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Abstract— The application of a random sampling 
scheme in high-frequency digital lock-in amplifiers is 
proposed. This scheme allows reducing the sampling 
frequency with reduced aliasing effects. Analytical 
and numerical analyses that show the advantages 
and limitations of the proposed scheme are 
presented. Furthermore, experimental tests that 
validate the proposal are given. The maximum 
input-signal frequency of a lock-in amplifier working 
with the proposed sampling scheme is not limited by 
the sampling frequency. Instead, the limit is imposed 
by the quantization of the random time periods and 
the sample-and-hold device. 
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I. INTRODUCTION 
Lock-in amplifiers (LIA) are measurement instruments 
widely used in science and engineering. They can 
measure signals in presence of high noise levels. The 
signal frequency must be locked to a reference, which is 
used by the lock-in to carry out the measurements.  

Traditional LIAs are built with analog electronics, but 
modern ones use digital signal processors (DSPs) to 
perform the measurements. When using traditional 
digital signal processing techniques (i.e. uniform 
sampling), the input signal must be sampled at more 
than twice the maximum frequency present in the input 
spectrum in order to avoid aliasing effects, as stated in 
the Nyquist theorem. This is necessary to perform a 
fully-digital signal processing, without additional analog 
pre-processing. 

If the frequency of the reference signal is in the range 
of a few hundred kilohertz, the required sampling 
frequency can be reached with current technology of 
analog-to-digital converters (ADCs) and DSPs. 
However, if the input frequency is higher (more than a 
few megahertz), the technological limitations of the 
ADCs and the DSPs make the implementation of a 
complete digital LIA in this frequency range not 
practical or at least not economically convenient. The 
ADC speed limit of commercial high resolution (i.e. 
more than 14bit) ADCs is in the order of a few hundreds 
of MHz. Furthermore, the computational requirements 
needed to process at these sample rates are excessively 
high to be performed with a single DSP device. 

Modern LIAs are completely implemented with 
digital electronics in frequency ranges from DC to 
2MHz (Signal Recovery, 2002). A detailed description 
of a LIA signal processing, working with uniform 

sampling, can be found in Sonnaillon and Bonetto 
(2005). For higher frequencies, the sampling rate must 
be too high; hence commercial high frequency LIA are 
built with mixed analog and digital electronics (Stanford 
Research, 1997). 

If the samples are taken at random time instants, the 
sampling frequency can be reduced below the Nyquist 
frequency without aliasing effects that certainly occur 
with uniform sampling (Bilinskis and Mikelsons, 1992; 
Mednieks, 1999). Hence, the ADC speed requirements 
and DSP processing requirements can be reduced. The 
sample-and-hold (S/H) device bandwidth and jitter 
determines the maximum operating frequency. S/H 
devices are not expensive and set a very high frequency 
limitation. Commercial S/H devices have maximum 
frequency limits of up to 15GHz (Rockwell Scientific, 
2005). 

In this paper the application of a random sampling 
scheme to digital LIAs is proposed. The scheme is 
described and validated analytically. The analysis shows 
its advantages and limitations. Numerical simulations 
are presented to verify the analytical results. 
Experimental tests are included in this paper to further 
validate the proposal. 

II. A BASIC LOCK-IN AMPLIFIER 
A LIA uses a reference signal that can be generated by 
the same instrument or can be generated externally. In 
the last, the LIA uses a phase locked loop (PLL) to 
internally generate a sinusoidal waveform with very low 
distortion, and with the same frequency and phase of the 
reference input. A general expression of the internal 
reference is: 
 ( ) ( )0sin 2 .r t f tπ=  (1) 

The input signal i(t) is composed by a sinusoidal 
signal of frequency f0 added to a generic function that 
represents noise and the harmonic distortion, called n(t): 
 ( ) ( ) ( )0sin 2 .i t A f t n tπ θ= + +  (2) 

