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Abstract−− This paper proposes a stable control 

structure for bilateral teleoperation of mobile robots. 
The proposed control structure includes a time-delay 
compensation placed on both the local and remote 
sites of the teleoperation system. Teleoperation 
experiments through a simulated and real (using 
Internet) communication channel are presented to 
illustrate the performance and stability of the 
proposed control structure. 
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I. INTRODUCTION 
Teleoperation systems have been developed to allow 
human operators to execute tasks in remote or 
hazardous environments, with a variety of applications 
ranging from space to underwater, nuclear plants, and so 
on (Sheridan, 1995). In general, the bilateral 
teleoperation systems of mobile robots are composed by 
a local site (where a human operator drives a hand-
controller device); a remote site (where a mobile robot 
interacts with the physical world); and a communication 
channel that links both sites. The human operator 
generates velocity commands to the remote mobile 
robot, while the position of the mobile robot is back-fed 
to the human operator through the communication 
channel. 

Perhaps, the most interesting case appears when 
there exits a distance between the local and remote sites 
of a teleoperation system. This generally introduces 
time varying delays adding distortion in the reference 
commands and feedback signals. The presence of time 
delay may induce instability or poor performance of a 
teleoperation system (Fiorini and Oboe, 1997; Richard, 
2003). In general, in the design of teleoperation systems 
there is a trade-off between high transparency and 
sufficient stability margins (Lawrence, 1993). Main 
control strategies proposed for bilateral teleoperation of 
delayed systems are described in Anderson and Spong 
(1989), Niemeyer and Slotine (1991), Oboe and Fiorini 
(1998), Oboe (2003), Elhajj et. al. (2003) and Chopra 
and Spong (2003). In general, the proposed control 
structures keep the passivity or stability at the expenses 
of reducing the system transparency (Arcara and 
Melchiorri, 2002). 

This paper proposes a stable control structure for 

bilateral teleoperation of mobile robots. The proposed 
control structure is based on combining the velocity 
command generated by the human operator in a delayed 
time instant, the received position information (which 
stimulates the operator) in such moment and the current 
position of the mobile robot to set the velocity reference 
of the mobile robot. The time proposed delay 
compensation is placed on the local and remote sites. 
Moreover, experiences of teleoperation of a mobile 
robot are shown to test the stability and performance of 
the designed teleoperation system.  

The paper is organized as follows: Section II gives 
the notation used in this paper. In section III, some 
background material on delayed differential equations is 
introduced. Section IV presents the statement of the 
control problem. In Section V, a model of the human 
operator for motion control is presented. In Section VI, 
a stable control structure for bilateral teleoperation of 
mobile robots is proposed. In section VII, the stability 
and performance of the proposed control structure are 
analyzed through teleoperation experiments using a 
simulated and real (Internet) communication channel.  
Finally, the conclusions of this paper are given in 
Section VIII. 

II. NOTATION 
In this paper, the following notation is used: 
( ) +

ℜ∈th denotes the time delay. Here, ( ) ntx ℜ∈ , Tx is the 
transpose of x , x  is the Euclidean norm of x , tx  (for a 
given time instant t ) is the function defined by 
( ) ( )θθ += txxt

 for ( )[ ]0,th−∈θ , for example: ( ) ( )txxt =0 , 
( ) ( )htxhxt −=− ; and the norm .  is defined by 

( )[ ]
( )θ

θ
xx

ttht
t

,
sup
−∈

= . ( )thnC ,  is the n-dimensional space of 

continuous functions on the interval  ( )[ ]ttht ,−  at any 
time t , then the function ( )thnt Cx ,∈  . On the other hand, 
given a non-linear differentiable function 
( ) ( ) ( )( )htxtxgtx −= , , the incremental gain of g  is defined 

as ( ) ( ) [ ] [ ]{ }21212121 ,,:inf yyxxyygxxgg −≤−= γγ  
nyyxx ℜ∈∀ 2121 ,,, . 

III. STABILITY OF DELAYED SYSTEMS 
The robot teleoperation systems are represented by 
delayed differential equations. In this section, we show 
standard definitions and facts in the theory of delayed 
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functional differential equations (Krasovskii, 1963; Hale 
1977; Kolmanovskii and Myshkis, 1999). In addition, 
we propose a stability condition for systems with time 
delay, which will be used in Section VI for the stability 
analysis of the proposed teleoperation system.  

