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Abstract— This paper develops a method
by which control Lyapunov functions of linear
systems can be constructed systematically. It
proves that the method can provide all quad-
ratic control Lyapunov functions for a given
linear system. By using the control Lyapunov
function a linear feedback is established to
stabilize the linear system. Moreover, it can
also assign poles of the closed-loop system in
the position designed in advance.

Keywords— linear systems, stabilization,
control Lyapunov functions

I. INTRODUCTION

In the early days of control theory investigation, most
of concepts such as stability, optimality and uncer-
tainty were descriptive rather than constructive. The
situation has been gradually changed in the last two
decades. Kokotovic and Arcak (2001) made a survey
for the alteration and call it ‘activation’. A promi-
nent example of the activation is the concept of con-
trol Lyapunov function (henceforth CLF for short).
Traditionally, Lyapunov function is a powerful tool
to the analysis of stability of dynamic systems. Art-
stein (1983) and Sontag (1983) considered respec-
tively the stabilization of control systems and ex-
tended the notion of Lyapunov function to that of
control Lyapunov function. It has been verified that
a nonlinear system can be stabilized by a relaxed
state feedback if and only if it holds a CLF (Artstein
1983). Moreover, Sontag (1989) dealt with the sta-
bilization of affine systems and presented a universal
feedback scheme by using CLF. These achievements
greatly motivated the investigation of CLF, and CLF
were widely adopted in various design problems. For
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instance, from Freeman and Primbs (1996), Freeman
and Kokotovic (1996) Liberzon et al. (2002), Cai and
Han (2005), Sepulchre et al., (1997), the readers can
find many meaningful results.

However, being similar to the situation of Lya-
punov function, a CLF is not always available for
a given system, even for a linear system. We have
no a general method to construct a CLF. Hence, the
construction of CLF becomes the bottleneck of the
design technique developed by using CLF.

This paper presents a systematic study for CLF
of linear systems. We give the necessary and suffi-
cient conditions for CLF of linear systems. We es-
tablish a method to construct a quadratic CLF for a
linear system by solving a Lyapunov equation. Free-
man and Primbs (1996) also gave an approach to
obtain a CLF for a linear system by solving a Ric-
cati equation. It is clear that Lyapunov equation is
much simpler than Riccati equation since the former
is linear and the later is quadratic. We then prove
that for a linear system there exists a quadratic CLF
if it has a CLF. A linear feedback by CLF is designed
to stabilize the given system.

The significance of the CLF comes from the uni-
versal formulas. After the works of Sontag (1989),
there are a number of universal feedback schemes
presented for the stabilization, tracing, regulation,
robust control, optimization and so on. A toolbox
for the design using CLF is then easily developed.
It means that compensators for the design problems
mentioned above can be achieved if a CLF is avail-
able. These design techniques can be applied to a
linear system if a CLF is obtained although it will
lead to a nonlinear system. Another significance of
the investigation of CLF of linear systems is that it
may open a way to the construction of CLF for affine
systems by the zero dynamic method (Isidori 1989)
and for the general nonlinear systems by the central
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manifold method.

The organization of the paper is as follows: Sec-
tion 2 provides the preliminaries of the paper that in-
clude the description of the problem, the definition of
CLF and some fundamental results. Section 3 gives
the main results of the paper. We present a method
to construct CLFs for a linear system and verify that
every quadratic CLF can be obtained by the method.
A linear feedback is proposed based on the CLF to
stabilize the linear system. Section 4 summarizes
the CLF of uncontrollable linear system. Section 5
includes the algorithm for constructing CLFs. The
last section concludes the paper.

II. PRELIMINARIES

Consider the linear time-invariant system described
by

&= Az + Bu (1)
where z € R" is the state, u € R™ is the input.

Let V : R™ — R be a differentiable function. V is
said to be positive definite if V(0) =0 and V(z) > 0
for z # 0; V is said to be proper if V(z) — oo as
]| — oo.

Definition (Artstein, 1983) If there exists a dif-
ferentiable, proper and positive definite function V'
such that

infa—V(A:c+Bu) <0 (2)
u Oz
for each z # 0, then V(z) is a control Lyapunov
function (CLF) for the system (1).

