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Abstract— The optimal feedback control of
nonlinear chemical processes, specially for reg-
ulation and set-point changing, is attacked in
this paper. A novel procedure based on the
Hamiltonian equations associated to a bilinear
approximation of the dynamics and a quadrat-
ic cost is presented. The usual boundary-value
situation for the coupled state-costate system
is transformed into an initial-value problem
through the solution of a generalized algebra-
ic Riccati equation. This allows to integrate
the Hamiltonian equations on-line, and to con-
struct the feedback law by using the costate
solution trajectory. Results are shown applied
to a classical nonlinear chemical reactor model,
and compared against standard MPC and pre-
vious versions of bilinear-quadratic strategies
based on power series expansions.

Keywords— process control, nonlinear dy-
namics, optimization, Hamiltonian systems.

I . INTRODUCTION

A diversity of control techniques still compete on appli-
cability and efficiency for general nonlinear processes.
Since nonlinearities and main qualitative features of
industrial processes are often detected without having
a complete mathematical description of their dynam-
ics, some techniques are being developed to overcome
the use of models in designing control laws. Partial
Control is one of these novel decentralized strategies
conceived for meeting multiple economic objectives by
feedback control of a few ‘dominant variables’ (see
Tyréus, 1999). The concept is appealing because, if
successful, a few SISO control loops replace the con-
ventional process model for control purposes. Individ-
ual loops are in principle simpler to treat, instrument,
and tune than multidimensional interconnected situa-
tions.

The steady-states’ phase-plots for nonlinear dynam-
ics adopt different patterns, sometimes leading to bi-
furcations, limit cycles, or strange attractors in high
dimensions (Strogatz, 1994; Costanza, 2005a). These

patterns may change, even structurally, when param-
eters of the dynamics vary (equilibrium control values
may be regarded as parameters, specially when each
manipulated variable is proportional to some physi-
cal variable like temperature or flow rate (Aris, 1999).
Consequently, changing operation from one steady-
state to another may imply working near bifurcation
points, where model information is essential.

Disjoint from heuristic methods there exist a range
of model-based approaches, Model Predictive Control
(MPC) becoming the most notorious. Still, for nonlin-
ear systems MPC is only recommended in very spe-
cial situations (Figueroa, 2001; Norquay et al., 1998)
given the computational complexity of the calcula-
tions involved. Most successful industrial applications
of MPC reported so far are in refining and petrochem-
ical plants, where (continuous) processes are run near
optimal steady-states and model linearizations are re-
liable approximations. Only one of the available com-
mercial software packages was cautiously suggested for
truly nonlinear or batch processes in a recent survey
(Qin and Badgwell, 1997).

Some numerical implementations of MPC discretize
the whole event space X×T from the beginning, which
for nonlinear systems have predictable shortcomings
(an event is a pair (x, t) of a state x ∈ X and a time
instant t ∈ T , X denoting the state space and T the
time span under consideration. Trajectory perturba-
tions are increasingly important in the nonlinear case,
specially near unstable steady-states. Since states are
allowed to take only discrete positions in the calcula-
tions, being near unstable equilibria may not be no-
ticed by the algorithms. Contrarily, feedback laws are
determined from ODE’s parameters that contain all
stability information. Also, control values calculated
from these laws depend on the exact (actual) values of
state variables. To attain the same degree of accura-
cy with the MPC approach involves refining the dis-
cretization (so increasing the computing time, which
makes troublesome to keep on-line work), and guar-
anteeing convergence of this refining (rarely taken in-
to account). Minimizing computing time in nonlinear
MPC is not a trivial problem, as reflected by the va-

129

Latin American Applied Research                                                                                                       36:129-136 (2006)



riety of unrelated techniques (Hammerstein, Wiener,
and ARX polynomials, neural networks, piecewise lin-
ear models) used to attack the resulting Nonlinear Pro-
gramming set-up numerically. Basically MPC (except
for some theoretically oriented versions) requires ex-
ploring and/or calculating the cost of many trajecto-
ries at many time instants. Also, some review literature
asserts that MPC does not guarantee success in gen-
eral MIMO systems situations (Sriniwas and Arkun,
1997).