Let’s consider the delayed functional differential 
equation given by, 

( ) ( ) ( ) ,,00,,, 011 tttfxtftx t ≥∀==  

where
n

x ℜ∈ , ( )thnt Cx ,∈ , +

ℜ∈0, tt , and ( )
n

thnCf ℜ→×ℜ
+

,1 : . 
It is assumed that there exists a solution ( )00 ,; ψttx  of (1) 
with initial data [ ]00 ,ψt , where ( )θψ += 00 tx  for 

( )[ ]0,0th−∈θ  with +ℜ∈< H0ψ , which depends 
continuously on the initial data. From now on, we will 
denote the solution norm by ( ) ( )0,; 00 txttx =ψ .  
 

Definition 1. The solution 0tx =  of (1) is said to be 
asymptotically stable if, 
a) For every 0>ε  and each 00 ≥t  there exists ( )0,tερρ=  
such that ρψ <0

 implies that ( ) εψ <00 ,;ttx  for all 00 ≥t .  

b) For every 00 ≥t  there exists ( )011 tεε =  such that if 

10 εψ < , then ( ) 0,; 00 →ψttx  as ∞→t . 

If  ρ  and  1ε  are independent from the initial time 0t , 
then the zero-solution is uniformly asymptotically 
stable. 
 

Fact 1 (Krasovskii, 1963). Let’s suppose that the 
function ( )

n

thnCf ℜ→×ℜ
+

,1 :   maps bounded sets  of 

( )thnC , in bounded sets of nℜ  , and that ( ) ( ).,. vu and 
( ).w  are scalar, continuous, positive and non-decreasing 

functions. If there exists a continuous functional 
( )

++ ℜ→×ℜ thnCV ,: , and the following conditions hold: 
 ( )( ) ( ) ( )ttt xvxtVxu ≤≤ ,0   (2) 
            ( ) ( )( )0, tt xwxtV −< , (3)                                                                                    
where ( )txtV ,  is the time-derivative of ( )txtV ,  along  the 
trajectories of (1); then the solution 0tx =  is uniformly 
asymptotically stable. 

Now, let us consider a non-linear system with time 
varying delay described by, 

( ) ( )( ) ( ) ( )( )htxtxtgtxtftx −+= ,,,2 , 

where ( ) mhth ≤≤0  and ( ) 1<<τth , with +ℜ∈mh , 
n

x ℜ∈ , +

ℜ∈0, tt , 
nn

f ℜ→ℜ×ℜ
+

:2 , and nnn
g ℜ→ℜ×ℜ×ℜ

+
: . 

In addition, we assume that ( ) 00,2 =tf  and 
( ) 00,0, =tg , for 0tt ≥∀ . 

 

Lemma 1. If a system represented by ( )xfx 2=  is 
exponentially stable, then there exist +ℜ∈λα,  such that 

( ) xxxfx TT λ−≤2 , where ( ) texx λα −≤ 0 . 

Proof. If the system ( )xfx 2=  is exponentially stable, 
then it satisfies that ( ) texx λα −≤ 0 , and therefore: 

( ) 10 Iexx tλα −≤ . 

where nI ℜ∈1  with ( ) 11 =iI  for ni ≤<0 . From (5), 
the evolution of  x  verifies that, 

( ) 10 Iexx tλλα −−≤ . 

Using (5) and (6) on xxTλ− , the following can be 
expressed: 
  ( )( ) ( )( ) ( ) .00 211 xfxxxIIexexxx TTTttT =≥−≥− −− λλ ααλλ  
Inequality (7) proves the proposed Lemma.         ∆ 
 

Theorem 1. Let us suppose that the subsystem ( )xfx 2=  
of the system (4) is exponentially stable with rateλ , then 
the following condition ensures the asymptotic stability 
of the system (4): 

,0
1

2
32

<
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−

−
+−

τ

τ
λ g                     (8) 

where +ℜ∈g,λ  and ( ) 1<<τth . The norm g  is the 
incremental gain of the operator ( ) ..g  

Proof. A functional ( )
++ ℜ→×ℜ thnCV ,:  is proposed as 

follows, 

   ( ) ( ) ( )