The LIA amplifies and multiplies the input signal by 
the in-phase and the quadrature (shifted 90 degrees) 
components of the reference. 
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where rp and rq represent the references in phase and 
quadrature respectively, np and nq represent the noise 
functions after the products. 
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By filtering out the AC components and keeping only 
the average value (the DC signal), two signals with 
estimations of the in-phase and the quadrature 
components of the input signal are obtained. 
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Low frequency and DC components of the noise 
function after the products (np and nq) introduce error in 
the estimation defined by Eq. (5). This error depends on 
the noise spectrum of n(t) and can be reduced by 
lowering the cut-off frequency of the output filter. 
Except in pathological cases when the noise spectrum 
has a large component too close to the reference 
frequency, the error is negligible. 

Thus, the magnitude and phase of the input signal can 
be computed: 

 
( )

2 2

atan2 ,
M x y A
Ph y x θ

= + ≈

= ≈
 (6) 

where the atan2(y,x) function computes the tan-1 of y/x 
taking into account the signs of both arguments. 

III. PROPOSED SCHEME 
The proposed sampling scheme is called additive 
random sampling (Bilinskis and Mikelsons, 1992). The 
input signal is sampled at random time instants defined 
by the following equation: 

 1 0
1

i

i i i j
j

t t T t T−
=

= + = +∑  (7) 

where Ti is a random period, defined by: 
 ( )i iT M r δ= +  (8) 
where δ is the minimum time step, which represents a 
limitation in the hardware (random time generator). The 
value of Mδ is the minimum sampling interval and 
depends on the ADC conversion time. The variable ri is 
a random integer number with a uniform probability 
mass function (PMF) in the interval [0,R]: 
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The sampled input signal has the form: 
 ( ) ( ) ( )0sin 2i i ii t A f t n tπ θ= + +  (10) 
where A is the signal amplitude, f0 is the signal 
frequency, θ is its phase with respect to the LIA 
reference, and n(t) is a generic noise signal. The 
sampling instant ti depends on all the previous random 
intervals, from T1 to Ti. 

A LIA generates digitally two internal signals, the in-
phase and the quadrature references: 
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and multiplies the input by both signals, 
( ) ( ) ( )
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As the digital processing is performed during a finite 
time, the generic noise signal can be represented using a 
Fourier series: 

 ( ) ( )cos 2k n k
k

n t a kf tπ θ
∞

=−∞

= +∑  (14) 

where the fundamental frequency fn is the reciprocal of 
the processing time, θk is the phase shift of each 
component, and the amplitudes are given by ak. 

Using Eq. (14), Eqs. (12) and (13) can be represented 
by a sum of a DC value and several cosine functions: 
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where the Fourier components 1f , 2f , … correspond to 
the intermodulation products of the input signal 
components with the reference signal (i.e. 2f0, f0 ± nkf ). 

The LIA must measure the DC value of the signal p(t) 
(D) and reject all the AC signals. For this reason, the 
case of a DC value plus a single generic cosine function 
is considered in this analysis. This cosine function has 
arbitrary values of frequency f, magnitude B and phase 
ψ. The results can be extended to the sum of several 
cosine functions.  

The generic signal has a random time shift (ts) with 
respect to the initial sampling time. This random time 
shift produces a random phase shift (φ) in the cosine 
function, given by: 
 2 sf tφ ψ π= +  (16) 
with a uniform PDF in the interval [-π, π]. Hence, the 
generic signal is: 
 ( ) ( )cos 2 .i ix t D B f tπ φ= + +  (17) 

A simple LIA takes n consecutive samples and 
computes a Moving Average Filter (MAF) for each 
output component (in-phase and quadrature). This filter 
is optimum for filtering white noise with a given settling 
time (Smith, 1999). The MAF outputs are given by: 

 ( ) ( )
1
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k

MAF t p t
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−
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The MAF output is a sequence of averages of the last 
n samples. Hence, in order to simplify the equations, a 
single average of n samples of the generic function x(ti) 
is analyzed. This average is defined by: 

 ( )
1

1 n

n k
k

o x t
n =

= ∑  (19) 

where tk are the random sampling instants, which 
depend on the previous random intervals Tj. If t0 is made 
zero, from (7) and (8), tk is given by: 

 ( )
1 1

k k

k j j
j j

t T M r δ
= =

= = +∑ ∑  (20) 

In Carrica et al. (2001) the same sampling scheme is 
evaluated for measuring DC signals. However, the 
minimum time step limitation is not considered. This 
limitation is significant in high frequency implementa-
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tions and imposes the maximum frequency limitation. 
The subsequent analysis follows a similar procedure to 
the one presented in Carrica et al. (2001), and demons-
trates that the estimator defined by (19) is unbiased. 