In this paper an optimal control technique based on
universal approximations of general systems coupled
with quadratic-type expressions of the economic ob-
jectives is proposed for nonlinear processes, specially
applicable to multivariable situations that are not re-
ducible to single loops. Some positive features of both
partial control and MPC approaches are present in this
proposal, while avoiding their main limitations and in-
conveniences. Feedback control laws instead of non-
linear programming are adopted, as in the first class
of techniques; but model-based rather than empirical
knowledge guides the calculations, in accordance with
the second class. Bilinear approximations describe the
dynamics. They have shown to be able to approxi-
mate fairly general nonlinear systems under bound-
ed control situations and for a prescribed time peri-
od (Fliess, 1975; Sussmann, 1976), a feature that lin-
ear systems can not meet in general (see for instance
Krener, 1975). Bilinear models were introduced long
ago in the chemical engineering literature (Cebuhar
and Costanza, 1984), and since then a number of im-
provements have been devised to treat different con-
trol problems on these systems, like regulation, track-
ing, and filtering. In particular, the optimal state esti-
mate (in the least-squares sense) for bilinear systems is
the solution to the Kalman-Bucy differential equation
(with a slightly different time-dependent linear coef-
ficient, see Costanza and Neuman (1995) for details).
The Kalman-Bucy equation can be integrated on-line,
along with the control strategy devised in this paper.

Observation problems may arise in practical appli-
cations, where the initial state needs to be recovered
from output measurements. An approach to the design
of on-line nonlinear observers to cope with those situa-
tions has been illustrated in a recent article (Costanza,
2005b; the references may help in extending the strat-
egy to other processes).

Another advantage of this method, in the regula-
tion context, is its robustness. It is known that the
optimal bilinear-quadratic solution generates a closed
loop with infinite gain margin (Glad, 1987).

Chemical reactors are a classical source of problems
in the nonlinear control literature, and a number of
other nonlinear chemical processes are receiving in-
creasing attention (Costanza, 2005a; Henson and Se-
borg, 1997; Bequette, 1991). As a case-application a
well known nonlinear reactor model is revisited here
(Sistu and Bequette, 1995). Equations correspond to

the ‘series/parallel Van de Vusse reaction’, taking
place in an isothermal CSTR. There are clearly two
species concentrations in the example that need to be
controlled, and just one variable (a flow rate) avail-
able for manipulation. No I/O pairing is possible since
both states must be measured and optimized, so they
are also output variables. The graph of equilibrium
control values contains closed curves in phase space,
situation described as ‘system with input multiplici-
ties’ in the literature. Therefore, changes in set point
not always involve changes in the final equilibrium val-
ue of the manipulated variable (a parameter that may
have been previously optimized).

Adaptive strategies will not be discussed here for
simplicity. The formula used in the numerical exam-
ples were advanced in Costanza and Neuman (1995).
Set-point changes are eventually treated as tracking
problems (following Costanza and Neuman (2000)) for
comparison with the typical servo formulation.

In the following sections we describe the control
strategy, the system to be controlled, some numerical
results and comparisons with other methods applied
to the controlled process, and conclusions.

II . THE CONTROL STRATEGY.

Nonlinear control processes under consideration will
be those accurately modeled by equations of the form

ẋ = f(x, u), (1)

where the function f is at least continuously differen-
tiable and the admissible control strategies are at least
piecewise continuous, bounded functions of time t, the
implicit independent variable taking values in an in-
terval T of the real numbers. States x are assumed to
evolve in some open set O of the n-dimensional Eu-
clidean space, so X = O in what follows, and just for
simplicity of notation (Isidori, 1989) the control val-
ues will be taken as scalars. Under these conditions
nonlinear systems can be universally approximated by
bilinear models of the form

ẋ = Ax + (B + Nx)u, x(0) = x0, (2)

where the initial state x0 ∈ O ⊂ IRn, real matrices
A, B, and N having the appropriate orders. An equi-
librium of the original system is a pair (x̄, ū) that
makes f(x̄, ū) = 0. When the system evolves near
such an equilibrium a natural bilinearization would
be A = ∂f

∂x(x̄, ū), B = ∂f
∂u (x̄, ū), N = ∂2f

∂u∂x (x̄, ū).
The underlying objective function will be the classi-
cal quadratic cost JT (x0, 0, u(·)) referred to the (x, u)
trajectories generated by control functions u(·), start-
ing (when t = 0) at the state x(0) = x0, acting during
a time span of duration (with horizon) T ∈ (0,∞], and
evaluated from

