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Abstract– We focus on the Forward Prob-
lem of electroencephalography, discuss a
mathematical model and state properties of
its weak solutions. A static and a time-
dependent model for the source are consid-
ered. Numerical solutions, obtained by a
Boundary Element Method technique, are
compared with the analytical ones and with
EEG recordings.
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I. INTRODUCTION

The electrical activity inside the brain consists of
currents generated by biochemical sources at cellular
level. This activity can be measured by an electroen-
cephalograph. In the case of epilepsy there are small
zones inside the brain that give major contribution
in the generation of the electric field. Neurologists
have been interested in determining the location of
the epileptogenic zones from the measured potential
on the scalp in order to avoid invasive techniques.
The problem of determining the source location

from the EEG waves is known as the Inverse Problem
of Electroencephalography (EEG). In order to solve
the inverse problem, we need to have an appropiate
model of the Forward Problem (FP) of EEG that
consists of calculating the EEG signal when we know
the source location.
A typical mathematical model that describes this

process is a PDE-boundary value problem of sec-
ond order, based on the static approximation of
Maxwell’s Equations (see Hamalainen et al., 1993).
In this work we consider a simplified model of the

human head (spherical). We calculate approximated
solutions and compare them with the analytical one
that exists in the spherical case.
Regarding the source, dipole source models as

well as spatially distributed models can be found in
Schimpf et al. (2002), Lagerlund (1999), de Munck
(2002), Yetik et al. (2005a) and Yetik et al. (2005b).
One dimensional source distribution to model the
primary cortical response to nerve stimulation is the-
oretically analyzed in Nolte and Curio (2000). A

spatiotemporal source analysis based on the spa-
tiotemporal noise covariance matrix is developed in
Huizenga et al. (2002). We also propose a time-
dependent model for the electric source that approx-
imates a dipole and compare simulated results with
real data obtained from EEG recordings provided
by Centro Municipal de Epilepsia, Hospital Ramos
Meja, Buenos Aires, ARGENTINA.
The paper is organized as follows. In section II the

PDE mathematical model is presented. Weak solu-
tions of the FP and their properties are introduced
in section III. Section IV includes derivation of the
integral equations and its discretization. Di erent
models for the electric source are also described. In
section V we present numerical simulations. The ap-
proximated solutions for the static dipole model are
compared with the analytical ones. The simulated
results in the case of a time-dependent source model
are compared with real data from EEG recordings.
EEG signals plots and 3D plots illustrate the results.

II. THE MATHEMATICAL MODEL

The electric sources inside the brain produce elec-
tric and magnetic fields that can be modeled by the
Maxwell Equations (see Hamalainen et al. , 1993).
The electric current is assumed to be of the form

J(x) = (x)E(x) + Ji(x), (1)

where is the conductivity function, E is the
macroscopic electric field and Ji is the impressed cur-
rent (microscopic level). During an epileptic seizure,
spikes can be observed along the EEG signals. They
are mainly produced by the impressed current.
Due to the high speed of propagation of the elec-

tric waves inside the head, there is no delay in the
data captured by the EEG recorder. Hence, in or-
der to find the location of the impressed current, we
consider the EEG data at the instant at which one of
the spikes achieves its highest amplitude. Therefore,
a time-independent Maxwell equation may be used
to model the relationship between the electric poten-
tial u and the impressed current Ji (see Hamalainen
et al., 1993), that is,

· ( (x) u(x)) = · Ji(x) x G (2)
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u(x)
= 0, x G (3)

subject to

[u]

¯̄
¯̄
Si

= 0, [ (x)
u

n
]

¯̄
¯̄
Si

= 0. (4)

where G represents the head having di erent com-
partments with transition surfaces named Si and [·]
denotes the di erence between the values of the func-
tions inside the brackets through the indicated sur-
face.

A. Models for the Head and the
Conductivity Function

The model of the human head consists in three ho-
mogeneous, nested sets denoted by G1, G2, G3, rep-
resenting the brain, the skull and the scalp, G =
3
j=1Gj . The surface of transition between Gi and
Gi+1, i = 1, 2, is denoted by Si. The conductiv-
ity function is approximated by a piecewise constant
function of the form

(x) =

1 x G1
2 x G2
3 x G3
0 x / G

. (5)

where 1, 2, 3 are constant positive values.
For this model there exists an analytic solution

when Gi are nested spherical volumes (Zhang, 1995;
Mosher et al., 1999).

