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Abstract— This paper deals with the op-

timal solution to the sampled-data minimum

variance filtering problem for linear systems

with noise in the states and in the mea-

surements. The solution is derived in the

time-domain by using a fast sampling zero-

order hold input discretization of the contin-

uous time systems together with a lifting tech-

nique. The original sampled-data system is

transformed into an equivalent LTI discrete-

time system with infinite-dimensional input-

output space. However, the designed filter is

finite-dimensional. We derive both the exis-

tence conditions and the explicit expression of

the desired filter and provide an illustrative nu-

merical example.

Keywords— Filtering, lifting, T -periodic

systems, sampled-data.

I. INTRODUCTION

Minimum variance filtering problems have been exten-
sively studied via both the state space (Kalman 1960;
Anderson and Moore, 1975; Shaked 1976) and the
polynomial system approach (Wiener 1950; Roberts
and Newmann, 1987; Ahlén and Sternad, 1991; and
Grimble 1995). The design techniques are based on
continuous-time (ct) or discrete-time (dt) system de-
scriptions. However, in most applications a more real-
istic situation is that in which a digital filter must be
designed to interact with ct systems. In such cases, the
estimated signal is formed by the output of the dt filter
through a zero-order hold device. The goal is to match
the piecewise estimations to the desired ct signal. In
general, there are two classic approaches used to design
the corresponding dt filter. The first approach consists
of discretizing the ct system and designing a dt filter.
In the second one, a digital implementation of the -
optimal- filter obtained by a ct design is performed.
Due to the intersample behaviour of the ct systems in
both approaches, there is a serious performance degra-
dation when the sampling is not fast enough. There is
a third approach, called sampled-data design, in which
the dt filter is designed taking into account the dy-
namics of the ct systems involved. The recent trends,
such as techniques based on linear systems with jumps

(Sun et al. 1993), and the lifting technique (Bamieh
et al., 1991 and Hara et al., 1997), have been used
to direct sampled-data design. Although these de-
signs have been extensively used in feedback control
systems, filters design received too little attention in
spite of its importance in signal processing applica-
tions. Filtering sampled-data design has been inves-
tigated in the context of H∞ in Sun et al. (1993)
and Kabamba et al. (1993), and in the H2 context in
Milocco and De Doná (1996), Wang et al. (2001), and
Milocco and Muravchik (2003). In Wang et al.(2001),
a filtering sampled-data design based on the Error
Covariance Assignment criterium is proposed, while
in Milocco and De Doná (1996) and Milocco and
Muravchik (2003), a frequency domain approach to
MIMO linear filter design for sampled-data system is
presented by using a polynomial approach. In this pa-
per, we extend the results obtained in Milocco and De
Doná (1996) to design MIMO sampled-data filters in
the time-domain. The proposed solution allows us to
obtain the sampled-data minimum variance estimation
of the states as well as optimal solutions for minimum
variance sampled-data filtering problems such as de-
convolution, prediction and smoothing.

The paper is organized as follows: In section II,
we provide a suitable description of the multivariable
sampled-data system, i.e. the ct subsystem followed
by a sampling stage at intervals of T sec., the dt sub-
system or filter, and a holding device. Such systems
can be represented with the help of T -periodic linear
time-invariant systems. By means of a fast sampling
zero-order hold input discretization of the ct systems
together with a lifting technique, the original sampled-
data system is transformed into an equivalent LTI dt
system with infinite-dimensional input-output space.
The cost to be minimized is defined as the averaged
energy of the weighted output-error vector. In section
III, the matrices of the dt filter state space represen-
tation are obtained such that the cost is minimized.
In section IV, an example to illustrate the procedure
is provided and finally, in section V, we present the
conclusions.

II. PROBLEM FORMULATION

Consider the following ct time-invariant generalized
system:
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Figure 1: Filtering problem design.