If u is a determined function, the notation of ut]‘f
can be drawn away, then (2) is exactly the require-
ment of a Lyapunov function which is used to deter-
mine the stability of the system. But in the linear
control system % is undetermined, we have to add
the infimum before the inequality. It is clear that
(2) is equivalent to the following statement

av v

To end this section, we give three Propositions
that describe the invariance of CLF.

Proposition 1 Let T be a nonsingular real ma-
trix. By a coordinate transformation Z = Tz, the
system (1) becomes

# =TAT 'z + TBu. (4)

Then V(z) is a CLF for the system (1) if and only if
Vi(Z) = V(T'~'%) is a CLF for the system (4). o

Proposition 2 If G € R™*™ is invertible, then
V(z) is a CLF for the system (1) if and only if it is
a CLF for the system & = Az + BGv. ¢

36:15-22 (2006)

Proposition 3 For F' € R™*™, the feedback
takes the form of u = Fz +v. V(z) is a CLF for
the system # = (A + BF)z + Bv if and only if it is
a CLF for the system (1). ¢

Proofs of these Propositions are straightforward,
and hence omitted.

III. CLFS FOR CONTROLLABLE
SYSTEMS

This section presents a method of construction of
CLF for linear systems. We start with the construc-
tion of CLFs for the single-input system and then
extend results to the multi-input system. A linear
feedback is also obtained by the CLF to stabilize the
system.

A. CLFs for A Single-Input Controllable Sys-
tem

We consider the case of m = 1 in this subsection.
If (1) is controllable, without loss of the generality,
we assume that (A, B) takes its Brunovsky canonical
form. i.e. in the system (1),

0 1 0 0
K : e
0 0 1 0
—ap —ap —Qp-1 1
(5)
Divide A and z into their block form
A= Gu G , where
Ga1 —om-1
01 ---0 0
Gy = ,G12 = p
1 -
00 ..~ 0 1
Ga = [ —a —on-2 |,
anda? = [ XT 5 o }iXLa=[m Tn-1 |-

After the state feedbacku = — [ G21 —an-1 | 7+
i, the system becomes

&= A.x+ Bu (6)

Gu G
0 0
sufficient to study CLFs for the system (6).
This section considers quadratic CLF's of the form
V(z) = «T Pz, where P is a symmetric matrix. Di-
vide P into a block form as follows

Py Ppa ]
;i
[ P pa

where A, = ] . By Proposition 3, it is
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where P,_; € R*~Dx(-1) 4., ¢ R and
Pi3 € R*~1, Denote p3; PG = [ B B s
Let C be the companion matrix of pg; P{. Then

0 1 - 0
ol £ 8 w3 "
8 g A d (7)
_ﬂl _162 _ﬁn—l

The characteristic polynomial of Cp is
AB) =214 8, A" 2 4 ... 4+ o) + B

The following Conditions are proposed for the
further discussion.
H1 poz > 0 and A(B) is a Hurwitz polynomial.
H2 (Pa-1-p3 PiaP)Cp+CF (Po1—p3 Pr2Ph)
is negative definite.

There are three Remarks to the above Condi-
tions.

Remark 1 A(f) is a Hurwitz polynomial if
and only if Cg is a Hurwitz matrix.

Remark 2 H2 implies P,_; — pzs P1oPL is a
positive definite matrix provided that Cg is a Hur-
witz matrix.

Remark 3 Because

[I _Pi—zlplﬂ][inl Pu][ I 0]
0 1 P p || -p2PE 1
= [ Pu1—p3 P2Ph 0 ]

0 P22

H1 and H2 imply that P is a positive definite matrix.

The following subsection will verify that V(z) is
a CLF for the system (6) if and only if V' (z) satisfies
Conditions H1 and H2.

Construction of a CLF
This subsection considers the system (6).

Theorem 1 V(z) = 7 Pz is a CLF for the sys-
tem (6) if and only if P satisfies Conditions H1 and
H2.

Proof: (Sufficiency) By Remark 3, if Condi-
tions H1 and H2 hold, this P is positive definite.
The derivative of V(z) = 2T Pz along the system (6)
is

V(z) = 2T PA.z + 2T AT Pz + 22T PBai
= [ X;’l;—-l Tn ] X
[ Pp1G11+ G Po1 Pao1Gi2 +GT Pig ]
Pf;G’u Sy G‘{QPn—l Pf;Gm + Gfgplz
[ Xn-1 ] + (2X7T_, Pia + 22,p20).