JT (x0, 0, u(·)) =
∫ T

0

[(x(t) − x̄)′Q(x(t) − x̄)

+r(u(t) − ū)2(t)]dt + (x(T ) − x̄)′S(x(T ) − x̄) (3)
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where Q and S are positive semi-definite matrices
(S = 0 for T = ∞), and r is a positive scalar. For
the regulator problem, (x̄, ū) should be regarded as
the original equilibrium (a pair where x̄ is a steady-
state and ū the corresponding constant control val-
ue), and from which disturbances should be abated.
Usually, in regulation problems the variables are de-
fined relative to this equilibrium, and then assuming
(x̄, ū) = (0, 0) ∈ O is appropriate. For the servo (or
set-point change) problem no relative values for states
or controls will be used, since there are more than
one equilibrium involved: (x̄, ū) is the pair consisting
of the target set-point and its corresponding equilib-
rium control, which usually should be reached from
the original equilibrium (x0, u0). It will become clear
that in the nonlinear context the servo problem can
not be reduced to a relative regulator problem around
the target set-point.

The Hamiltonian for the regulator problem can be
written then

H(x, u, λ) = x′Qx + ru2 + λ′[Ax + (B + Nx)u]. (4)

Here the adjoint variable (or costate) λ is a column
vector, associated in optimal control theory to the
transpose of the (row) gradient ∂V

∂x of the value func-
tion V defined by

V (x, t) .= ı́nf
u(·)

JT (x, t, u(·)). (5)

This Hamiltonian is regular (Kalman et al., 1969), and
has the unique extremum

u0(x, λ) .= − 1
2r

(B + Nx)′λ, (6)

which does not depend explicitly on t.
The Hamiltonian expression of this optimal control

problem, (or its Hamiltonian equations, see for in-
stance Sontag (1998)), takes the form of the following
two-point boundary-value problem

ẋ =
(

∂H
∂λ

)′
(x, λ); x(0) = x0, (7)

λ̇ = −
(

∂H
∂x

)′
(x, λ); λ(T ) = 2Sx(T ), (8)

where H = H(x, λ) .= H(x, u0(x, λ), λ). For regular
Hamiltonians, to solve this boundary-value problem
is equivalent to solve the Hamilton-Jacobi-Bellman
(HJB) partial differential equation

∂V

∂t
+ H

(
x,

(
∂V

∂x

)′)
= 0, (9)

with the boundary condition

V (x, T ) = x′Sx ∀x ∈ O. (10)

The regulator problem for an infinite horizon (T =
∞) has been solved (Cebuhar and Costanza, 1984) by
proposing

V (x, t) = V (x); λ =
(

∂V

∂x

)′
(x) = 2P (x)x, (11)

with P (x) an n×n symmetric matrix allowing a gener-
alized power series expansion (see Costanza and Neu-
man, 2003; Cebuhar and Costanza, 1984; for details).
Since there is no time-dependence of the value func-
tion, the HJB equation reads in this case

H = x′Qx + λ′Ax − 1
4
λ′W (x)′λ = 0 (12)

W (x) being defined below. Equations for the series co-
efficients of P (x) were originally found from the con-
ventional method of replacing the series expression in-
to the HJB equation and collecting terms. The results
of this approach have shown some practical inconve-
niences, since there exists no theoretical indication as
to how many coefficients should be evaluated in each
problem to obtain the desired accuracy for all state
trajectories. The dimensions of the matrix coefficients
Pi increase fast with the generalized power i, so it may
become cumbersome to calculate, store, and use those
coefficients to evaluate the feedback law in real time.

In this paper a novel and simpler procedure is pre-
sented. By calling

W (x) .=
(B + Nx)(B + Nx)′

r
(13)

then, equation (12) is equivalent to

x′[Q+2P (x)A−P (x)W (x)P (x)]x = 0, ∀x ∈ O. (14)

Since P (x) was assumed symmetric, and equation (14)
must be verified for all x in an open set that contains
the origin, then it will be sufficient to ask

Q + P (x)A + A′P (x) − P (x)W (x)P (x) = 0 ∀x ∈ O.
(15)

Equation (15) is a Riccati equation for each x, of the
same type as the Algebraic Riccati Equation (ARE)
appearing in the classical linear-quadratic regulator
problem, and therefore (see Sontag, 1998), under the
restrictions imposed on the constant matrices, it is
known that there exists a unique symmetric positive
definite solution P (x) for each x.