( )
.0

1
2

1
2

1, >∫
−−

+=
t

tht
dxx

g
xxxtV TT

t θ
τ θθ

    (9) 

where the proposed functional incorporates information 
of the delayed dynamics ( g ) that will help to reach a 
stability condition that will directly depend on the time-
derivative of the varying-time delay and the non-
delayed dynamics of the delayed system. 
     From (9) and considering that the delay ( )th  is 
bounded ( ( ) mhth ≤ ) and that ( ) 220 tt

T xxxx ≤= (by using 

norm properties), then the proposed functional ( )txtV ,  
verifies condition (2) –given by Fact 1-, 

( ) ( ) .
1

2
1

2
1,02

1 222

mtttt hx
g

xxtVx
τ−

+≤≤          (10) 
                                 

The time-derivative of ( )txtV ,  along the system 
trajectories (4) is,  

( ) ( ) ( )( )
( )

( ) ( ) .
1

12
1

1
2

1
,, 2 hxhx

hg
xx

g
htxxgxxfxxtV t

T
t

TTT
t −−

−

−
−

−
+−+≤

ττ
(11)                         

 Now, the following inequalities are attained using norm 
properties, 

( )( ) ( )( ) ( )

( ) ( ) .
2
1

2
3

22

,

22222

2

htxgxghtx
g

x
g

xg

htxxgxghtxxgxhtxxgxT

−+≤−++≤

−+≤−+≤−
 (12)                          

Putting (12) in (11), it yields, 

( ) ( ) ( ) ( ) .
1
11

21
13

2
, 2 hxhxhg

xx
g

xfxxtV t
T

t
TT

t −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡
−
−−+⎥⎦

⎤
⎢⎣
⎡

−
++≤

ττ
(13) 

The third term of the right hand in (13) is negative 
definite because 1<<τh . By applying Lemma 1 to (13) 

)4(

)1(

)5(

)6(

)7(
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 and organizing terms, it yields, 

  ( ) .
1

2
32

, xxgxxxtV TT
t ⎥

⎥

⎦

⎤

⎢
⎢

⎣

⎡

−

−
+−≤

τ

τ
λ                (14)                                             

 From (14), condition (3) –Fact 1- is satisfied if, 

.0
1

2
32

<
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−

−
+−

τ

τ
λ g                       (15)                                  

Inequalities (10) and (14) verify the stability 
conditions given by Fact 1 –inequalities (2) and (3)-. 
Then, the proposed Theorem 1 is proven ensuring the 
asymptotic stability of the system (4).          ∆ 

Figure 1 shows the effect of the maximum derivative 
of the time delay on the stability region -given by (15)- 
for three arbitrary values 5.0=g , 1=g  and 2=g . 

The achieved stability condition is independent of 
the delay amplitude and it depends on three main 
factors: the exponential rate λ  of the non-delayed 
system ( )xfx 2= , the norm g  of the delayed non-linear 
function ( )( )htxxg −,  and the maximum time-derivative 
τ  of the time delay. Moreover, the greater the temporal 
derivative of the time delay (τ ), the stronger the 
stability of the non-delayed system (higher λ ) to reach 
the stability of the system with time delay. In addition, 
if 0→g  then the proposed stability condition tends to 
the stability condition of a non-delayed system, this is: 

0<λ . 

IV. STATEMENT OF THE CONTROL PROBLEM 
This section describes the analysed control problem on a 
bilateral teleoperation system of mobile robots. Figure 2 
shows a general diagram of a teleoperation system.  

The human operator drives a mobile robot through a 
hand-controller generating velocity commands to send 
to the remote site, which will be executed by the mobile 
robot. The mobile robot and obstacles position is 
visually back-fed to the human operator. We suppose 
that the obstacles position generates a fictitious force, 
which depends on the distance between the mobile robot 
and the obstacle.  

 

 
Fig. 1. Stability region in function of τ . 

 
Fig.2. General block diagram of a teleoperation system 

of a mobile robot. 
 

