
Cf K2 /  [CW K3 – PW  K4] = [W(x) / Mf]    (1) 

 
CA K1 / [CW K3 – PW  K4] = µ* Mf     (2) 

where µ* refers to the lagrange multipliers related to the 
constraint (a) of the thermodynamic problem P2.  

By solving the problem P2 for different total heat 
transfer area values (parameter A0) the constitutive parts 
of the Thermodynamic Costs such as: µ* Mf vs. At(x) 
and W(x)/ Mf(x) vs. At(x) are obtained (Fig. 3a, 3b). 
Then, the “thermodynamic costs” given by (1) and (2) 
can be computed and the range of values for the main 
problem variables can be predicted (e.g. total heat trans-
fer area, fuel consumption, generated power).  

Note that the family of “thermodynamic” costs re-
ported in Fig. 3a is universal because it is independent 
from geographic and contingency factors and they have 
a general validity.  

Given a set of cost parameters (CA, CW, PW, Cf), two 
situations can occur when the relationships (1) and (2) 
are computed.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In situation (A), the real cost ratio corresponds to 
only one point of the “thermodynamic costs” (Fig. 3a). 
In this case, the starting point determined by eq. (1) and 
eq. (2) satisfies simultaneously the solution of both P1 
and P2 problems. Nevertheless, it should be noted that it 
is a rare case. 

Other situation occurs when eq. (1) and eq. (2) de-
termine two points on the curve of the “thermodynamic 
costs” defining a range of values as initial conditions 
(Fig. 3b). In this case the relations (1) and (2) “bound” 
the optimal values for power production, fuel consump-

tion and total heat transfer area. This case is more fre-
quent (Situation B). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
According to the situations explained above, several 

ways are possible to be used in order to initialize effi-
ciently the P1 problem. Two alternative initialization 
procedures are:  

a) Continuation method from the “thermodynamic 
costs” to the “real cost” based solution. From the values 
corresponding to one point inside on the range predicted 
by (1) and (2), a simple Continuation Method is used by 
perturbing the cost parameter from the thermodynamic 
costs to the real ones used in the actual objective func-
tion. This evolution is easy taking as starting point the 
solution of P2.  
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b) To adopt a solution in the range given by eq. (1) 
and eq. (2) as starting point to solve the problem P1.  
Both options have been successfully applied to the con-
figuration systems described in Section 3. 

Finally, it is important to notice that both problems 
(P1 and P2) differ only on the objective function (equal 
constraints) and they are equally complex to solve. 
Nevertheless, it is possible to find many useful relation-
ships and properties associated to the thermodynamic 
model which can be used efficiently to facilitate the 
initialization of economic problems [Mussati (2003), 
Scenna and Aguirre (1991)].   

 

V. RESULTS AND DISCUSSION   
In this section the optimal solution obtained for the 

system illustrated in Fig. 1 is presented.  
Table 2 shows the cost data for the optimization 

problem.  
The following thermodynamic costs are obtained by 

applying eq. (1) and (2): 
 
CA K1/[CW K3- PW K4] = 0.172 
 
Cf K2/[CW K3 - PW K4] = 110800 
 

Then, from Fig. 3b and Fig. 3c and by using the 
thermodynamic costs, lower-upper bounds for the main 
problem variables are obtained. Therefore, the economic 
problem was solved by using the “initialization” proce-
dures mentioned previously. 
 
Table 2. Problem Parameters 
Cost data  

Capital Recovery Factor  0.182 y-1 

Plant operation time  8000 h/y 

Heat transfer area cost [CA] 100 $/m2 

Fuel cost [Cf] 2.68 10-3 $/Kmol 

Sell price for the electricity pro-

duced [PW]  

8.92 10-6 $/[KJ s] 

 
Table 3 shows the lower-upper bounds and the opti-

mal values for the main variables of the problem. 
The initial values reported in Table 3 are average 

values within the range determined by eq. (1) and eq. 
(2).  

According to the results presented in Table 3, a good 
prediction of the initialization values for the main opti-
mization variables is performed by the proposed meth-
odology. 

On the other hand, problem P1 was also solved for 
situation (A) described in section IV in order to verify 
the relationships presented in this paper. For this, we 

fixed an At value and computed the corresponding set 
of thermodynamic cost using Fig. (3a) and (3b). Then, 
the problem P1 is solved for these costs and initialized 
using the solution corresponding to problem P2 for the 
given At value. From the obtained result, it is possible 
to verify that both solutions are equal. We emphasize 
again that the situtation where the real costs are at the 
same time the thermodynamic costs is not usual in the 
real world.  