Replacing (17) and (20) in (19) yields: 

 ( )
1 1

1 cos 2 .
n k

n j
k j

o D B f M r
n

π δ φ
= =

⎡ ⎤⎛ ⎞
= + + +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑  (21) 

To demonstrate that (21) is an unbiased estimator of 
the DC value, the expected value of the output is 
computed: 
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where 
1 2, , ... nr r rfφ is the joint PDF of on. Since the random 

variables are statistically independent the joint PDF is 
the product of the individual PDFs (or PMFs): 
 ( ) [ ] [ ] [ ]
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resulting, 
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Replacing (21) and (25) in (22), Eq. (26) is obtained. 
The integral in φ vanishes for any value of R, δ, M and 
n. Hence, the expected value of the MAF is: 
 { } .nE o D=  (27) 

This result demonstrates that the MAF is an unbiased 
estimator of the DC value D, including the case of the 
traditional uniform sampling (R = 0). 

The value of the variance is computed in order to 
study the performance of the estimation for different 
values of the parameters R, δ, M and n. The variance is 
defined as: 
 { } { }( )22 2

n n nE E oσ ο= −  (30) 

where { }2
nE ο  is given by (28). This equation can be 

simplified to obtain (29). The normalized variance with 
respect to B2/2 is given by (31). 

For the case of uniform sampling, (31) is reduced to: 

 ( ) ( )
1
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2

1
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n

n
k
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σ π δ
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= + −∑  (32) 

When the frequency f has integer multiples of the 
sampling period M⋅δ, the expected square of the error is 
maximum (aliasing effect). 

In the limit case of negligible small time steps (δ→0), 
(31) is simplified to (33), assuming that Tmin=Mδ is the 
minimum sampling interval and Trnd=Rδ is the maxi-
mum value of the continuous random variables Tk=rkδ. 
This equation is similar to the one obtained in Carrica, 
et al. (2001). 

In case of R≠0 (random sampling), the aliasing limita-
tion is due to the minimum time step δ. When frequency 
f is an integer multiple of 1/δ, the variance is maximum 
(aliasing effect). Figure 1 shows the variance for n=10, 
M=3, δ=200ns and three different values of R. The 
extension of the maximum working frequency without 
aliasing is evident in the cases of R = 10 and 100. 
Besides, the integral of the variance gives and idea of 
the total noise energy in a frequency band for a given 
value of n. This integral between 0 and 5 MHz is equal 
for the three different values of R. With random 
sampling, the normalized variance can be reduced by 
incrementing the number of averaged points (n). Hence, 
the noise floor can be reduced as low as is desired. 
However, the peaks corresponding to σn = 0dB, which 
represent the spectrum aliasing, cannot be reduced. The 
increment of the number of averaged points can be 
achieved with a higher measurement time or higher 
mean sampling frequency. 