The main signals of the system are the position rx  
and force rf on the remote site, the received position  

lx  and force lf on the local site, the velocity command 

lv  generated in the local site and the velocity reference 

rv  applied to the mobile robot. On the other hand, the 
communication channel is represented by a time delay 
h  composed by a forward delay 2h (from the local site 
to the remote site) and a backward delay 1h (from the 
remote site to the local site), i.e., 

( ) ( ) ( )ththth 21 += . 
 We will consider the mobile robot as a unicycle 

located at a non-zero distance from the objective frame 
<g>. In addition, attached to the robot there exists the 
frame <a>, as shown in Fig. 3.  

We consider the vehicle position in Polar 
Coordinates, where the state variables are the polar 
coordinates θαρ ,,  measured between the frame <g> 
and the frame<a>. The kinematic equations can be 
written as, 

 
 

 
Fig.3. Position and orientation of a mobile robot. 

)16(
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⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=

+−=

−=

ρ
αθ

ρ
αα

αρ

ω

sin

sin
cos

rv

rvr

rv

v

vv

v  (17) 

Where ωrrv vv , are the linear and angular velocities of the 
mobile robot. 

The objective of the teleoperation system is that a 
human operator (placed on the local site) drives a 
mobile robot (placed on the remote site) to reach the 
frame <g> in spite of the time varying delay, this is, that 
the distance error (state) –in this case, without final 
orientation- [ ] 0,: →= αρx  as ∞→t  starting from any 
non-zero distance from <g>.  
 

V. MODEL OF MOTION CONTROL OF THE 
HUMAN OPERATOR 

This section presents a model for the motion control of 
the human operator, which will be used later (Section 
VI) by the proposed delay compensation. 
 
A. Human operator’s model for position control 
The kinematic model proposed for the position 
controller of the human operator, which generates 
velocity commands [ ]ωllvl vvv ,= , is the following 
(Slawiñski et. al., 2005): 

 
⎩
⎨
⎧

+=
=

ααα
αρ

ωω cossin
cos

vl

vlv

kkv
kv  (18) 

where 0, >ωkkv . Introducing the human controller (18) 
into the kinematic equations of the mobile robot (17), 
we obtain the following closed loop equations for the 
state [ ]αρ ,:=x : 

 
⎩
⎨
⎧

−=
−=

αα
αρρ

ωk
k v

2cos  (19) 

 

Lemma 2. The non-delayed teleoperation system (given 
by (19)) of a mobile robot (17) driven by a human 
controller represented by (18) is exponentially stable 
with rate { }ωλ kkv ,min= . 
Proof. The proposed Lyapunov candidate function is, 

( ) .
2
1

2
1, 22 αραρ +=V                            (20) 

The time derivative of ( )αρ ,V  along the trajectories of 
the system (19) is,  

222 cos ααρ ωkkV v −−= .                     (21) 
Remark 1: The time-derivative of the functional ( )αρ,V  
is negative definite (21), then the trivial solution is 
globally asymptotically stable. 
Remark 2: From (19), the solution for α  is 
( ) ( ) tket ωαα −= 0 . The initial condition has a range given 

by ( ) πα ≤0 . 

 The problem to establish an exponential response on 
ρ  is resolved by steps: 
a) If the initial condition is ( ) πα d≤0 , where d is a 
positive arbitrary constant lower than 5.0 -, then (21) can 
be expressed as, 

22' αρ ωkkV v −−< , 
where ( ) 0cos2' >= πdkk vv . From (20) and (22) is simple 
to deduce that the non-delay system is exponentially 
locally stable with exponential rate { }ωkkk vm ,min '= . 
b) If the initial condition is ( ) πα d>0 , then there exists a 

finite time mT  defined by ⎟
⎠
⎞

⎜
⎝
⎛−=
π
π

ω

d
k

Tm ln1  (from 

Remark  2) which assures that ( ) πα dTm ≤ . 
c) We propose that the response of ρ  is bounded by,  

                          ( ) ( ) tmkmTmk eet −≤ 0ρρ .                   (23) 
d) If mTt ≤ , from (23) and considering that the system 
is globally asymptotically stable – Remark 1-, it yields, 

( ) ( ) ( ) tmkmTmk eet −≤≤ 00 ρρρ . 
e) If mTt > , then ( ) πα dt <  -from (b)-. Then, from (a) 
the response of  ρ   is bounded by the exponential 
response given by (23). 
 

