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Abstract − In this paper, a real application of opti-
mal control of a hot rolling mill is presented. It is used 
the state space model formulation in the minimization 
of the strip thickness variations. It is presented the 
simulation results of the control model, which is com-
pared with industrial real data from process controled 
by traditional techniques. The results of the simula-
tions lead to a less output thickness variations com-
pared with the real industrial data.  

Keywords− optimal control, modelling, hot rolling 
mill. 

I. INTRODUCTION 
In this work, a thickness output control for a strip roll-
ing mill process is proposed. The proposed scheme has 
the knowledge that permits the application of optimal 
control techniques. 

It was developed a versatile environment for simula-
tions that was used in the analysis the behaviour of a 
rolling stand. The results was used for validation com-
pared with real rolling stand data . 

The simulation is an important tool for simplified 
dynamic analysis of a rolling mill Stand, allowing easier 
the controllers validation. 

In this introduction the control problem is described. 
The following topics present the conventional control, 
the optimal control structure, the optimal control struc-
ture with the integral action proposed and results of the 
proposed controller compared to real data. 

The rolling mill process consists of introducing a 
strip inside two rotating rolls causing a permanent de-
formation in this strip, it is called thickness reduction. 
The stands, and rotary rolls, are the machines that make 
the rolling mill process. A Tandem Rolling Mill is a set 
of rolling mill stands. Figure 1 shows a scheme of two 
simple rolling mill stands with four rolls each one and 
with thickness adjustment systems by screws position-
ers. The rolls in contact with the strip are the work rolls. 
The rolling mill stands are constituted by four rolls, two 
work rolls and two of  back-up. In this paper the rolling 
mill physical phenomena is done by the work rolls  The 
strip plate from the previous processes (flat product or a 
coil), is introduced in the gap of the work rolls, which is 
smaller than the thickness of the strip. This gap is de-
termined by set point of the screws that positions the 
rolls. 

These rolls drag the strip to the Stand roll bite, re-
ducing its thickness. This strip has to leave the actual 
stand and enter in the next until the desired thickness is 
reached and is coiled in the output of the last Stand. 

  
Fig. 1: Rolling mill stands escheme 

The main motivation of this work is the reduction of 
the output thickness variations of any of two input proc-
ess variables disturbance: strip temperature and input 
strip thickness. Fig. 2 shows three graphics of real roll-
ing mill process. In Fig. 2 (a) we observe the rolling 
force and the cold zones indicated by arrows, that are 
due to skid marks at the furnaces. In Fig. 2 (b) we can 
see the temperatures and in Fig. 2 (c) the consequent 
exit thickness. 

These cold zones have greater deformation resis-
tance and increases the rolling mill force in the stand. 
This variations in the rolling mill force produce varia-
tions in the stand stretching, leading to variations in the 
output strip thickness at the stand. 

Observing the output temperature of the rolling mill 
stand, it can be seen low temperature zones that are the 
skid marks previously mentioned. On the other hand, 
from the beginning to the end of the process a decreas-
ing temperature is observed. This thermal lose produces 
a proportional increasing in the rolling force and in the 
output strip thickness as presented in Fig. 2 (c), being 
the temperature variations and the input thickness the 
mainly responsables of the variations in the rolling force 
altering the output strip thickness . 

 

 
Fig. 2: Strip cold points. 
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II. CONVENTIONAL CONTROL - FORCE FEED 
FORDWARD (FFF) 

The force feed-forward (FFF) thickness control tech-
nique is based in the detection of hardness fluctuations 
in the material as it passes through the first finishing 
stand, and the data sent from the setup model  

Keeping the gap constant at that stand, differences in 
hardness are reflected as roll force variations. Therefore, 
if material flows is continuously monitored, it is possi-
ble to adjust the gap of the next stands prior to the arri-
val of the disturbance. 

Calculations are made every 0.1 sec. by dividing the 
strip in slices. For every slice reaching the first stand, 
the roll separating force is read. The exit thickness that 
the strip should have leaving each stand, is calculated 
for the current hardness and the thermal evolution along 
the tandem mill. 

Exit thickness is calculated in such a way that keep 
constant roll force at the last two stands, in order to 
avoid affecting strip shape. Since the temperature of the 
material at the last stands is known the entry thickness 
to them are evaluated in a way that thinner thickness 
correspond to colder slices and vice-versa. 

Thickness in the intermediate stands are computed to 
maintain load distribution defined by the setup model. 
Once thickness and temperature at each stand have been 
determined, roll force can be calculated. 

For every slice is calculated the same set of data and 
stored in the control computer memory buffers. The 
tracking of the slices as they flow through the stands 
allows the system to know their current location. Gap 
and a roll speed adjustments are defined for the slice 
that is to reach any given stand at the time that equals 
mill drivers response time. 