In

(8)

From (8), we obtain

8B = 2XT P12 + 22np2o,

and

WAz=[XT | zq]x
[ Po1G11 + G{1Pact Pa1G12 + GT1Pia ] %
PLG1+GLP,1 PLG12+GLPis

[ ]

Then 2% B = 0 implies

9)

Tn = —Xp_1P Pra. (10)

Substituting (10) to (9), we obtain

3_VAC:¢

szT Pn_1 — Pt PaPE)(G1y — Giapgt PL

= n-—l[( -1 — Dyp 12 12)( 11 12P22 12}

+(G11 — G2z PR)T (Pa-1 — P33 Pi2PR)| Xn-1.
(11)

Since
0 ) (— 0
G11 — Gi2p5 PG = 0 4 1
B —P —Bn—1
= Cﬂ:

by H2, §£A.z < 0 for X,_1 # 0.

Thus ¥ B =0,z + 0, implies §¥ A .z < 0.

V(z) = 2T Pz is indeed a CLF of the system (6).
(Necessity) P is positive definite, hence pga > 0.

From (8), £ B = 0 implies z, = —p3; X1_, P12, and

from (8) again

L AT = XTI 1[(Pa-1 — P32 P12P3)(G11 — Grapp; Ph

+(G11 — G12093 PB)T (Pa-1 — P23 P12 PB)]| Xn-1.
Denote

(Pa-1— Py P12PR)(G11 — Grapy; PRy)
+(G11 — Gr2p3y PR)T (Pa-1 — p33 P12 Ph) = —Q.

(12)
From the definition of CLF,
v v
EB—O,:B%{]:?’ EAC:C{O. (13)

Then Q is positive definite. Thus H2 is satisfied.
Pr1 P2 ] . .
On the other hand P = | * " is posi-
[ Pl pa B
tive definite, and by the Remark 3, P,,_; —pas P12 P%
is positive definite too. Hence the Lyapunov Theo-
rem shows that G1; — G12py, P is stable, i.e.

0 1 .- 0
Gu — Guaps, Py = E E e :
23 Pia 5 B oo

—B P2 —Pn-1

is a Hurwitz matrix. H1 is also satisfied. ¢
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We emphasize that V(z) = 2T Pz is also a CLF
for the system (5) by Proposition 3.

Example 1 illustrates the constructing method of
CLFs presented by Theorem 1.

Example 1  Consider the linear system (5)
with

- o oo
w oo
- o o o

P3 Py |
Pl p2 |
P PL=[6 11 6],pn=4

To obtain P3, we consider the following Lyapunov
equation:

Assume P =

, where

b 1 ©
(Ps—pPePh)| 0 0 1 ]+
| -8 —i1 —6
0 1 0
[ 0 0 1 (Ps — p33 P12 Ph) = —Is.
6 —1F 8 |

(14)

] |

Solving equation (14), we have

.

By Theorem 1,
145.8167

265.15

145.8167
265.15
144.0833

265.15
486.0083
264.15

144.0833
264.15
144.1083

265.15
486.0083
144.0833  264.15
24 44
is a positive definite matrix, and
V(z) = 27 Pz is a CLF for this system.

Remark 4 Freeman and Primbs (1996) also of-
fered a method to construct CLFs for the linear sys-
tem (1). They showed that the positive definite so-
lution P of the Riccati equation ATP + PA + Q
—PBR~'BT P = 0 provides a quadratic CLF V(z) =
zT Pz, where @ and R are positive semidefinite and
positive definite respectively. The conclusion is de-
duced from the quadratic optimal problem. How-
ever, they need solve a Riccati equation with un-
determined R and @. It is a quadratic equation.
But the method given in Theorem 1 only solves an
(n — 1)-dimensional linear Lyapunov equation, this
is simpler on the method.

144.0833 24

264.15 44

144.1083 24
24 4

P=

Stabilization by CLF

If V(r) = TPz is a CLF for the system (5),
%%Ax = 22T PAz, %%B = 22T PB, the Sontag’s

18
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universal formula gives the following stabilizing feed-
back (Sontag, 1983)

i _xTPAz+\/{x:f;;}2+4{xTPB)4 . 2TPB £0,
0, zTPB =0.
(15)

However feedback (15) is not linear. In the linear
system theory, we always desire to design a linear
control. The following Theorem 2 gives a linear feed-
back which can link the poles of the closed-loop to
the eigenvalues of Cpg.