Remark 3: From steps (a), (b), (c), (d), (e) and Remark 
2, the equilibrium point [ ] 0== Tx αρ  is exponentially 
stable with rate mk=λ . We choose d  near zero, such 
that 0' >≈ vv kk , then { }ωλ kkk vm ,min== .        ∆   
 

B. Fictitious force 
The mechanical impedance regulation needs the 
feedback from the interaction force between the robot 
and its environment. The interaction forces imply 
physical contacts with the environment which, in the 
case of mobile robots, means a collision. To avoid 
obstacles, however, it’s necessary to interact with the 
environment without causing any collision. In such 
case, the interaction force is represented by a fictitious 
force, which depends on the distance between the robot 
and the obstacle, as shown the Fig. 4. 

 

fn(t)
ft(t) 

f(t) 
β 

d(t) 

<g> x 

y 

Obstacle

 
Fig. 4. Impedance control with fictitious force. 

)22(
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The magnitude of the fictitious force f is computed 
as ( ) ( )tbdatf −= , where ba, are positive constants such 
that 0=− mbda , md  is the robot-obstacle maximum 
distance, and ( )td  is the robot-obstacle distance 
( ( ) mdtd ≤≤0 ), which is measured through ultrasonic or 
type-camera sensors. On the other hand, the angle of the 
fictitious force is β  (see Fig. 4). The fictitious force on 

the remote site is [ ]Tntr fff =:  (see Fig. 2). 

C. Reactive control mode with decision of the human 
operator 
The impedance model of the human operator is defined 
by KBsZ += , where KB,  are positive constants; while 
the reference error is defined by tfZx 1~ −= , 
where βcosff t =  is the component of f on the robot 
motion direction. The reference error x~  is transformed 
to a rotation angle ( )tDx~=ψ  applied on the position 
reference (Mut et. al., 2002); where βsinff n =  is the 
component of f  normal to the robot’s motion direction 
and ( )tD  represents the human operator’s decision. If 
the environment and the task are perfectly known, then 
the decision could be predicted. We assume that the task 
and environment are according to ( )nfsignD = . When 
the fictitious force is zero, the reference error is zero 
too, and then the objective of the motion control is 
achieved. 

D. Reactive control mode of the human operator 
When the environment or the task are not known, then 
the fictitious force modifies the distance error ρ  and  
the angular error α  as: [ ] [ ] [ ]Tnt

TT ffK 1~~ −−= αραρ , 
where tf  is the component of f on the robot motion 
direction, nf  is the component of f  normal to the 
robot’s motion direction, and the impedance model of 
the human operator is defined by 

[ ] 221 ×− ℜ∈= αρ KKdiagK , where 0, >αρ KK  represent 
the human operator’s elasticity in response to fictitious 
force generated by the distance robot-obstacle.  

E. Experimental validation of the human operator’s 
model to drive the mobile robot 
Figure 5 shows the executed trajectories by the mobile 
robot driven by a human operator in two different 
experiences and also the trajectory using an automatic 
control, it is composed by both the position controller 
position described in sub-section A, and the impedance 
controller described in sub-section C. We conclude that 
the proposed model of the human operator is 
satisfactory. The impedance loop (the desired 
impedance is represented by a stable and proper strictly 
linear filter) only modifies the reference of the motion 
control. However, it won’t be considered later to 
simplify the stability analysis of the bilateral 
teleoperation system (Section VI). 
 

 
Fig. 5. Trajectories of the mobile robot using manual 

teleoperation and automatic control. 
 

VI. CONTROL STRUCTURE FOR BILATERAL 
TELEOPERATION OF MOBILE ROBOTS 

This section describes the proposed control structure 
applied to a bilateral teleoperation system of mobile 
robots. 

The proposed delay compensation does not modify 
the feedback position from the remote site. In addition, 
the local site sends a signal ( ) ( )1htvtvl −Δ−  to the remote 
site; this signal combines the velocity command 
generated by the human operator in a time instant and 
the received position information (which stimulates the 
operator) in such moment. In the remote site, the 
proposed delay compensation uses the current position 
of the mobile robot to modify the signal 
( ) ( )( )212 hhtvhtvl +−Δ−−  and to establish the velocity 

reference ( )tvr . Figure 6 shows a block diagram of the 
delayed bilateral system introducing the proposed time-
delay compensation.  