This result allows then to write the optimal feedback
law in the form

u∗(x) = −1
r
(B + Nx)′P (x)x. (16)

Now, solving a Riccati equation for each x is not quite
appropriate for on-line control in general, but the ex-
istence of P (x) is most useful. In fact, it is basic for
the alternative method proposed below, which can be
readily implemented in real time.
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Actually, if Eq. (15) is solved just for x0, then
the Hamiltonian equations associated to the optimal-
control problem can be posed as an initial-value prob-
lem (see Eqs. (20) and (21)). Notice that for nonlinear
systems, even in the infinite horizon case, the initial
value for the costate λ is not known, so this formula-
tion may be considered as an important indirect con-
tribution of using bilinear models as approximations.
It is also interesting to check, by making N = 0 in
these equations, that the bilinear result is reduced to
the well-known linear-quadratic steady-state solution,
and P (x) = P , the solution to the standard ARE equa-
tion.

Summarizing, the new strategy for obtaining the op-
timal control of the bilinear-quadratic regulator prob-
lem would consist in: (i) solve equation (15) for P (x0),
and then (ii) integrate the Hamiltonian equations on-
line, which allows to evaluate the optimal control in
feedback form by using the costate solution λ(·), i.e.

u∗(x, t) = u0(x, λ(t)) = − 1
2r

(B + Nx)′λ(t). (17)

For the servo problem, still in the infinite horizon case,
the same type of strategy can be derived through the
slightly different proposal

V (x, t) = V (x); λ =
(

∂V

∂x

)′
(x) = 2P̃ (x)(x − x̄),

(18)
where x̄ is the target set-point to which the initial state
x0 (eventually the original set-point) should be driven.
The extremum of the Hamiltonian is

u0(x, λ) .= ū − 1
2r

(B + Nx)′λ, (19)

and the corresponding Hamiltonian equations in
initial-value form can be written now:

ẋ = Ax + (B + Nx)ū − 1
2
W (x)λ (20)

λ̇ = −2Q(x − x̄) − Ã′λ +
1
2r

N ′λ(B + Nx)′λ (21)

where x(0) = x0, λ(0) = 2P̃ (x0)(x0 − x̄) and Ã
.=

A + ūN , also P̃ (x) is the unique symmetric positive
definite solution to the Riccati equation

Q + P̃ (x)Ã + Ã′P̃ (x) − P̃ (x)W (x)P̃ (x) = 0. (22)

Formally, the optimal feedback law for the servo
problem is then

u∗(x) = ū − 1
r
(B + Nx)′P̃ (x)(x − x̄), (23)

but in practice the on-line-appropriate form is

u∗(x, t) = u0(x, λ̃(t)) = ū − 1
2r

(B + Nx)′λ̃(t), (24)

where λ̃(·) is the costate-part of the solution to equa-
tions (20-21).

A final observation: the Hamiltonian equations for
the regulator problem may be recovered from equa-
tions (20-21) associated to the servo problem (simply
put (x̄, ū) = (0, 0)). But the converse is not true. If
deviations from the target equilibrium, namely x − x̄
, u− ū, and their dynamics are replaced by x, u in the
regulator equations, then the servo equations (20-21)
are not obtained as written above unless the system
is linear (N = 0). This shows that the regulator and
servo problems are not equivalent in the nonlinear con-
text, as announced.

III . A CLASSICAL NONLINEAR
CHEMICAL PROCESS. THE FLOW

STRUCTURE.

Consider an adiabatic CSTR in which the exothermic
first-order irreversible Van de Vusse reaction is tak-
ing place (we follow the notation and order-reduction
assumptions of Sistu and Bequette (1995)). The di-
mensionless equations for the mass and heat balances
are

ẋ1 = −θx1 exp(
x2

1 + x2/γ
) + q(x1f − x1) (25)

ẋ2 = βθx1 exp(
x2

1 + x2/γ
) + q(x2f − x2) − δx2

Typical values for the parameters are θ = 0,135,
γ = 20,0, x1f = 1,0, β = 11,0, x2f = 0,0, and δ = 1,5,
the variable x1 is the dimensionless extent of reac-
tion and x2 is the dimensionless reactor temperature.
The dimensionless feed flow rate q is the only variable
that can be manipulated. Usually it is chosen to con-
duct operation around a fixed value q0 of the flowrate,
and then an appropriate definition for the control vari-
able would be u = q − q0. Since q0 is associated with
flow rate, an operational problem arises when trying
to change the (state) set-point without changing the
final value of q (possibly dictated by the steady-state
functioning of the rest of the plant) since the state
trajectory must navigate through potentially adverse
conditions as the structure of the flow changes.