Let L_; be the shift operator in R", i.e.,

I I
2 5
L_132=L_1 = * %
In
Tn 0
Clearly
0 1 0
Lig= |+ * 2
0 0 1
0 0 0

Without loss of the generality, the system consid-
ered in Theorem 2 takes the form of (6).
Theorem 2 If V(z) = 2T Pz is a CLF for the

Po1 P2 T
tem (6), where P = d P; =
system (6), where [Pf;! Pzz]&n "
p22 [ B Bn-1 |. Then

u=—BT(P+py PL_1)z (16)

can stabilize the system (6). Moreover, the poles of
the closed-loop system are —pgs, and the (n — 1) of
characteristic roots of Cjg.

Proof: The closed-loop system combined by (6)
and (16) is

&= (Ac—BBT(P+pyp PL_1))z. (17)
Since
A.— BBT(P +p3; PL_,)
0 1 0
0 0 0
0 0 1
| —p22b1 —pnf2—H —p22 — Pn-1 |

the characteristic polynomial of
A.— BBT(P +p3;PL_,) is

H(\) = A+p22)A" 1 4+ faa A2 4+ -+ BoA+ 1)

The conclusion follows immediately.
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Remark 5 Poles of the closed-loop system can
be designed in Cz by Theorem 2, which in turn im-
plies that we have the object to follow from the be-
ginning.

Corollary 1  If V(z) = 2T Pz is a CLF for the
system (5), then

u=—(BTP+BTp PL_)z—[Ga1  a)z (18)

can stabilize the system (5). Moreover, the poles of
the closed-loop system are —pa2, and the (n — 1) of
characteristic roots of Cg.

Example 2

Continue to consider Example 1 again, it can ob-
tain that poles of the open-loop system are
2.2403, —0.2876,0.0237+1.2456i,0.0237—1.2456i. By
(18), the feedback takes

u=[—-25 —53 — 34 —12]z.
Then poles of the closed-loop system are
—4,-3,-2,-1.
The system becomes stable.

B. CLFs for A Multi-Input Controllable Sys-
tem

This subsection turns to consider the muti-input case.

Without loss of the generality, we assume that
rank(B) = m and (A, B) holds its Yokoyama canoni-
cal form (Yokoyama and Kinnen, 1973) provided that
(A, B) is controllable.

0 [I, 0] 0 0
B : : : I 3
0 0 (L2 0] 0
_Ay _Ay—] _A] B]_
(19)

where I;, A; are respectively n; x n; unit matrices
and m x n; real matrices, for i = 2,3,---v, and A4, is
an ny X ny real matrix. m=ny >ng >--->n, >0
are the controllability indices of (A, B). At the last
equation B; is an m X m nonsingular matrix.

A,z are written in their block forms

| Gun Gz T _ T T
A—[Gm _Al],x =[ XTI, XTI ], where
TR 0
Bip= | 3 : :
0 0 I3 0]
| 0 0 0
[ 0
G2 = : 5
0
L [I2 0]

19

G21 - [ _Au _Av—l _A2 ] ’ and
Xg‘—m — [ T Tn—-m |»
X-Eu: = [ In—m+1 In ]

At first, by an input transformation v = By u;,
and a state feedback uy = — [ Ga1 —A; |z + ua,
the system (19) is transformed into

& = Az + Bous (20)
_ | G Gr2 |0
whereAc—[ 0 0 },andBc—[Iij.

We now study CLFs for the system (20).
Let P be a symmetric matrix. Divide P into a
block form as follows

|

where P,_,, € Ro-m)x(n-m) p_  c Rmxm gnd
Py3 € R®~™)Xm_ Denote

Poom Pi2
P Pnm

S.
PAPE=[.8 Sy Sy |,and S; = [ s‘-; ]
1
where S;, S;1, and S;2 are respectively nq xn;, ngxn;,
(n1 — ng) X n; real matrices, for i = 2,3,---,v.
Denote
0 [Z, 0] 0
Gp=| 5 : (21)
0 0 [I5 0]
-8y —Su-—11 —Sa1

Consider the following Conditions:
H3 P,, is a positive definite matrix, and Cjy is a Hur-
witz matrix.
H4 (Py—m—P12 Py P)Cp+Cf (Po-m—P12 P P)
is negative definite.

There are two Remarks to the above Conditions.