III. WEAK SOLUTIONS OF THE
FORWARD PROBLEM

In this section we state the weak formulation of Eq.
(2) and some properties of its weak solutions.
Suppose that u is a solution of Eq. (2) and mul-

tiply this equation by a function v. Assuming that
both, u and v are regular enough to apply integral
theorems to the resulting equation, u must verify the
following identity

h u, viG = h · Ji, viG, (6)

or, equivalently,
Z
G

(x) u v =

Z
G

· Jiv. (7)

Note that the above integral equation requires only
derivatives of first order while the di erential equa-
tion (2) requires derivatives of second order.
A weak solution of Eq. (2) with boundary condi-

tion (3) is a function u that verifies Eq. (6) for all
functions v with weak derivative of first order, i.e.,
v H1(G), where

H1(G) = { v L2(G) / w L2(G) withZ
G

v dx =
R
G
wdx, Cc (G)}, (8)

with Cc (G) is the set infinitely di erentiable func-
tions with compact support in G.
The function w that satifies (8) is called the gen-

eralized derivative of first order of v.

Remark III..1 Note that for the model described
above, Eq. (7) is equivalent to

Z
G1

1(x) u v +

Z
G2

2(x) u v +

Z
G3

3(x) u v =

Z
G

· Jiv.

Since any solution of Eq. (2) is a weak solution we
study some properties of the weak solutions referred
to the model we have adopted.
Note that since the head is not isotropic, nor ho-

mogeneous media, an error is introduced when a
piecewise constant function like the one defined in
Eq. (5) is considered to model the conductivity func-
tion.
In Troparevsky and Rubio (2003a) we present the

existence and uniqueness of the weak solutions and
we proved the continuity of the weak solution with
respect to the domain.
Theoretical and numerical results about the con-

tinuity of the weak solution with respect to the con-
ductivity functions can be found in Troparevsky and
Rubio (2003b).

IV. NUMERICAL APPROACH

A 3D Finite Element Method (FEM) can be cho-
sen to solve Eq. (2) in the volume G, by using the
weak formulation given in Eq. (6) (see for example,
Bradley et al., 2001). Another approach frequently
used to solve this problem is a Boundary Element
Method (BEM)(see Brebbia et al., 1984). It requires
to transform the equation defined in G into surface
integrals, reducing the problem from 3D to 2D (see
for example, Meijs et al., 1989; Schlitt et al., 1995;
Ferguson and Stroink, 1997). Meshless methods were
also developed for solving the Forward Problem of
EEG (see von Ellenrieder et al., 2005).
Here we choose a BE Method that generates a full

but much smaller matrix than the one that FEM
techniques do.

A. From Volumes to Surfaces

Let u be the solution of Eq. (2) with boundary and
interface conditions (3) and (4) where G and the con-
ductivity function are defined as in the preceding sec-
tion.
Let v be the solution of

v = (r0) with r0 G,

where is the Laplacian operator and is the delta-
Dirac distribution.
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Multiplying Eq. (2) by v(r) we can derive the
following Integral Equation for the potential u (see
Hamalainen et al., 1993 and Sarvas, 1987),

u0(r) = (r)u(r) +
3X
j=1

j j+1

4

Z
Sj

u(r0)
r r0

|r r0|3
dSj (9)

for r G 3
j=1Sj , where

u0(r) =
1

4 1

Z
G

· Ji
|r r0|

dr0. (10)

Note that the only term containing information of
the impressed current Ji is u0(r), on the right hand
side.
As we need to know the value of the potential u

only on the external surface, we let r rj Sj ob-
taining an integral equation over the transition sur-
faces Sj ,

k + k+1

2
u(r)

+
3X
j=1

j j+1

4

Z
Sj

u(r0)
r r0

|r r0|3
dS0

= u0(r), r Sj . (11)

B. Discretization

There are many di erent techniques to discretize the
integral equation (11). In Schiltt et al. (1995) and
Meijs et al. (1989), for instance, a polyhedral surface
Ŝj , composed by plane triangles is chosen to approxi-
mate the surfaces Sj. With respect to the discretiza-
tion of the potential u over the chosen grid, in Schiltt
et al. (1995) and Bradley et al. (2001), there are sev-
eral comparisons of the results obtained for di erent
approximations (see the references cited therein).
We discretize the integrals dividing each surface

Sj into small spherical elements Ekj , i.e., Sj =
N
k=1Ekj . In addition, on each element Ekj the elec-
tric potential is approximated by the average of the
values at the vertices of the element (see Rubio and
Troparevsky, 2003) yielding

k + k+1

2
u(r) +

3X
j=1

j j+1

4

NX
k=1

C(u, j, k)

Z
Ekj

r r0

|r r0|3
dS0

= u0(r), (12)

where C(u, j, k) is a constant that depends on the
values of u at the nodes of Ekj .
This type of equation is obtained from di erent

approximations like the COG method, the vertex
method on triangular elements (see Schiltt et al.,
1995) and by second-order interpolation functions
(see Frinjs, 2000).