Sc : ẋ(t) = Ax(t) + Bη1(t),

y(t) = C1x(t) + Dη2(t),

z(t) = C2x(t), (1)

A, B, C1, C2, and D are known constant matrices,
and η1(t) and η2(t) are ct white noise input vectors -
possibly correlated- affecting the states (x(t)) and the
measured output (y(t)) respectively; z(t) is the de-
sired output. By sampling the signal y(t), our aim is
to design a dt filter to produce, through a zero-order
hold, a piecewise-continuous signal ẑ(t) to match the
desired signal z(t) in the sense of minimum variance.
The flowgraph of the sampled-data filtering problem
is depicted in Fig. 1. The signal ẑ(t) is the zero-order
hold output of the dt time-invariant filter K driven by
samples ys[kT ] of the signal y(t) -with sampling period
T . We call F an ideal sampler (with period T ) and H,
a zero-order hold (with period T ). The sampling op-
erator maps the vector space of piecewise-continuous
functions W to the space of the sequences defined on
the set of integers, negative and positive V, and is de-
fined as

y = Fu ⇔ y[kT ] = u[kT ]. (2)

The hold operator maps V to W via

y = Hu ⇔ y(t) = u[kT ] (kT ≤ t < (k + 1)T ). (3)

H and F are synchronized and provide the interface
between the digital and the analog parts of the system.
We call SK = HKF the sampled-data filter. Note that
SK is a ct linear time-varying T -periodic operator that
turns the complete filtering setup of Fig. 1 also into a
linear time-varying T -periodic operator that we call S.
A T -periodic system is one whose response to an in-
put delayed by exactly T -sec. is obtained by delaying
the original output exactly by T -sec. If ϕ(t, τ) denotes
the response of a time varying T -periodic linear sys-
tem at time t when a vector of Dirac delta functions
is applied to the input at time τ , then this impulse
response satisfies ϕ(t + T, τ) = ϕ(t, τ − T ).

The time-varying T -periodic variance of the error
(e(t)) between the desired (z(t)) and estimated (ẑ(t))
signals (e(t) = z(t) − ẑ(t)), when the input of the
T -periodic operator S is driven by the input vector
η = [ηT

1 ηT
2 ]T , is given by E{e(t)eT (t)}, where E means

expectation. We define the cost function to be min-
imized with the sampled-data filter SK as the error

variance averaged over the interval T as follows:

J(K) =
1

T

∫ T

0

Etr{e(t)e(t)T }dt. (4)

Let ϕ(t, τ) denote the impulse response of S. Thus,
the error is given by

e(t) =

∫ t

−∞

ϕ(t, τ)η(τ)dτ (5)

and its covariance matrix becomes

E{e(t)eT (t)} =

=
∫ t

−∞

∫ t

−∞
ϕ(t, τ1)E{η(τ1)η

T (τ2)}ϕT (t, τ2)dτ1dτ2.

(6)
Since E{η(τ1)η

T (τ2)} = Iδ(τ1−τ2) the cost (4) can be
written as

J(K) =
1

T

∫ T

0

tr

{
∫ t

−∞

ϕ(t, τ)ϕT (t, τ)dτ

}

dt. (7)

Assuming the T -periodic operator S is band-limited
or equivalently, that the power spectral density of the
error decreases to zero as the frequency increases to-
wards infinity, we show that the cost function can be
approximated by a new cost associated to the zero-
order hold discretized systems with small sampling pe-
riod Ts. To this end, we follow the same line as in Hara
et al. (1997). First, consider the small sampling pe-
riod Ts = T/N , where N is an integer. Then, the cost
in (7) can be approximated by

J(K) ≈
1

T

N−1
∑

k=0

k
∑

l=−∞

tr
{

ϕ(kTs, lTs)ϕ
T (kTs, lTs)

}

T 2
s .

(8)
Let ϕs(k, l) denote the impulse response of the fast
sampling zero-order hold input discretization of S. It
is related to ϕ(t, τ) by

ϕs(k, l) =

∫ lTs

(l−1)Ts

ϕ(kTs, v)dv. (9)

In the limit, as T is fixed and N → ∞, the following
approximation is valid:

ϕs(k, l) = Tsϕ(kTs, lTs). (10)

By using ϕs(k, l) in (8), we obtain

J(K) ≈
1

T

N−1
∑

k=0

k
∑

l=−∞

tr
{

ϕs(k, l)ϕT
s (k, l)

}

. (11)

For a given sampling time T , equality holds for N →
∞.