Remark 6 H4 implies (P,—pm — P1aP; Ph) is
a positive definite matrix provided that Cpg is a Hur-
witz matrix.

Remark 7 Since

In—m _P12P;1 Pn-—-m P12
e TR e
Iﬂ,—m 0
I:_Pn:lPIT'.; Im}
- Pﬂ—m_PliPnzlp{Z 0
0 P |7

H3 and H4 imply that P is a positive definite matrix.

By using the Yakoyama canonical form, the fol-
lowing Theorems can be established. We only state
these results and omit their proofs.

Theorem 3 V(z) = zTPz is a CLF for the
system (20) if and only if P satisfies Conditions H3
and H4.

The proof of Theorem 3 is exact to be the same
as that of Theorem 1, and is omitted.
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Denote
I,
F= g
I
Pt

Q0 [L 0] 0 0

0 0 0 0
Lom=| : : : :

0 0 0 [k 0]

0 0 0 0

Theorem 4 If V(z) = 2T Pz is a CLF for the
Po-m Pr2
d
P, Pn ] =
Sy |, Cp is denoted by (21).

system (20), where P = [

Ph =Pyl 8,
Then
u=—-BY(P+ FPL_p)z (22)

can stabilize the system (20). Moreover, the poles of
the closed-loop system are m of eigenvalues of — Py,
and (n — m) of characteristic roots of Cg.

The proof of Theorem 4 is similar to that of The-
orem 2 and omitted too.

Remark 8 Since Cp is a real matrix, the (n —
m) poles assigned by (22) consist of a conjugate set.
Moreover, P, is a symmetric matrix the remaining
m poles are all real.

C. The Inverse Problem of Optimization
In Remark 4, we mentioned that Freeman and

Primbs (1996) proved that the positive definite solu-
tion of the Riccati equation

ATP+PA-PBR'BTP+Q=0

can yields a CLF V(z) = 27 Pz. It implies that the
feedback

u=-BTPz (23)
is the solution of the optimization with the objective
function

o0
Min J= f (T Qz + uT Ru)dt.
0

This subsection will verify if V(z) = TPz is a
CLF of the system (1), then P is the positive solution
of a Riccati equation.

If V(z) = o7 Pz is a CLF of the system (1), we
now consider the feedback

u = —cBT Pz (24)

where c is a positive number to be determined. By
the feedback (24), the closed-loop system becomes

&= (A-cBBTP)z. (25)

20
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The derivative of V(z) along (25) is

V(z) = 2zT(ATP + PA—2cPBBTP)z

— oT(ATP + PA)z — 2| B'Pz |2 %®

where | BT Pz ||= V=T PBBT Pz is the Euclidean
norm of BT Pz. Since V(z) is a CLF of the system
(1), then

BTPz =0,z #0=zT(ATP+PA)z <0. (27)

On the other hand, when BT Pz #£ 0, the signal
of V(z) will be the same as that of —c || BT Pz |2
provided that c is large enough. Thus we can find a
¢ > 0 such that for every = # 0,

zT(ATP + PA - 2¢PBBTP)z < 0,
i.e., the matrix
ATP + PA—2cPBBTP

is negative definite.

It implies there exists a positive definite matrix
Q@ such that P is the positive solution of the Riccati
equation

ATP 4+ PA— PB(2¢)BTP+Q =0.

Thus we obtain the following Theorem.

Theorem 5 If V(z) is a CLF of the system (1),
then there is a ¢ > 0 such that P is the uniquely
positive definite solution of the Riccati equation

ATP+ PA-PB(2)BTP+Q =0

where @ is a positive definite matrix. Moreover,

u=—BTPz
is the solution of the optimization of

oo
Min J= f (xTQx+iuT u)dt.
0 2¢

Remark 9 By Theorem 5, we can conclude that
V(z) = 2T Pz is a CLF of the system (1), then P is
the positive solution of a Riccati equation. It means
the the condition given by Freeman and Primbs (1996)
is also necessary.

IV. UNCONTROLLABLE CASE

If the system (1) is non-completely controllable, i.e.

the rank k of controllability matrix is less than n,

then there exists a coordinate transformation Z =

Ty such that the system (1) is decomposed into

==l ZE] o
0 A; Tz

Zc
' 0

Tz

] u  (28)
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and (A, B.) is controllable by Chen (1984).