Deviations measured at the thickness gage are used 
to make a fast correction at the last stand and calculation 
adjustments are done in order to keep the previous load 
distribution. 

The FFF scheme is shown in Fig. 3.  

III. PROPOSED CONTROL 

In order to develop the control law in the last two 
Stands we applied optimal control techniques with inte-
gral action on the model represented in state space for-
mulation. Fig. 4 shows the proposed control scheme. 

 

 
Fig. 3: Force Feed Forward Control 

 

 
Fig. 4: Proposed Optimal control in the last two stands. 

For the considered system our control inputs are 
Δgin

(1) , ΔVin
(1) , Δgin

(2) , the controlled outputs are Δh2
(1), 

Δσ1, Δh2
(2), and the measured outputs are Δh2

(1), Δσ1, 
Δh2

(2), ΔP(1) y ΔP(2). The main control objective is to 
maintain the strip output thickness variation (Δh2) closer 
to zero, for any temperature or strip input thickness 
variation in the system. 

All input variable deviation is considered a distur-
bance and the control system should maintain the thick-
ness variation closer to zero acting on gap variation 
(Δgin), which is our control variable of the output thick-
ness variation (Δh2). 

Similar actions are taken for tension variations 
which depends on the amount of strip accumulated  be-
tween the last two Stands F9 and F10. This tension is a 
function of the difference between the  strip output and 
input speeds on the Stands F9 and F10 respectively. In 
our case this tension is controlled by the rolls tip speed 
variation of the Stand F9. 

In this case, in literature one can find successful ap-
plications of linear MIMO-(multi-input multi-output) 
controllers to multi-stand rolling mills, which, in fact, 
overcome the deficiencies of the classical single-loop 
control concepts ,see, e.g., Grimble and Hearns (1998) 
and Hoshino et al. (1988). 

A. Analytical Process Modeling 
In this work we presented a mathematical model for the 
last Stands F9 and F10 of the tandem rolling mill, to 
evaluate the proposed control technique. (FFF system 
makes the thickness adjustment in the last two Stands), 
the analytical model used is for the validation, by simu-
lation, of the results obtained. 

Those results are compared with real values meas-
ured in the rolling mill stands controlled by the FFF 
technique. (Bryant, 1973; Ginzburg , 1989). 

To obtain an approximated rolling model, we 
worked with Orowan and Alexander theories (Orowan, 
1944; Alexander, 1972), which appears more reliable to 
obtain the rolling mill force, being able to be used in a 
wide set of conditions of strip rolling. The mathematical 
model was fit and calibrated with values measured in 
real process, getting a closer response to the real force 
value, this model is represented in a general form by Eq. 
(4) and the sliding by Eq. (5).  



F. G. ROSSOMANDO, J. DENTI FILHO 

201 

B. Basic model equations  
The implemented mathematical model considers the last 
two rolling stands, since FFF control makes the thick-
ness adjustment in the preceeding ones. In our case we 
make the thickness adjustment by optimal control tech-
nique, using the mathematical model expressed in the 
state space form. The output thickness of each Stand is a 
function of the rolls gap and the stand streching  

 
( )

( ) ( )
2 ( )

i
i i

i

Ph g
K

= + , (1) 

where: 
( ) :i  Rolling mill stand i=1 (F9), i=2 (F10). 

( )
2 :ih  Output strip thickness of the stand (i). 
( ) :ig  Rolls gap of the stand (i) 
( ) :iP  Roling mill force of the stand  (i). 
( ) :iK  Elasticity Modulus of the Stand (i). 

The derived strip tension between the Stands is a 
function of the difference between the strip output and 
input speed on Stands F9 and F10: 

 ( )(1) (2)1
2 1

d E V V
dt L
σ

= − , (2) 

where: 
1 :σ  Strip tension between stands F9 and F10. 
:E  Strip Young modulus  21.000 N/m 
:L  distance between Stands (i). 5.486 m. 
(1)

2 :V  output strip velocity of the Stand F9. 
(2)

1 :V  input strip velocity of the Stand F10. 
The volume continuity of the strip in the rolls gap is 

defined as 
 ( ) ( ) ( ) ( )

1 1 2 2.i i i iV h V h= . (3) 
The rolling mill force is resented by Eq. (4). 
 ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 1 2, , , , , ,i i i i i i i iP P h h S Tσ σ μ= , (4) 
where: 

( )
2 :iσ  output strip tension on the Stand (i) 
( ) :ig  rolls gap for the Stand (i). 
( ) :iμ  friction Coeficient on the  Stand (i). 
( ) :iS Yield stress on the  Stand (i). 

