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Abstract− The radiative contribution to thermal 
conductivity in plastic foams is studied through two 
different approaches.  Both consist in close forms 
derived from the heat transfer equation governing 
the intensity of radiation in foams, where scattering 
can be treated as isotropic.  While one approach is 
based on the solution of the equation for a continu-
ous medium, the other one is based in the solution 
for a discrete medium.  Predictions are contrasted 
for typical values of thermal properties of foams, 
and a possible explanation for the found differences 
is proposed. 

Keywords− thermal conductivity; physical prop-
erties of foams; thermal radiation.  

I. INTRODUCTION 
Heat is transferred in foams through four distinct 
mechanisms: convection in the gas phase, conduction 
along the solid polymer, conduction through the gas 
within the cells, and thermal radiation.  Conduction 
through the gas is the principal mechanism, but radia-
tion is also important, especially for low-density foams.  
There is a consensus regarding the contributions due to 
the first three mechanisms to the total thermal conduc-
tivity.  The modeling of the thermal radiation, on the 
contrary, continues to be controversial (Collishaw and 
Evans, 1994; Sirdeshpande and Khanpara, 1993). 

The radiative contribution to the thermal conductivi-
ty in plastic foams is usually studied through two basic 
different approaches.  On one hand, Glicksman 
developed an expression using the mean extinction 
coefficient of the foam (Schuetz and Glicksman, 1984; 
Glicksman, 1994).  This will be referred as the 
continuous medium approach (CMA).  On the other 
hand, Williams and Aldao (1983) considered a model 
that takes into account reflection and transmission of 
radiation through a stack of parallel layers perpendicular 
to the direction of heat flow.  This will be referred as the 
discrete medium approach (DMA). 

The present work was motivated by a previous work 
(De Micco and Aldao, 2004) where we found that the 
values of kr determined with the CMA have a tendency 
to be much lower than those experimentally found.  
Conversely, the values for kr determined with the DMA 
present a very small average error.  That work was 

based on the foams studied by Almanza et al. (2000) 
who reported the thermal conductivity for polyolefin 
foams manufactured by means of a high-pressure 
nitrogen gas solution process.  Resulting materials are 
excellent to check models as they present a much 
simpler morphology than usual foams. 

After presenting the two approaches that lead to ex-
pressions for the radiative contribution to thermal con-
ductivity, we address two main points.  First, we con-
trast the resulting thermal conductivity due to radiation 
using the two described models with recently published 
experimental results, expanding a recent paper (De 
Micco and Aldao, 2004).  Second, we present a way to 
figure out the transmissivity of a stack of parallel plates.  
Thus, we show the inherent limitations in measuring the 
extinction coefficient using an infrared spectrometer and 
discuss the appropriateness of applying the Rosseland 
diffusion approximation. 

II. THE TWO APPROACHES FOR THE 
RADIATIVE THERMAL CONDUCTIVITY 

In the first approach to determine the radiant heat flux 
through a cellular material, the foam is treated as a 
continuous and isotropic medium.  Fortunately, in the 
case of commercial foams, it is possible to simplify the 
equation of radiative heat transfer for an absorbing, 
emitting, and scattering medium.  In particular, 
properties are considered wavelength independent 
(Glicksman et al., 1987).  Thus, for an optically thick 
foam, the diffusion model for radiant transport can be 
easily applied.  With these assumptions, the Rosseland 
equation for radiant heat transfer can be derived: 

qr = −
16σT 3

3K
d Temperature( )

dx
 , (1)  

where K is the mean extinction coefficient, σ the Stefan-
Bolzmann constant, and T  the mean absolute tempera-
ture.  The extinction coefficient is related to the radiati-
on lost due to scattering and absorption per unit distance 
in a given material.  The radiant thermal conductivity is 
then given by (Glicksman, 1994) 

kr =
16σT 3

3K
. (2)  

The second approach consists in applying the 
equation of heat transfer for each cell wall that 
constitutes the foam, taken into account the discreteness 
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of the medium.  Williams and Aldao (1983) solved a 
simplified model consisting in a stack of parallel plates 
with a separation distance equal to the cell size.  In 
doing it, cell walls are considered partially transparent, 
partially reflecting, and partially absorbing.  Thus, the 
same phenomena are included in both the continuous 
and discrete medium analysis. 