Table 3. Optimal values of the main optimization 
variables 

 Initial 
value 

Lower 
value 

Optimal 
value 

Upper 
value 

W [KJ/s] 23200.00* 17500.00 27830.56 28900.00
Mf [Kmol/s] 1.71 10-1* 1.57 10-1 1.81 10-1 1.85 10-1 
Atotal [m2] 46500.00* 31000.00 59870.12 62000.00
Air flow-
rate 
[Kmol/s] 

5.144 4.12 7.148 9.01 

Exit temp. 
from AC 
[K] 

405.304 380 449.2 600 

Text_PRE 
[K] 

948.910 612.3 793.454 950.2 

W_AC  
[KJ/s] 

16133.32 10129.5 31700.40 54000.6 

W_GT 
[KJ/s] 

39333.318 29000.8 60700.40 80152.3 

*values corresponding to initialization way b) described 
in Section 4. 
 

Finally, given the cost data, the same procedure has 
been successfully applied to determine the optimal op-
erating conditions for the process illustrated in Fig. 4. 
As it is shown, the process consists of a back-pressure 
steam turbine coupled to the MSF deslator system, re-
sulting in fresh water production. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Again, good lower and upper bounds as well as 
starting points for the optimization algorithm are deter-
mined by applying the developed relationships.   

4
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VI. CONCLUSIONS 
A new strategy involving and “hybrid” algorithmic 

procedure for the optimization of combined power and 
heat plants is presented. The procedure uses optimal 
solutions obtained from a “thermodynamic method” to 
find the “economic solution”. The proposed hybrid 
methodology has been successfully applied to determine 
the optimal design for different sets of costs and for 
structures illustrated in Fig. (1) and (4).   

As is shown in the example presented in this paper, a 
good prediction of the initial values for the main opti-
mization variables is performed by the proposed meth-
odology. However, it should be mentioned that the 
drawback of this approach could be the number of prob-
lems to be solved in order to construct the optimal curve 
for the “thermodynamic” costs (Fig. 3a, 3b, 3c). Never-
theless, a set of useful thermodynamic heuristics derived 
from the universal thermodynamic properties (Scenna 
and Aguirre, 1991) can be applied to construct these 
curves relatively easily.  For example, one of the "ther-
modynamic heuristics" previously presented in Mussati 
(2003) is used to solve the system configuration illus-
trated in Fig. 4. In fact, the following relationship (Tj - 
Tj-1) / tv = K,  (temperature gradient between stages di-
vided by the temperature of the condensing vapor)  re-
main  constant for all the stages. So, knowing the K 
value it is possible to initialize the temperature profiles 
for the feed, distillate and brine streams. Then, enthal-
pies of all streams and stages can be initialized taking 
into account this profile. Using this property, feasible 
solutions are found in few iterations for problem P2, 
facilitating the convergence of the optimization algo-
rithm. 

Even though the mentioned property is valid for 
problem P2, it is difficult to prove it from a mathemati-
cal point of view. This heuristic is related with several 
publications discussing the optimal temperature gradient 
for heat transfer in several processes [Alebrahim and 
Bejan (1999) Bejan (1999); Tondeur and Kvaalen 
(1987)]. Also, useful heuristics that could be used for 
initialization phase for power cycles (electricity genera-
tion) can be found in Scenna and Aguirre (1987) and 
Mussati et al. (1997).  

Although the preliminary results obtained by the 
“thermodynamic” procedure are good it is necessary to 
extend it to other functionality costs in order to obtain 
more realistic solutions. For this, re-derivations of the 
“thermodynamic” costs should be developed and will be 
considered in future works. 
 

APPENDIX 

Table 4. Thermodynamic and Lagrange Problems 

Thermodynamic Model (P2): 

Maximize [f(x) = W(x)/Mf (x)] 

subject to:    

At(x) - A0  ≤ 0     (a) 

Gi(x) = 0              (b)  

Hj(x) ≤ 0              (c) 

x ∈ X       X is an open nonempty set 

Gi(x)        equality constraint i  

Hj(x)        inequality constraint j 

Lagrange Problem for P2: 

L_P2(x, gi, hj) = [W(x) / Mf(x)-μ* (At(x)-A0) - giGi(x) - 
hj Hj(x)]      

where: 

μ* Lagrange multiplier to the total area constraint    (a) 

gi   Lagrange multiplier to the equality constraint i    (b) 

hj  Lagrange multiplier to the inequality constraint j (c) 

Assuming that:  

(a) f(x), Gi, Hj are differentiable,  

(b) x* to be a feasible solution and, 

(c) At(x*)-A0=0 (active constraint),  

the Karush-Kuhn-Tucker (KKT) conditions for P2 are:  

- ∇[W(x*) / Mf(x*)] + μ* ∇[At(x*)-A0] + gi ∇[Gi(x*)] 
+ hj ∇[Hj(x*)] = 0,                 (A.1) 

Gi(x*) = 0                (A.1.1)    

Hj(x*) ≤ 0                (A.1.2)    

hj Hj(x*) = 0    (A.1.3) 

μ* (At(x*)-A0) = 0;     (A.1.4) 

μ* ≥ 0  ;  hj  ≥ 0   (A.1.5) 

μ*, gi and hj are the Lagrangian multipliers. Constraints 
(A.1.1) and (A.1.2) are known as feasibilty conditions 
while constraints (A.1.3) and (A.1.4) are referred to as a 
complementary slackness conditions. Note that the mul-
tipliers μ* and hj associated with the inequality con-
straints are nonnegative, whereas the multipliers associ-
ated with the equality constraints are unrestricted in 
sign.  