With the parameters used in Fig. 1, in order to avoid 
aliasing effects, the maximum working frequency of the 
digital LIA cannot exceed 2.5MHz. Hence, the 
maximum frequency component after the products (3) 
and (4) is 5MHz. The LIA should have an anti-aliasing 
filter at the analog input with a cut-off frequency of 
2.5MHz in order to filter-out the higher frequency 
components of n(t). 
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IV. ERROR INTRODUCED BY THE 
SAMPLING JITTER 

The measurements are disturbed if the sampling instants 
have random jitter. Considering an input signal without 
noise, the sampling with jitter can be represented as: 
 ( ) ( )( )0sin 2i i ii t A f t jπ θ= + +  (34) 
where ji is the sampling jitter. Defining: 
 02i if jτ π=  (35) 
equation (34) yields to: 
 ( ) ( )( )0sin 2 .i i ii t A f tπ τ θ= + +  (36) 

The products computed by the LIA are: 
( ) ( ) ( )1 1

02 2cos cos 4p i i i ip t A A f tθ τ π τ θ= + − + +  (37) 

( ) ( ) ( )1 1
02 2sin sin 4 .q i i i ip t A A f tθ τ π τ θ= + + + +  (38) 

The expected values are of the MAF outputs are: 

 { } ( )p jitter pE o PDF o dτ τ
∞

−∞

= ∫  (39) 

 { } ( ) .q jitter qE o PDF o dτ τ
∞

−∞

= ∫  (40) 

In the evaluation of the expected values, the second 
terms (AC components) of (37) and (38) are made zero 
due the integral in the random initial phase (similarly to 
(26)). Hence, (39) and (40) are simplified to: 

 { } ( ) ( )cos
2p jitter
AE o PDF dτ θ τ τ

∞

−∞

= +∫  (41) 

 { } ( ) ( )sin .
2q
AE o PDF dτ θ τ τ

∞

−∞

= +∫  (42) 

Two jitter PDFs are considered in the following 
analysis, resulting in very similar results. 

A. Jitter with uniform PDF 
In case the PDF of the jitter is given by: 

 ( )
1 ,

2
0,

jitterPDF
otherwise

τ
τ

⎧ −Δ < < Δ⎪= Δ⎨
⎪⎩

 (43) 

where Δ is the maximum jitter amplitude. From (41) and 
(42), the expected values of the in-phase and the 
quadrature components are: 

{ } ( ) ( ) ( )cos cos sinc
4 2p
A AE o dθ τ τ θ

Δ
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= + = Δ
Δ ∫  (44) 

{ } ( ) ( ) ( )sin sin sinc .
4 2q
A AE o dθ τ τ θ

Δ

−Δ

= + = Δ
Δ ∫  (45) 

B. Jitter with normal PDF 
Considering a jitter with normal PDF the results are si-
milar. The normal PDF of the jitter can be described by: 

 ( )
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221
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PDF e
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where σ2 is the jitter variance. From (41) and (42), the 
expected values of the computed components are: 
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Figure 2 shows the expected measurement error as a 
function of the normalized amplitude of the jitter with 
the two considered PDFs with the same variance. The 
jitter amplitude is normalized with respect to the input 
signal period. With both PDFs the jitter introduces an 
error proportional to the square of its amplitude (a 
second order influence). Thus, if the jitter is small 
compared with the input signal period, the introduced 
error can be neglected. Furthermore, it is worth to note 
that if the amplitude and PDF of the expected jitter is 
known, the resulting measurements can be corrected. 

V. NUMERICAL SIMULATIONS 
In order to validate the analytical results shown in the 
previous sections, numerical simulations were 
performed using a personal computer. The expected 
values of the MAF output were computed averaging N 
large enough) numerical experiments. The plot depicted 
in Fig. 3 shows the normalized variance as a function of 
frequency for the case of uniform sampling. The 
parameters used in the numerical experiments are M = 
6, n = 10, δ = 200ns and N = 100. In Fig. 4 the same  

 
Fig. 2: Relative error produced by the sampling jitter. a) Uni-
form PDF. b) Normal PDF. The jitter amplitude is normalized 
with respect to the fundamental signal period. The variances 
of both distributions are made equal ( 3σ = Δ  in (43) and 
(46)). 
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Fig. 1: Normalized variance as a function of frequency. a) 
R=0, b) R=10 and c) R=100. 
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variables for the case of random sampling (R=10) are 
shown. The absence of aliasing effect in this frequency 

range is evident. However, the aliasing effect is present 
at higher frequencies, due to the sampling time 
quantization, as is shown in Fig. 5. 