IV. NUMERICAL SIMULATIONS

The two typical feedback control situations are ex-
plored for the reactor model of Section III: regula-
tion control near an operational set-point, and optimal
changes of set-point (typically from one steady-state of
the system to another).

A. Regulation

In this case it will be assumed that a perturbation oc-
curs when the reactor is conducted around the (gener-
ic) steady-state x = 0, and control is required to return
the system to rest. The system is bilinearized near the
steady-state, rendering the bilinear matrices: A, B, N .
The optimization parameters are fixed at suitable val-
ues (Q = I associated to state deviations, and r = 0,33
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to penalize the control effort). In practice these param-
eters should be consistent with the subjacent static
optimization objectives decided at the designing level.

The goal in this regulation problem is to maintain
the system near the steady-state x̄ = (0,932, 0,501)
with the minimum quadratic cost. As a first example
the simulated initial states (post perturbation) are set
at x0 = (1,4, 0,9)

The bilinear approximation calculated through near
equilibrium through partial derivatives of the original
dynamics renders the matrices:

A =

(
−3,2 −0,2
2,4 −2,4

)
, B =

(
0,07
−0,5

)
, N = −I2

where I2 is the identity matrix in two dimensions.
The value of P (x̂0) at the original perturbation x̂0 =

x0 − x̄ results

P (x̂0) =

(
0,19 0,06
0,06 0,18

)
,

which is easily checked to be symmetric and positive-
definite. Then, the initial value of the costate, needed
to start integration of the Hamiltonian equations on-
line is

λ(0) = 2P (x̂0)x̂0 =

(
0,23
0,20

)
.

The states and control trajectories resulting from the
feedback law devised in Section 2, corresponding to
the optimal bilinear-quadratic problem but applied to
the original nonlinear dynamics, are shown in figures
1-2. These are also plotted and compared against the
solution to the same problem obtained by using power
series expansions, which results less accurate, proba-
bly due to truncation errors (coefficients only up to P2

were kept). Matrices A, b, N were automatically adapt-
ed using the software devised in Costanza and Neu-
man (1995), but the dimension of the bilinear model
remains 2.

The simulation also produced the costate trajec-
tories (not depicted), which go to zero as desired;
and the value of the Hamiltonian along the combined
(x(·), λ(·)) trajectory, calculated from Eq. (12), which
stays negligibly deviated from zero. This possibility of
evaluating the Hamiltonian on-line (actually, of check-
ing the whole HJB equation) may help to decide when
to increase the dimension of the bilinear approxima-
tion.

The optimal control law works well in this case,
despite the strongness of the simulated perturbation
(around half the size of the desired values). This be-
havior may be inferred from the dynamics: the per-
turbed initial state lies in a region for which the flow
trajectories do not change their qualitative pattern,
and the values of q involved have little variation.

Another perturbation around the same x̄, much
smaller in size but differing in sign for the two states,
is regulated with little effort (a small overshooting ap-
pears for one of the states), as shown in Figs. 3 and 4.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

x
1

x
2

series method

Hamiltonian method

Figura 1: States deviations x − x̄ vs. time trajec-
tories for the regulation case. Steady-state x̄ =
(0,932, 0,501)′ perturbed to (1,4, 0,9)′. Equilibrium
control q = ū = 3. The leftmost curves correspond
to (x1 − x̄1) and the others to (x2 − x̄2).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5
series method
Hamiltonian method

Figura 2: Control deviation u − ū vs. time-trajectory
for the regulation case. Steady-state: (0,932, 0,501)′

perturbed to (1,4, 0,9)′. Equilibrium control ū = 3

Perturbations being small, linear approximations may
be intented. However (linear) Matlab MPC (see Fig.
5) results unable to send both states to zero simulta-
neously with just one manipulated variable, and also
its cost is higher than the cost of the nonlinear strat-
egy. The cumulative cost for this regulation process is
about 0,075. Meanwhile, the correspondent MPC cal-
culated cost (same units of measure) is 0,133. There-
fore, when states are impaired with manipulated vari-
ables, a wholly nonlinear treatment results profitable
besides than accurate.