The integrals on the left hand side of (12) are the
solid angle subtended by Ekj at r (see Santaló, 1973).
These integrals become improper when r Ekj . To
approximate its values, we use a geometric property
that states that for any closed and smooth surface S,
the solid angle at any of its points is 2 . We first
approximate the integral on Ekj for r / Ekj . Then
we apportion the remaining value

P
k/r Ekj

R
Ekj

r r0
|r r0|3 dS = 2

P
k/r/Ekj

R
Ekj

r r0
|r r0|3 dS.

among the elements Ekj that satisfy r Ekj , pro-
portionally to the their areas (see Rubio and Tro-
parevsky, 2004).
The last term to be discretized is the right hand

side of Eq. (11) defined in (10), which requires a
model for the impressed current Ji. We will discuss
it in the next subsection.
The final discretized system takes the form

(D A) · u = C (13)

where D is the diagonal matrix arising from the right
hand side of (12), of the form

D =
D1 0 0
0 D2 0
0 0 D3

(14)

where Di =
i+ i+1

2 I, for i = 1, 2, 3, I is the identity
matrix, A is the matrix resulting from the discretiza-
tion of the surface integrals appearing in (12) and C
is the discretization of u0(r) (10).
Note that the values of u at the nodes of the three

surfaces are involved in the calculation of u at any
nodal point.

C. Impressed Current

Some neurologists state that in the case of epilepsy,
the primary current Ji is concentrated in a small area
around the source location, namely rq.
Di erent models for the electric source may be

found in the literature. Dipole source models and
localization methods can be found in Schimpf et
al.(2002) and de Munck et al. (2002). In Yetik et al.
(2005a) and Yetik et al. (2005b) possible models for
a stationary source are discussed and statistical se-
lection methods are used to characterize them. One
dimensional source distribution to model the primary
cortical response to nerve stimulation is theoretically
analyzed in Nolte and Curio (2001). In Huizenga et
al. (2002) a spatiotemporal source analysis based on
the spatiotemporal noise covariance matrix is devel-
oped. Estimation of stationary dipoles from MEG
and EEG noisy data is discussed in de Munck et al.
(2002). Other references can be found in the cited
papers.
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We propose two models for the impressed current.
The first one is a static model that approximates
a dipole, i.e., it is nearly zero outside a small area
around rq

Ji(r) = q(r) (r rq) r G. (15)

The other model intends to reflect the electrical ac-
tivity of the brain for a short period of time T around
a spike of a seizure. We consider a function that de-
pends on time, t, and position, r, and approximates
a dipole (see Rubio and Troparevsky, 2005),

Ji(r, t) = q
Mq(r, t)

|r rq |3
(16)

where

Mq(r, t) = 1e 2t
2

3|r rq|2cos( 4t)

1e 2t
2

3|r rq|2sin( 4(t+ /2)),

with 1 = 100, 2 = 3000, 3 = 10000, 4 = 0.5, 1 =
0.001, 2 = 2500, 3 = 2000, 4 = 100 and q a fixed
orientation.
With these source models we solve the FP for some

instants within T trying to reproduce the seizure.

V. NUMERICAL SIMULATIONS

We simulate epileptic seizures by solving the discrete
system (13) on the spherical domain. We place the
origin of coordinates in the center of the sphere. The
radii of Gi, i = 1, 2, 3 are taken to be 0.071m, 0.078m
and 0.085m. The conductity values in 1

m are 1 =
0.33, 2 = 0.0042 and 4 = 0.33 (see Geddes and
Baker, 1967).
For the case of the static model, the solution of

Eq. (13) using a primary current of the form (15)
is compared with the analytic solution for di erent
source locations rq and orientation q.
The solution obtained for the time-dependent

model (16) is compared with real data obtained
from the recordings of spontaneous activity dur-
ing a seizure (provided by Centro Municipal de
Epilepsia, Hospital Ramos Mej́ıa, Buenos Aires, AR-
GENTINA).