The influence of the sampling jitter was also 
evaluated numerically. Figure 6 shows the normalized 
error of the estimated mean (computed by the MAF) as 
a function of the jitter amplitude for a uniform PDF. 
Figure 7 shows the same error for the case of jitter with 
normal PDF.  

VI. EXPERIMENTAL VALIDATION 

In order to validate the analytical and numerical results 
presented in the previous sections, representative 
experimental results are presented. The digital LIA used 
for the experimental results is based on a 32-bit DSP 
and an ADC with a maximum sampling rate of 250ksps. 
In Sonnaillon et al. (2005) the experimental prototype 
details are given, as well as other experimental tests. 
The experimental test was carried out operating the LIA 
with a fixed reference frequency (100kHz) and varying 
the input signal between 5kHz and 500kHz in 1kHz 
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Fig. 3: Normalized variance as a function of frequency for 
uniform sampling operation (R = 0). Aliasing effect is present 
at f = 400, 800 and 1200 kHz. The solid line represents the 
analytical curve, and the dots represent the numerical 
experiments. 
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Fig. 4: Normalized variance as a function of frequency for 
random sampling operation (R = 10). The aliasing effect is 
absent in this frequency range. The solid line represents the 
analytical curve, and the dots represent the numerical 
experiments. 
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Fig. 5: Normalized variance as a function of frequency for 
random sampling operation (R = 10). The aliasing effect is 
present at f = 5MHz (=1/δ). The solid line represents the 
analytical curve, and the dots represent the numerical 
experiments. 
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(normalized with respect to the reference period) for jitter with 
uniform PDF. The solid line represents the analytical curve, 
and the dots represent the numerical experiments. 
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steps. At the output, an average of n = 250000 samples 
was used. 

The measurement shown in the first plot of Fig. 8 was 
taken with the LIA working with uniform sampling 
(125ksps). This sampling scheme produces the expected 
aliasing effect that is evident in the figure. The LIA 
cannot differentiate the 100kHz signal with respect to 
the aliased frequencies (e.g. 25kHz, 150kHz, 225kHz, 
125k±25 kHz with k∈ N0 ). 

In addition, other minor peaks are present in the 
figure (-50dB). These are produced by the aliasing of 
the first harmonic of the input signal, because of a slight 
distortion in the generated sinusoidal waveform. These 
peaks are placed at frequencies of (125k±25)/2 kHz with 
k∈ N0 , k≥3.  

In the second plot of Fig. 8 the same measurement 
with the LIA working with the proposed random 
sampling scheme is shown. The mean sampling 
frequency is 123kHz. The only frequency that the LIA 
detects is 100kHz, without aliasing in any frequency of 
the spectrum. The noise floor, present in all the other 
frequencies can be reduced by increasing the number of 
averaged points (n). 

VII. CONCLUSIONS 

The application of additive random sampling to digital 
LIAs was proposed. The analysis presented in this paper 
shows that this sampling scheme allows reducing the 
sampling frequency significantly, without aliasing 
effects. The aliasing reduction is demonstrated 
analytically, and validated numerically as well as 
experimentally with a DSP-based prototype. 

In addition, it is demonstrated that the maximum 
frequency limit is determined by the minimum time step 
of the random time generation. The sample-and-hold 
device also limits the maximum operating frequency 
due to its sampling jitter and its analog bandwidth. 

The error introduced by the sampling jitter can be 
neglected if the jitter amplitude is small compared with 

the measured signal period. Furthermore, if the 
amplitude and PDF of the expected jitter is known, the 
resulting measurements can be corrected. 

The proposed scheme is suitable for complete digital 
high-frequency LIAs. The complete digital 
implementation improves its performance and extends 
its range of applications with respect to analog 
implementations. 
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Fig. 8: LIA response to a frequency scan. The top plot shows 
the LIA response working with uniform sampling (125ksps) 
and the bottom plot shows the response of the LIA working 
with random sampling (123ksps of mean sampling frequency). 
The internal reference frequency is 100kHz. 
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