To determine the radiant thermal conductivity, heat 
fluxes in each cell are figured out by applying a method 
known as the net radiation method (Siegel and Howell, 
2002).  The trick consists in considering fluxes that 
include all possible origins: emitted, reflected, and 
transmitted contributions.  For the i plate, see Fig. 1, we 
can write 

Si
+ = TSi−1

+ + (1−T )Si+1
− , (3)  

where T is the fraction of the incident radiation that in 
steady state reaches the other side of a cell wall -the net 
transmittance-, (1-T) is reflected back, and Si

+ -for 
example- is the flux leaving plane i to the right.   

The discrete medium approach leads to a closed 
form for the net radiation through a shield formed by a 
series of plates that can be partially transparent.  (inter-
estingly, it can be shown that the net radiation through a 
structure formed by in-line three-dimensional cells is 
the same than that for the stack of plates.)  The expres-
sion for the radiant thermal conductivity obtained is 

 kr =
4σT 3L

1 + n(1/ T − 1)
, (4)  

where L is the foam thickness, and n the number of 
plates.  It is important to remark that the net transmit-
tance is defined as the fraction of the incident radiation 
that in steady state reaches the other side of a plate due 
to partial transparency and re-emission of the absorbed 
energy.  T is given by 

 T =
(1− r)(t + 1)

2(1+ rt)
. (5)  

T depends on r, the fraction of the incident radiant ener-
gy reflected by each gas-solid interface, and on t, the 
fraction of radiant energy transmitted through the solid 
membrane.  r can be related to the refraction index w as 

 r = (w − 1) /(w + 1)[ ]2 , (6)  
and t is given by the Bouguer’s law 

 t = exp(−aLs) , (7)  
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Fig. 1. Scheme of radiant energy through a set of n solid plates 
used to determine the radiant thermal conductivity in a plastic 
foam. 

where a is the absorption coefficient and Ls the cell wall 
thickness. 

III. RESULTS AND DISCUSSION 
To compare theoretical values with the experimental 
measurements of k, the thermal conductivity due to 
conduction must be subtracted from the measured value 
of conductivity (convection can be neglected because of 
the cell sizes).  This parallels the analysis of Almanza et 
al (2000), who based their analysis on the work of 
Schuetz and Glicksman (1984).  We focus on the nine 
foams studied by Almanza et al (2000) that were based 
on low-density polyethylene for which all the relevant 
parameters are reported. 
 Our findings are very surprising.  The values for kr 
determined with the CMA have a tendency to be much 
lower than those experimentally found, with an average 
error of ~50%.  Conversely, the values for kr determined 
with the DMA present an average error of only ~4%.  
These results indicate that while the DMA reproduces 
the experimental results very well, the CMA strongly 
underestimates the radiant thermal conductivity. 

To determine K in applying Eq. 1, the transmissivity 
is usually measured with an infrared spectrometer over 
the spectral range for which there is substantial radiant 
energy emitted, from 5 to 30 microns (foams are 
approximately gray) (Schuetz and Glicksman, 1984; 
Almanza et al., 2000).  This measurement is carried out 
for several slices with different thickness in the range 
0.5-3 mm [slices with widths in the smaller range 0.5-
1.5 mm were used by Schuetz and Glicksman (1984) 
and by Glicksman (1994)].  The extinction coefficient 
then follows from a plot of the ratio of the transmitted to 
the incident beam intensity, S/S0, vs. thickness, 

 S / S0 ∝ exp(−KL) . (8)  
We showed recently (De Micco and Aldao, 2004) 

the radiant thermal conductivity as a function of thick-
ness for one of the samples studied by Almanza et al. 
(2000).  We found that the determined extinction coeffi-
cient can result much larger than that corresponding to 
the thicker foams used to measure the thermal 
conductivity.  Thus, an error can be traced to the way 
that the extinction coefficient is measured.  In particu-
lar, it is erroneously assumed that the extinction coeffi-
cient is independent of thickness.  Eq. 8 would be only 
applicable in cellular materials if the number of cells 
were sufficiently high.  In contrast, the measurements 
are carried out with samples having too low a thickness 
for Eq. 8 to be valid. 
 In order to check the validity of the CMA in study-
ing the behavior of a cellular material, we will apply 
next the net radiation method in the conditions in which 
the extinction coefficient is determined.  Now, the frac-
tion of the radiation absorbed at plates does not have to 
be considered, so the fraction transmitted, T, and the 
fraction reflected, R, do not sum one.  The stack of 
plates is depicted in Fig. 1 and the net radiation fluxes 
satisfy the following relationships 
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 Si
+ = TSi−1