Since (A., B.) is controllable, there exists a state
feedback u. = K,Z., such that the eigenvalues of
A. + B.K, are different from those of Az. Then
the matrix equation (A, + B.K.)Fy — F1A; = Ag
has a unique solution Fj. By a state feedback u =
[K. 0]z + v and a coordinate transformation z =
s W ], the system (28) is
0 IL..g

transformed into a block digonal form as follows

[]=[%% Allz]=[% )
(20)

To% where Tp =

and (A, + B K., B.) is controllable.

Theorem 6 If the system (1) is non-completely
controllable, then the system (1) holds a CLF if and
only if the uncontrollable subsystem

2= Agze (30)
is stable.
Proof: (Sufficiency) Since ~
Z.=(Ac + B.K.)z. + By (31)

is completely controllable, the subsystem (31) holds
a quadratic CLF V(z.) = 2zl P.z. by Theorem 3. In
view of the system (30) being stable, by Lyapunov
Theorem, there exists a positive definite matrix Ps,
such that

AgP s + PeAz = —Qx,

where Qz € R(»~%)*(n=k) j5 an arbitrary positive
definite matrix. It is direct to verify that V(z) =
2X Pezo + z¥ P2z is a CLF for the system (29). Then
Vz(z) = V(T2T1z) is a CLF for the system (1) by
Propositions 1 and 3.

(Necessity) In the light of Theorem 2.5 in Sontag
(1983), the system (1) is stabilizable if these exists
a CLF. By linear system theory, the subsystem (30)
has to be stable. ¢

To end this section, we give the following Remark
to show the relation between a CLF and a quadratic
CLF of the linear system.

Remark 10 For any linear system (1), if the
rank of its controllability matrix is n, then it is com-
pletely controllable. Thus there exists a quadratic
CLF by Theorem 3. If the rank of its controllability
matrix is less than n, then there exists a quadratic
CLF V;(z) = V(T2T1z) for the system (1) by The-
orem 6. In conclusion, for the linear system (1), if
there exists a CLF then there exists a quadratic CLF.

(32)

V. THE ALGORITHM FOR THE
CONSTRUCTION OF CLFS

The section concludes the algorithm for the construc-
tion of the quadratic CLF's of the system (1) from the
above sections. We always require that the rank(B) =
m in (1).

Algorithm( Quadratic CLF construction)

Stepl Taking a controllability decomposition such
that (1) is transformed into (29). From this step,
we obtain two coordinate transformation matrices T
and T3, as well as the dimension of controllable sub-
system (A, B.).

Step2 Transforming the controllable subsystem
into its Yokoyama canonical form. The controllabil-
ity indices of (4., B,) are obtained from this step.
Denote the indices to be m =ny > ng > -+ > n,,
and ni +ng + -+ +n, = k. The transformation in
this step is denoted by T.

Step3 Choosing S;; € R™*™ for i =2,3,---v,
such that the matrix Cg defined in (21) is Hurwitz.

Step4 Choosing Sjz € R(M1—m2)Xni forj — 2,3, ...y,
arbitrarily and a positive definite matrix P,, € R™*™,
Calculating P, = P, [ S, S,—1 +--S2 | where

Si1
e[S

Step5 Choosing a positive definite matrix @ €
R(k=m)x(k=m) and solving the Lyapunov equation
MCjp +C‘g' M = —@Q. By the Lyapunov Theorem, the
solution M is positive definite because Cp is Hurwitz.

Step6 Calculating Py_,, = M + P;oP;'PL .
After the step, we can construct the positive definite

]fori=2,3,---v.

. _ | Pe-m Pr2
matrix P, = [ Plg; R, | -
StepT For the uncontrollable subsystem (A: B;),
solving the Lyapunov equation A P;+ P:A; = —Qz,

where Q; € R("Fx(n=k) js an arbitrary positive
definite matrix. From the step we obtain the CLF
for (29). The CLF is V(z) = 2T TT P.T,z. + 2T Psz;.

Step8 Calculating Vz(z) = V(ToTiz). Vi(z) is
a CLF of the system (1).

VI. CONCLUSION

This paper develops a systematic method by which
CLF of linear systems can be constructed. It proves
that the method can provide all quadratic CLFs for
a given linear system. Moreover, by using the CLF
a linear feedback is established to stabilize the linear
system. It not only can stabilize the linear system
but also assign poles of the closed-loop system in the
position designed that satisfies Remark 8.
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