B. Changes of set-point. The servo problem.

Operational flexibility may induce to change the set-
point, which in principle has to be performed in an
optimal fashion. Decisions of this kind have been re-
ported in the classical Chemical Engineering litera-
ture, even conducting to unstable equilibria, usually
obeying to ‘new’ economical restrictions.

The problem under consideration may be reformu-
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0 0.2 0.4 0.6 0.8 1
−0.02

−0.01

0

0.01

0.02

x
1

x
2

series method

Hamiltonian method

Figura 3: Evolution of regulated state vari-
ables. Steady-state: (0, 0)′ (relative), per-
turbed to (0,02,−0,02)′. Steady-state (absolute):
x̄ = (0,932, 0,501)′

0 0.2 0.4 0.6 0.8 1
−4

−3

−2

−1

0

1x 10
−3

series method
Hamiltonian method

Figura 4: Evolution of regulating control
variable. Steady-state: (0, 0)′ (relative), per-
turbed to (0,02,−0,02)′. Steady-state (absolute):
x̄ = (0,932, 0,501)′

lated as one of tracking, with the reference trajectory
xr(·) ≡ x̄ ∀t ∈ [0, T ]. The tracking objective pursues
the control u(·) that leads the initial state (eventual-
ly the original set-point) x0 to the target set-point x̄
in an optimal way. This problem has been treated in
Costanza and Newman (2000) and the references here-
in, so only the relevant equations are recalled here.

The solution of the HJB equation was explained in
Costanza and Newman (2003). Notice that the equa-
tions for the linear case correspond exactly to the
ODEs for N = 0. In that case P1 plays the role of the
gain coming from the solution to the standard Differ-
ential Riccati Equation (DRE). Then, increasing accu-
racy for nonlinear systems requires to keep more Pi’s
(which can be visualized as high order gains). Corre-
spondingly, it will be necessary to solve ‘backwards’
an increasing number of simultaneous ODEs, and to
keep all results in memory, since they will be finally
used ‘forwardly’ when constructing the feedback law.

0 2 4 6 8 10
−0.02

0

0.02
Outputs

x
1

x
2

0 2 4 6 8 10
−0.2

−0.1

0
Manipulated Variables

Time

u

Figura 5: States vs. time trajectories for the regula-
tion case using MPC. Steady-state: (0, 0)′ (relative),
perturbed to (0,02,−0,02)′. The uppermost curve cor-
responds to x1 and the lower one to x2.

0 0.5 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Hamiltonian method

series method

x
1

x
2

Figura 6: Relative states’ trajectories (x − x̄) for
the tracking case. Starting steady-state: x0 =
(0,931877, 0,5)′ (old set point). New set point: x̄ =
(0,828312, 1,0)′, ū = 1,68812.

Change towards a stable set point
In Fig. 6 the process of change of set point between
two stable set points of the system is illustrated. In
this case the tracking goal is to lead the system to
the state x̄ = (0,828, 1,0) where the starting state is
x0 = (0,932, 0,5)

The initial bilinear approximation calculated for this
case was calculated from partial derivatives of the non-
linear dynamics around x0:

A =

(
−3,23 −0,20
2,42 −2,36

)
, B =

(
0,07

−0,50

)
, N = −I2.

The resulting trajectories of the Hamiltonian and
the power series approaches to this case are shown in
figure 6, where only minor differences appear. Opti-
mal controls calculated by both methods are also very
similar (not plotted).

A second example shows the change from an un-
stable set-point x0 = (0,528, 3,0) towards the same
(stable) steady-state x̄ used in the previous example.
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0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2
series method

Hamiltonian method

x
2

x
1

Figura 7: Relative states’ trajectories (x − x̄) for
the tracking case. Starting steady-state: x0 =
(0,527964, 3,0)′ (old set point). New set point: x̄ =
(0,828312, 1,0)′, ū = 1,68812.

The initial bilinearization resulted in this case

A =

(
−3,88 −0,73
20,17 4,49

)
, B =

(
0,47
−3,0

)
, N = −I2.