Sliping function is defined like: 
 ( )( ) ( ) ( ) ( )

1 2 1, ,i i i if f h h σ= . (5)

C. Model basic considerations 
i) The main consideration is that the control is applied 

when a strip exists between both stands, this means, 
that the previous moment to the entrance of the strip 
in the last stand is not considered. 

ii) We considered the finite variations of the nominal 
values. For example variable x, being Δx the finite 
variation and x* the nominal value. 

iii) We have also considered that the rolling force is a 
function of the input thickness, output thickness, 
strip temperature and strip tension between Stands 
(Pedersen, 1995; Denti, 1994; Hoshino et al., 1988). 
The sensitivity curves show the rolling mill force 

variation:  
(1) (1) (1) (1)

1 1 2 2 3 1 4
(2) (2) (2) (2)

5 1 6 2 7 1 8

. . . .

. . . .
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β σ β β β
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Δ = Δ + Δ + Δ + Δ

 (6) 

The coefficients of the linear functions are: 
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(7)

iv) The sliding variation is a function of the input and 
the output thickness, and the strip tension which is 
represented by equations (8) and (9).:  
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. . .
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The coefficients are: 
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(9)

v) The strip output speed variation is expressed by the 
sliding variation coefficients and by the roll tip 
speed:  

 
( )
( )

(1) *(1) (1) *(1) (1)
2

(2) *(2) (2) *(2) (2)
2

1 . .

1 . .

V f V V f

V f V V f

Δ = + Δ + Δ

Δ = + Δ + Δ
 (10) 

vi) The controlled variables are not affected directly by 
the tip speed of the last stand. Then we have ΔV2=0. 

vii) Each actuator has its own dynamic that can be ap-
proximated by a first order system expressed as: 

 
( )

( ) ( )
i

i i
g in

dgT g g
dt

= −  (11) 

 
( )

( ) ( )
i

i i
v in

dVT V V
dt

= −  (12) 

viii) The variables Δh1(1) ΔT(1) and ΔT(2) will be con-
sidered as system disturbances; 

ix) Considering the transport delay between F9 and F10, 
the output strip thickness variation on the Stand F9 
is equal to the input strip thickness variation on the 
Stand F10. The delay time is equal to Td=L/(V+ΔV) 
then Δh2

(1)=Δh1
(2).exp(-s.Td). where s is the Laplace 

operator. 
The general model structure represented in the state 

space is shown in equation (13) 
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where the input, states, output and disturbance vectors 
are:  
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w . 

The coefficients needed to generate the state space 
matrixes are:  
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The matrixes A,B,C,F,E1,E2 and E3 are: 
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The previous model is converted to discrete time 
state space with sample time of to=0.1 seg.  

( ) ( ) ( ) ( )
( ) ( ) ( )
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1k k k k
k k k
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⎪ ′= +⎨
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To demonstrate that the process is totally controllable 
we construct the controllability matrix Mc (Kuo, 1992; 
Ogata, 1996; Grimble et al., 1998; Kuchen et al., 2000). 

⎡ ⎤⎣ ⎦
2 3

cM = B´ A´.B´ A´ .B´ A´ .B´ . (15)
We obtained that the matrix rank Mc is equal to the 
process order demonstrating that it is completely con-
trollable. In order to prove that the system is completely 
observable, this is, if the state vector can be determine 
from the measurement of the output vector during a 

finite time interval, we define matrix Mo as: 
T2 3⎡ ⎤⎣ ⎦oM = C´ C´.A´ C´A´ C´A´ . (16)

Where Mo matrix rank is equal to the process order, that 
confirm it is completely observable. 

For the controller design we look for a state transi-
tion matrix to obtain the best possible process response 
with addition of an integral action to reduce the process 
stationary state error. 

The inclusion of the integral action increases the 
system order, if the system is of 4th order and the num-
ber of  feedback variables with  integral action is 3 then, 
the new system order is 7 (4+3) and the new state vector 
for the calculus of the optimal integral regulator will 
have a dimension equal to 7 (4+3). 

To this new extended order, the considered model is 
still observable and controllable. The new state vector 
can be defined as ( ) [ ( ) ( )]Tk k k=ξ x v , being vector ( )kv  
the integral action for the three feedback variables. 
The new matrixes A and B are  

 ⎟⎟
⎠
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The performance index proposed for integral optimal 
controller is: 

 [ ]∑
∞

=

+=
0

)(.~).()(.~).(.
2
1

k

TT kkkkJ uRuξQξ (17)

The two matrixes R and Q are symmetrical positive 
definite and our objective is to find the optimal value for 
the index J. The plant structure is the established in the 
state space, and the calculation of the controller gain 
matrix K~  must be done offline, by the Riccati equation. 
The Riccati equation  , for the stationary state is: 

 [ ] '~.~.'~.'~.~.'~~
'.~.~.'~'~.~.'~~~

1
APBBPBR

BPAAPAQP
TT

TT

−
+

−+=  (18) 

From the value of P~  the gain matrix K is. 
 [ ] '~.~.'~.'~.~.'~~~ 1

APBBPBRK TT −
+=  (19) 

With the gain calculated in the Eq. (19), being 
[ ]iKKK −=~  then the control law is: 

 ( ) ( ) ( )ik k k= − +u K.x K .v  (20) 
The optimal control block diagram is shown in Fig. 