+ + RSi+1
− , (9) 

 Si+1
− = RSi

+ + TSi+2
− ,  (10) 

 Si+1
+ = TSi

+ + RSi+2
− .  (11) 

From Eqns. (9)-(11) a recurrent relation can be obtained  

 Si
+

Si−1
+ =

1

C − Si+1
+

Si
+

,  (12)  

where C is given by 

 C =
1+ T 2 − R2

T
.  (13) 

In this case, since re-emission of the absorbed energy is 
not included, the net transmittance T is the fraction of 
the incident radiation that in steady state reaches the 
other side of a plate due only to partial transparency.  
Then T is given by  

 T =
t(1− r)2

1− r2 t 2 .  (14) 

The fraction of the incident radiation flux, R, that is 
reflected can be calculated with  

 R =
r 1+ t 2 1 − 2r( )[ ]

1 − r 2t 2 .  (15) 

The experimental curve used to determine the 
extinction coefficient, transmission as a function of 
foam thickness, can be determined theoretically by 
means of Eq. 12.  To start the recurrent relation, we 
need to consider that for the last plate Sn

+ /Sn−1
+ = T .  A 

typical value for the refractive index is w=1.6 and then, 
using Eq. 6, r=0.053.  Glicksman (1994) states that the 
transmissivity of a 2 μm thick film is about 0.8.  Thus, 
with the help of Eqs. 7 and 14, the absorption 
coefficient a is found to be 0.58 μm-1.  Similar values 
were proposed by Almanza et al. (2000). 

According to Glicksman, commercial foams present 
cell walls in the order of 0.5 μm thick.  Therefore, with 
Eq. 7 we can determine t=0.971.  Thus, for a typical 
foam having r=0.053 and t = 0.971, we can figure out, 
using Eqs.14 and 15, that T=0.873 and R= 0.098.  Next, 
we can calculate C=2.0075 using Eq. 13.  Finally, the 
recurrent relation given by Eq. 12 can be applied to 
determine the radiation flux as a function of the number 
of plates, i.e. the sample thickness.  

In Fig. 2, the resulting transmission as a function of 
the number of plates is shown.  It can be noted that the 
slope is not constant.  This implies that Eq. 8 is not 
applicable for foams with a low number of cells and the 
measured slope is not the same that the one that corre-
sponds to the thick foam under study.  To analytically 
quantify the error involved, we can determine the values 
of the extinction coefficients for a stack of n plates 
corresponding to the limit cases of n=1 and n=∞: 

 

K1 = − ln T( )

K∞ = − ln
C − C2 − 4

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

.  (16) 

For the example given above, K1/K∞=1.57, which 
implies an error that can be as large as 57 % in the 

determination of the extinction coefficient.  (The same 
result is obtained figuring the extinction coefficients out 
as seen in Fig. 3.)  

So far, expanding our previous work (De Micco and 
Aldao, 2004), we have presented the problems originat-
ed in the determination of the extinction coefficient.  
We have also assumed that the Rosseland equation is 
appropriate to predict the thermal conductivity of 
foams.  In what follows we raise some concerns in this 
respect. 

The Rosseland equation represents a very useful 
approximation to treat radiation since, even for simple 
one-dimensional geometries, finding the heat flux can 
become quite hard.  Practically, to find the radiant 
thermal conductivity implies the determination of the 
extinction coefficient.  As discussed above, K is mea-
sured from the decrease in the intensity of an external 
radiation as it traverses samples of different thickness.  
What we have developed, Eqs. 12-15, represents the 
analytical result for this type of measurement applied 
to a set of parallel plates that are partially transparent, 
partially reflecting, and partially absorbing. 