The delay compensation is placed on both the local 
and remote sites and it is defined by an approximated 
model of the local site (Section V) as follows, 

⎪⎩

⎪
⎨
⎧

+=Δ

=Δ

ααα

αρ

ωω cossin

cos

cc

c

v

vv

kkv

kv
                      (24) 

where 
ccv kk ω,  are the parameters of the delay 

compensation and the vector [ ]ωvvv v ΔΔ=Δ ,  is the 
output of the proposed delay compensation. 

 
Fig.6. Block diagram of the teleoperation system with 

delay compensation. 
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Now, we analyze the system stability using the 
proposed delay compensation and also considering that 
the local site is represented by a time-invariant 
kinematic model. We computed the vector [ ]ωrrvr vvv ,=  
(Fig. 6), which is applied on the mobile robot (17) as 
follows, 

( )( ) ( )( ) ( )
( )( ) ( )( ) ( )[ ]⎩

⎨
⎧

Δ++−Δ−+−=
Δ++−Δ−+−=

tvhhtvhhtvv
tvhhtvhhtvv

lr

vvlvrv

ωωωω 2121

2121  

From (17), the evolution of the state [ ]αρ ,:=x  of the 
delayed system is given by, 

⎪
⎩

⎪
⎨

⎧

+−=

−=

ρ
αα

αρ

ω

sin
cos

rvr

rv

vv

v
                            (26) 

We put (16), (18) and (24) in (25) to obtain a 
intermediate equation which is incorporated in (26) 
describing the delayed system as follows: 

( )
( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

( )

( ) ( ) ( )
( ) ( ) ( )⎪

⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

⎥
⎦

⎤
⎢
⎣

⎡
−−+−−

−−−
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−
=

−−+=⎥
⎦

⎤
⎢
⎣

⎡

Nhthtkhtk
hthtk

g

k
k

f

hthtttgttf
t
t

v

v

c

cv

αρα
ααρ

α
αρ

αραραρ
α
ρ

ω

ω

cos~~
coscos~

.

,
cos

.

,,,,

2

2

2

         (27)  

where
cvvv kkk −=

~ ,
cckkk ωωω −=

~ and ( )
( )ht

htN
−
−

−=
ρ
α

ρ
α sinsin . 

If the delay compensation is an exact model of the 
local site, then [ ] 0

~
,

~
→ωkkv

 and therefore 0→g  in (27). 
Then, from (19) and (27) the system will represent the 
non-delayed real system and from Lemma 2, the delayed 
system will be asymptotically stable.  

On the other hand, if [ ] 00
~

,
~

≠⇒≠ gkkv ω
. To simplify 

this analysis, we suppose that  0
~
=vk , then from (27), 

the incremental gain is, 
.~

ωkg =                                  (28) 

From Theorem 1 (given by (8)), Lemma 2 and (28), the 
stability condition is expressed as, 

           .0
1

2
32~ <

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−

−
+−

τ

τ
λ ωk                   (29) 

The proposed control structure allows us to separate 
the delayed system into the non-delay real system ( 2f in 
(27)) and a new delayed subsystem (delayed function 
g in (27)). In the general case ( 0≠g ), the proposed 
control strategy allows ensuring the system stability 
through a condition imposed on the non-delayed system 
(29) that depends on the maximum derivative τ  of the 
delay and the gain g  of the delayed non-linearity of 
the system. 

VII. EXPERIMENTAL RESULTS 

To illustrate the performance and stability of the 
proposed control structure for mobile robot 
teleoperation, experiments have been conducted on a 

Pioneer 2DX mobile robot through a simulated and real 
communication channel. The human operator receives 
visual feedback of position from a Logitech webcam 
placed on the remote site. The objective of control is to 
achieve the position reference avoiding a type cylinder 
or cube obstacle placed on the workspace of the remote 
site. It should be noticed that the impedance control 
loop is active when the mobile robot detects an obstacle 
at a distance less than [ ]m5.1  using ultrasonic sensors. 
 