The evolution of the states is depicted in Fig. 7.
Even when the initial set-point x0 in this example is an
unstable steady-state of the system, the Hamiltonian
strategy works equally well, as in the stable-to-stable
case.

Change towards a saddle (unstable) set point
It is chosen here to illustrate the change from a sta-
ble to an unstable set-point, both steady-states corre-
sponding to the same q-value = q∗. The value of input
flux may be bounded and/or fixed by production rate
restrictions or for technical reasons, so this situation of
keeping equal the original and final inputs may be de-
sirable. It is also realizable for this particular system,
because it presents the so called ‘input multiplicity’
property (Sistu and Bequette, 1995). Since q is the
manipulated variable, a nontrivial optimal control has
to move above and/or below q∗.

In figures 8-9 this process of changing set-points
from a stable x0 = (0,178, 6,031)′ towards the unstable
steady-state x̄ = (0,498, 3,682)′ is illustrated.

The bilinear approximation calculated for this case
results

A =

(
−6,02 −1,07
33,27 7,32

)
, B =

(
0,50

−3,68

)
, N = −I2.

The main feature to remark from this example is the
robustness of the optimal control strategy. Since the
system has to go through adverse flow conditions to
reach an unstable equilibrium, the evolutions of state
and control variables are not monotonically smooth.
They grow and decrease around the final desired val-
ues, reflecting the directions of the flow in the different
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Figura 8: Relative state variables (x − x̄) evolu-
tion for changing set points from steady-state: x0 =
(0,178, 6,031)′ (old set point) to x̄ = (0,498, 3,682)′

(new set point), ū = q∗ = 3.
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Figura 9: Control variable evolution for changing set
points from steady-state: x0 = (0,178, 6,031)′ (old set
point) to x̄ = (0,498, 3,682)′ (new set point), ū = q∗ =
3.

regions of phase space. In a given moment (see figure
9) a restriction is applied to the control u = q, since it
can not naturally assume negative values, but this in-
stantaneous absence of control action has no adverse
effect. This is an important consequence of working
with optimal feedback control laws, since deviations
from the optimal original strategy do not imply a need
for recalculations or re-tuning.

V. CONCLUSIONS

It has been shown in this paper that a centralized con-
trol strategy, based on a new treatment of the Hamilto-
nian equations, is able to efficiently manage regulation
and set-point changes in a multidimensional nonlinear
reactor. The control obtained from the costates, in-
tegrated on-line, is effective even when manipulated
variables are fewer than those to be controlled.

The approach resorts to bilinear approximations to
the dynamics subject to optimization objectives of the
quadratic type. The bilinear-quadratic problem solved
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before through power series expansions of the value
function or its derivatives, still required to evaluate
the series’ coefficients off-line. This inconvenience has
been overcome here.

The new optimal control law requires solving an al-
gebraic Riccati-type equation only at the initial time,
which allows to integrate the Hamiltonian differential
equations as an initial-value problem, and therefore
the optimal costates can be calculated and inserted
into the optimal control law completely on-line.

Since the states and costates are available at all
times, the performance of this strategy can be continu-
ously assessed by testing the Hamilton-Jacobi-Bellman
equation associated to the problem. Optimal filtering
and advanced adaptive control can be easily imple-
mented in this set-up too.

The approach has been illustrated through its appli-
cation to a classical chemical reaction problem. Sim-
ulations successfully compare against the power series
version of bilinear-quadratic control and with standard
MPC at the regulation level, near enough to the opera-
tional steady-state as to approximate the dynamics by
linearizations. The available version of MPC seems to
be sensitive to the deficiency in the number of control
versus state variables, probably due to errors intro-
duced by the overall discretization involved in MPC
strategy. Furthermore, implementation in real time of
the control law requires much less computational ef-
fort than MPC approaches (based on extensive cost
evaluations).

Robustness is best appreciated when controlling the
test reactor towards an unstable set-point, since the
bilinear approximation is adapted without increasing
the dimension of the state, despite the fact that the
original (stable) set-point is far from the target in
phase space. The examples also show the ability to
manage conflicting objectives. Though in this case on-
ly quadratic expressions for the individual costs were
used, their number need not be as many as the control
(neither than the state) variables, eventually required
by decentralized control.
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