In Fig. 3 we compare the resulting thermal conduc-
tivity for the DMA and the CMA in the limit of an 
infinitely thick foam, i.e. for a very large number of 
plates.  For the DMA, we applied Eq. (4) in the limit 
n→∞.  For the CMA, we used Eq. (2) where K is 
determined with Eq. (16).  A typical value of r was 
adopted (0.053) and kr is plotted as a function of t.  At 
first sight, results are striking.  As expected, both 
approaches lead to monotonous functions of t.  
However, kr for the DMA presents a finite thermal 
conductivity for t=0 and t=1 while for the CMA kr 
becomes null for t=0 and infinite for t=1. 

A null value for t implies an opaque cell wall.  
Nevertheless, the net transmittance need not be null as 
the absorbed energy is re-emitted backward and for-
ward and thus the DMA predicts a smaller but finite 
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Fig. 2. Transmission as a function of the number of plates for 
r=0.053 and t = 0.971.  Straight lines show the slopes corres-
ponding to a very low and very high number of plates.  The 
slopes differ by a factor of 1.57. 
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Fig. 3. Radiant thermal conductivity as function of t for 
r=0.053 determined with the discrete and the continuous 
medium models. 
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Fig. 4.. Radiant thermal conductivity as function of t for r=0.9 
determined with the discrete and the continuous medium 
models. 
 
value for kr.  Since an opaque wall implies that an ex-
ternal radiation does not traverse samples of any thick-
ness, the extinction coefficient for the CMA is infinite 
implying that kr is null. 

A unity value of t means that cell walls do not ab-
sorb radiation.  In this case, the DMA predicts a finite 
value for kr as multiple reflections reduce heat transfer.  
Conversely, the CMA predicts an infinite value for the 
thermal conductivity because there is no manner for 
radiation to extinct. 

The outcomes for the CMA and the DMA diverge 
more and more with r.  Indeed, in Fig. 4, we present 
the thermal conductivity for a very large value of r 
equals to 0.9.  As above, with the CMA kr becomes 
null for t=0 and infinite for t=1.  Now, the models pre-
dictions are remarkably different. 

The above findings indicate that the Rosseland 
equation can lead to very wrong results in describing 
radiation in cellular materials.  The Rosseland equation 
approximation was meant to be applied far from 

boundaries.  The present problem consists of a stack of 
plates where boundaries play a central role.  We con-
clude that the Rosseland approximation has been used 
where it is not appropriate because it is outside its do-
main of validity. 

IV. CONCLUSIONS 
In agreement with Almanza et al. (2000), we found that 
the geometric model of Aldao-Williams fits better the 
experimental results for the thermal conductivity of 
plastic foams.  An explanation for these findings is 
suggested.  Essentially, we propose that slices used to 
determine the extinction coefficient are not thick 
enough to apply the diffusion limit approximation and, 
as a consequence, the values obtained for K with thin 
slices cannot be used for thicker samples.  We derived a 
way to analytically determine the extinction coefficient 
for a stack of parallel plates that show that the 
transmission does not necessarily depend exponentially 
on the sample thickness.  The reciprocal of the extinc-
tion coefficient is 1 mm or less, much smaller than the 
overall dimensions of commercial foams.  Thus, one is 
prone to model the transfer process as a diffusion 
process.  However, we found that the discrete character 
of the foams cannot be overlooked. Furthermore, we 
found that, in general, the Rosseland equation is not a 
good approximation to describe heat transfer in foams 
because of the discrete character of the material. 

NOMENCLATURE  
a Adsorption coefficient of the plastic 
kr  Radiant thermal conductivity 
K Mean extinction coefficient 
L  Foam thickness 
Ls Thickness of a solid membrane 
n Number of plates 
qr Radiant heat transfer  
r Fraction of the incident energy reflected by each 
solid-gas interface 
R Fraction of the incident radiation flux reflected 
Si

+  Heat flux leaving plane i to the right 
Si

−  Heat flux leaving plane i to the left 
T Net transmittance 
t Fraction of energy transmitted through a solid mem-
brane 
T  Mean absolute temperature 
w Refractive index of the plastic 
x  direction x 
Greek symbols 
σ Stefan-Boltzmann constant 
Subscripts 
i component leaving plane i 
Superscripts 
+ component leaving to the right 
- component leaving to the left 
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