A. Teleoperation with simulated delay  
The hand-controller used in this experiment is a 
Logitech Wingman joystick. The initial condition is 
( ) [ ]m7.3=θρ , ( ) [ ]rad0=θα  for ( )[ ]0,0th−∈θ . The time 

delay is simulated by software. The used parameters for 
the delay compensation are: [ ] [ ]rad

sNKrad
NB .3,1 == for 

the force compensation (sub-section C in section V) and 
[ ] [ ]s

radks
mk

ccv
πω 25.0,4.0 ==  for the position 

compensation (compensation of position and force in 
presence of time delay). 

Figure 7 shows the executed trajectories by the 
Pioneer 2DX mobile robot for diverse delays. The 
advantage of using the delay compensation is clear. 

Figure 8 shows the evolution of the state norm 
[ ]αρ ,=x  of the delayed teleoperation system for 

various delays. On the other hand, the Fig. 9 shows the 
evolution of the linear velocity of the mobile robot. The 
maximum linear velocity varies between 0.4 and 
0.5

⎥⎦
⎤

⎢⎣
⎡

.sec
m  for the diverse experiments. 

The response of the delayed teleoperation system 
using the delay compensation is similar to the manual 
teleoperation without time delay (reference response); 
therefore the performance of the system is good. 

B. Teleoperation through Internet between Brazil 
and Argentina 
Now, the performance of the proposed control structure 
for bilateral teleoperation of a mobile robot (Pioneer 
2DX) driven by a human operator through Internet 
between San Juan (Argentina) and Vitoria (Espírito 
Santo, Brazil) is presented. The hand-controller used is  
 

 
Fig. 7. Trajectories of the mobile robot using the delay 

compensation for various delays. 
 
 

)25(



E. SLAWIÑSKI, V. MUT, J.F. POSTIGO 

85 

 
Fig. 8. Evolution of the norm of the state x . 

 
Fig.9. Linear velocity of the mobile robot. 

 

a commercial steering wheel with accelerator pedal. An 
obstacle type-cube is placed on the workspace of the 
remote site. 

The used parameters for the delay compensation are: 
[ ] [ ]N

radKN
mK 1,3 == αρ

for the force compensation (sub-

section D in section V) and 
[ ] [ ]s

radks
mk

ccv πω 25.0,4.0 ==  for the position 

compensation (compensation of position and force in 
presence of time delay). 

Figure 10 shows the evolution of the time delay h  
and h  (which is estimated using a differentiator filter).  
Figure 11 shows the trajectory of the mobile robot for 
this experiment. The human operator drives the mobile 
robot to reach the objective position avoiding the 
obstacle placed in the remote site. 

 
Fig. 10. Time-varying delay for the experiment B using 

Internet to link the local and remote sites. 

 
Fig. 11. Trajectory of the mobile robot teleoperated by a 

human operator through Internet. 

 
Fig. 12. Temporal evolution of the distance error ρ . 

 
On the other, Fig. 12 shows the temporal evolution 

of the distance error ρ  , it tends to zero as ∞→t . 
The response of the teleoperation system is 

satisfactory in spite of the time varying delay added by 
Internet. 

C. Stability 
Now, we analyse the stability of the teleoperation 
system. The maximum time-derivative of the time delay 
added by the simulated and real (Fig. 10) 
communication channel is approximately 2.0=τ . On 
the other hand, the exponential rate of the non-delayed 
system is { } 4.0,min == ωλ kkv (see Lemma 2). From 
(29), we can express the stability condition on ωk~ as,  

( )
( ) .1882.0~0

2.01

2.02
32~4.0 <→<

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−

−
+− ωω kk    (30) 

From (30) and the value of ωk , we can conclude that 
the model used by the delay compensation could have 
parametric errors to a percentage of %20 . 

VIII. CONCLUSIONS 
In this paper it has been proposed a stable control 
structure for bilateral teleoperation systems of mobile 
robots. The proposed strategy includes a delay 
compensation placed on the local and remote sites of the 
teleoperation system and it uses a model of the local 
site.  

Several experiments have shown a stable response 
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with good performance and transparency. In addition, a 
mobile robot was driven by a human operator with 
visual feedback through a simulated and real 
communication channel in a continuous way. From 
these results, we may conclude that the application of 
the proposed control structure on an industrial or 
commercial system is feasible.  

The future work will be incorporating the dynamic 
model of the human operator on the proposed control 
structure. In addition, the parameters of the human 
operator will be identified to improve the performance 
of the teleoperation system. 
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