The first term of the condition (A.1) can be re-
written as follows: 

[W(x*)/Mf(x*)] = [∇[W(x*)/ Mf(x*)] - W(x*) / M2
f
 (x*)  

∇Mf(x*)]                      (A.2) 

Substituting (A.2) into (A.1) and multiplying by 
Mf(x*) ≠ 0 the obtained expression, we obtain: 

-∇[W(x*)] + W(x*) / Mf(x*) ∇[Mf(x*)] + Mf(x*) 
[μ*∇[At(x*)-A0]] + gi ∇[Gi(x*)] +  hj ∇[Hj(x*)] =0 

(A.3)
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Table 5. Economic and Lagrange Problems 

Economic Model (P1): 

Min.[CAK1At(x)+Cf K2 Mf(x*)+(CWK3–PWK4) W(x)] 

subject to:      

Gi(x) = 0 

Hj(x) ≤ 0 

Lagrange Problem for P1: 

L_P1(x, gi, hj) =   [CA K1 At(x) + Cf K2 Mf(x) + (CW 
K3 – PW K4) W(x) + gi Gi(x) + hj Hj(x)] 

The Karush-Kuhn-Tucker conditions for P1 problem 
is given by: 

∇[L_P1(x, gi, hj)] = 0         (A.4) 

Taking into account Lagrange function and eq. 
(A.4), the following expression is obtained:  

CA K1 ∇[At(x*)] + Cf K2  ∇[Mf(x*)] + [CW K3 – PW  

K4]  ∇[W(x*)] + gi ∇[Gi(x*)] + hj ∇[Hj(x*)] = 0 

     (A.4.1) 

where: 

Gi(x*) = 0                (A.4.1.1)       

Hj(x*) ≤ 0                (A.4.1.2)       

hj Hj(x*) = 0    (A.4.1.3) 

μ* ≥ 0  ;  hj  ≥ 0   (A.4.1.4) 

Note that P1 and P2 problems differ between them 
in the objective function and constraint related to the 
total heat transfer area (A.1.4). 

If eq. (A.4.1) is divided by [CW K3 – PW  K4], the 
following expression is obtained: 

– ∇[W(x*)] + Cf K2 / [CW K3 – PW K4] ∇[Mf(x*)] 

+CAK1/[CWK3–PW K4] ∇[At(x*)]+gi 

∇[Gi(x*)]+hj∇[Hj(x*)] = 0                (A.5) 

By comparing eq. (A.3) and (A.5), problem P1 and 
P2 have equivalent solutions if the following relation-
ships are satisfied:  

Cf K2 /  [CW K3 – PW  K4] = [W(x) / Mf]          (A.6) 

and 

CA K1 / [CW K3 – PW  K4] = µ* Mf      (A.7) 

On the other hand, the Lagrangian Dual for P2 
(maximum in this case) provides the following relation-
ship: 

∇[W(x*) / Mf (x*)] / ∇At(x*) = μ*       (A.8) 

[∇W(x*)/Mf (x*)-W(x*)/M2
f(x*)∇Mf

 (x*)]/∇At(x*)=μ*
                                            (A.9) 

The following expression is obtained by substituting 
(A.9) into (A.7): 

CA K1 / [CW K3 – PW K4] = [∇W(x*) / Mf (x*)- 

W(x*)/M2
f
 (x*) ∇Mf

 (x*)] / ∇At(x*)  Mf 

CA K1 / [CW K3 – PW K4] = [∇W(x*) - W(x*)/Mf
 (x*) 

∇Mf
 (x*)] / ∇At(x*)                      (A.10) 

Then, if (A.10) is divided by (A.6), the resulting ex-
pression is: 

CA K1 /[Cf K2] = [Mf /W(x)] [∇W(x*)/∇At(x*) - 

[W(x*)/Mf
 (x*)] ∇Mf

 (x*) / ∇At(x*)]          (A.11) 

Equations (A.6) and (A.7) or (A.10) and (A.11) pro-
vide the necessary conditions to assure the equivalence 
between the solutions of P1 and P2 problems. CA , K1 , 
Cf , K2 , CW , K3 , PW , K4 are data of the problem.  
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