A. Simulated vs. Analytic Solution

The solution for spherical domains can be calcu-
lated analytically (see Zhang, 1995 and Mosher et
al., 1999), we compare its values on the scalp with
the ones obtained by BEM.
We numerically solve Eq. (12) with the impressed

current modeled by (15). Two quantitive measures
for the numerical errors of the simulated scalp po-
tential, are calculated; the relative di erence mea-
sure (RDM) and the normalized relative di erence
measure (RDM*, also called NRDM), defined by

RDM =
kVs Vak

kVak
(17)

RDM =

°°°° Vs
kVsk

Va
kVak

°°°° (18)

(see Meijs et al., 1989, von Ellenrieder et al.,
2005). Taking 760 nodes per surface, for the
source location rq1 = (0., 0.0062, 0.04) with orien-
tation q1 = (1.2, 0.6, 0.6) 10 9, we have RDM =
0.214602, RDM = 0.206271, and for rq2 = (1, 0, 0)
10 5 with orientation q2 = (1, 0, 0) 10 8, we obtain
RDM = 0.0254408, RDM = 0.00580414. We want
to point out that these error measures decrease with
the number of nodes.

B. Simulated Potential vs. Real Data

EEG signals taken from patients and their medical
diagnosis were provided by neurologists from Cen-
tro Municipal de Epilepsia, Hospital Ramos Mej́ıa,
Buenos Aires. We consider the EEG waves sampled
at 200 Hz. shown in Fig. 1. They correspond to a
short period of time around a spike. Based on the
information available we decided the source location
rq to be rq = (1.2, 0.6, 0.6)cm and the source orien-
tation q = 10 10(1.2, 0.6, 0.6)nAm.

Figure 1: EEG Recordings.

A time period of 0.2 seconds centered in a spike
(boxed in Fig. 1) was considered. We simulate the
scalp electric potential with BEM by solving the dis-
cretized system (13) where the electric source was
considered to follow the time-dependent law (16).
This means that, at each instant t, we evaluate (16)
and the result is considered as the source in (10) for
the Eq. (13). Then we plot the potential distribu-
tion on the scalp for both, the real and the simulated
case. With the latter we generate EEG signals and
we also plot the resulting values on a sphere for fixed
time instants.

EEG Signal Plots
In this subsection we present the EEG signals (real
one and the simulated ones), i.e., the values of the
potential u on each electrode channel varying in time
(see Fig. 2). We simulate the electric potential, con-
sider the electrode positions and plot the values of
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the potential at each channel (see Fig. 3).

Figure 2: The real EEG signal.

Figure 3: The simulated EEG signal.

We point out that the values of the numerical po-
tential at the electrode positions are obtained by in-
terpolating the simulated values, since we numer-
ically solve the equation for potential at the grid
nodes, which do not coincide with the electrode po-
sitions. Although there are some di erences between
the real and the simulated data, the shapes of the
signals look similar around the spike for most of the
channels.

3D Plots of the Potential
Another way of comparing the real vs. the simulated
data is to plot the scalp potential distribution on a
sphere at any fixed time instant. In Fig. 4 we present
the 3D plot of the real EEG data at the spike time
marked in Fig. 1. The approximated potential values

Figure 4: Measured Potential at a Spike Instant.

at that instant is plotted in Fig. 5. The color scale
refers to the intensity of the electric scalp potential.
We recall that real and numerical potential values

Figure 5: Simulated Potential at a Spike Instant.

are given at electrode positions and grid nodes, re-
spectively. We use MATLAB interpolation to plot
them on the spherical surface.
Some di erences can be observed between the real

and the simulated potential plots, however the pat-
tern is similar. Moreover, the sense and direction of
the gradient of the potential coincide. We will use
the source model (16) with the location and strength
of the electric source as an initial guess for the Inverse
Problem in future works related to this patient.

VI. CONCLUSIONS

This work presents a time-dependent source model
that seems to be suitable for the real case pre-
sented. This model can be adapted to di erent
seizure processes by adjusting the parameters q, rq,
the constants j , j and by allowing rq to change in
time.
In order to calculate the approximated potential

distribution we use estimations of the position rq and
the orientation q of the source based on clinical in-
formation. We approximate the EEG signal and plot
it on a spherical head model. Then we compare the
real and simulated data as EEG waves and as 3D
plots. The results obtained with this source model
encourages us to use it in future works to estimate
the parameters of the model by means of an Inverse
Problem Technique.
We point out that although the source model (16)

depends on time, we use a FP static model, hence the
dynamics of the problem is only partially shown.
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