5, where it is assumed that all the states are available. 
The eigenvalues of Eq (21) must be inside of unit circle. 
With the state feedback the system is autonomous, 
where the system dynamic is governed by the eigenval-
ues matrix as it is shown in Eq (21): 

 det . ' 'z⎡ ⎤− +⎣ ⎦I A B .K  (21) 
The eigenvalues of the system with  the optimal con-

troller or with the optimal controller with integral action 
lies inside the unit circle. 

Where the reference vector is r(k)=[0,0,0]T. The Ta-
ble 1 indicates the model parameters used in this article. 

D. Control Results Validation 
In order to make the control technique evaluation, it was 
collected real rolling mill data of the steel coil, with No 
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982 1612 rolled in the SIDERAR S.A. plant in Argen-
tina. 

Fig. 6 shows the measured input thickness variation , 
the temperature process variation of the real rolling mill 
that are applied to the model to test the proposed control 
law. Only variations concerned with the operation point 
were introduced. Simulation results show the output 
thickness variations (Δh2

(1) and Δh2
(2)), the strip tension 

variations (Δσ1), and  the control action for both Stands 
(Δg(1) ΔV(1) Δg(2)). The control results for an optimal 
controller and for an optimal controller with integral 
action are shown in the next figures. 

 
Fig. 5: The Optimal model control represented in state 

space. 

Table 1: Model parameters 

Parameters:  
Time constant F9 Tg 4.25 sec. 

Time constant F10 Tg 4.25 sec. 
Time constant Tv 1.56 sec. 

Distance between stands L 5.486 m 
Strip’s Young modulus E 21 N/m2 

Rolling mill speed F9 V1 4.0 m/sec. 
Rolling mill speed F10 V2 5.8 m/sec. 

Input strip thickness h1 6.120 mm 
Output strip thickness F9 h2 4.650 mm 

Output strip thickness F10 h2 3.825 mm 
Elastic constant F9 Kel 436 tons/mm 

Elastic constant F10 Kel 435 tons/mm 
 

 
Fig. 6: Strip thickness and temperature Variation of  

Stands F9 and F10.  

Fig. 7 shows the output thickness variations for 
Stands F9 and F10, being the output expected reference 
variation equal to zero. The optimal control error is 
lower than 30 μm and in the case of conventional con-
trol (FFF) it goes up to 100 μm. The same results for 
different data collected in the rolling mill process were 
obtained and the thickness error in the case of the opti-
mal control is always smaller than the error of the con-
trol FFF, which is the real controller used in the plant. 

 
Fig. 7: Strip output thickness Variation of  Stands F9 

and F10 with FFF, optimal control and optimal control 
with integral action 

 
Fig. 8: Gap variation of Stands F9 and F10 respec-

tively.

Fig. 9: Strip tension variation and speed control variation of 
Stand F9. 
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Fig. 10: Rolling force variation with integral optimal 

control for Stands F9 and F10 respectively. 
 

Fig. 8 shows the gap variation in the Stands to com-
pensate model disturbances. Fig. 9 shows the strip ten-
sion calculated by the simulation model, the real strip 
tension variation is not well-known and was estimated 
based on looper angle. 

The last figure (Fig. 10) shows simulation results for 
the rolling force for a FFF control and optimal control  

It is important to note that the control objective is 
the output thickness (Fig. 7). In Fig. 9 and Fig. 10 we 
observe the efects in interstands tensions and in the roll-
ing force as a consequence of the control action. 

IV. CONCLUSIONS 

The rolling mill model presented in this article is cali-
brated with real values measured in a real rolling proc-
ess and constructed with parameters provided by Siderar 
S.A. company 

Later, having the linear model around the operation 
point we obtain a state space model representation. 
In this way we have a dynamic model for the last two 
rolling stands with a behavior too similar to the real 
process within the operation range that was considered. 

The results shows the thickness variation of the two 
control techniques. The optimal control technique of the 
process evaluated by computational simulation, show an 
smaller thickness variation than the real system force 
feed forward FFF, that was take for comparison, FFF 
presents a greater thickness dispersion than the optimal 
controller. 

The technique is simple to implement and could be 
used in parallel, for performance verification in real 
operation conditions , allowing a possible substitution of 
the system force feed forward (FFF) in the future in last 
two rolling mill stands. 
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