In order to have a working expression of the approx-
imated cost (11), we are interested in transforming
the fast zero-order hold input discretization of the T -
periodic system into an equivalent LTI dt system. To
this end, note that the following equality holds for the
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impulse response of the fast sampled approximation
ϕs(k, l):

ϕs(kN + i, lN + j) = ϕs((k − l)N + i, j);
∀ i, j = 0, 1, · · · ,N − 1 and l ≤ k.

Then, the impulse response ϕs(k, l) of the time-varying
system can be grouped into blocks forming the impulse
response of an augmented dimension time invariant-
system. The impulse response ϕ̃(h) for h = k − l of
such time-invariant system is given by

ϕ̃(h) =






ϕs(hN , 0) · · · ϕs(hN ,N − 1)
...

. . .
...

ϕs(hN + N − 1, 0) · · · ϕs(hN + N − 1,N − 1)






,

where each element ϕ̃r,s(h) of ϕ̃(h) represents the r-th

output at time kT , due to an impulse at time hT = 0
in the s-th input component of the N×N multivariable
operator S̃. Notice that S̃ is the lifted construction of
the fast sampled dt hold input approximation of the
periodical system S. By using the impulse response
of the lifted system, the following relationship is ob-
tained:

lim
N→∞

N−1
∑

k=0

k
∑

l=−∞

tr
{

ϕs(k, l)ϕT
s (k, l)

}

=

∞
∑

h=0

tr
{

ϕ̃(h)ϕ̃T (h)
}

= JN (K).

From the equality above, it is clear that the following
holds:

J(K) = lim
N→∞

1

T
JN (K) (12)

Note that an equivalent interpretation of JN (K) is
given by

JN (K) = Etr
{

ẽ(h)ẽT (h)
}

, (13)

where ẽ(h) is the output of the fast sampled zero-order
hold and lifted system S̃ driven by a white noise se-
quence with identity covariance matrix, and JN (K)
is the sum of the variance of each of the elements in
ẽ(h). Having obtained a working expression of the cost
we minimize JN (K) instead of J(K). Thus, in order
to obtain ẽ(h), we need the lifting version of the fast
sampled dt zero-order hold input approximation of the
periodical system S.

Assume the zero-order hold input discretization
with sampling time Ts of the ct system (1), together
with the low-pass antialiasing filter, is given by

Sd : x[(k + 1)Ts] = Φx[kTs] + Γη[kTs],

y[kTs] = L1x[kTs],

z[kTs] = L2x[kTs], (14)

where η[k] is a white noise sequence vector with covari-
ance matrix E{η[k]ηT [k]} = I and the constant matri-
ces Φ, Γ, L1, and L2 are known. Our purpose is to

lift the system from sampling time Ts to T . This lift-
ing operation can be formulated by means of a block
implementation as used, for instance, in Keller and
Anderson (1992). The transformed signal η̃(kNTs) is
defined by

η̃[kNTs)] = [ηT [kNTs] ηT [(kN + 1)Ts] · · ·

· · · · · · · · · ηT [(kN + N − 1)Ts]]
T .

Note that the new vector signal η̃(kT ) corresponds to
a compound signal with sampling period T . The fast
system Sd can be lifted to the system S̃d, which maps
input blocks η̃(kT ) to output blocks ỹ(kT ) and z̃(kT ).

This lifted system S̃d is associated with the sampling
time T and is given by

S̃d : x[(k + 1)N ]Ts] = Φ̃x[kNTs)] + Γ̃η̃[kNTs]

ỹ[kNTs] = C̃1x[kNTs] + D̃1η̃[kNTs]

z̃[kNTs] = C̃2x[kNTs] + D̃2η̃[kNTs]

(15)

The structure of the matrices is as follows:

Φ̃ = ΦN ; Γ̃ = [ΦN−1Γ ΦN−2Γ ... Γ];

C̃i =

















Li

LiΦ
.

.

.

LiΦ
N−1

















;

D̃i =

















0 0 ... ... 0
LiΓ 0 0 ... 0

LiΦΓ LiΓ 0 ... 0
. . . . .

. . . . .

LiΦ
N−2Γ LiΦ

N−3Γ ... LiΓ 0

















.

(16)

Considering the dt lifted version of the system, the
sampled output is given by ys[kT )] = F ỹ[kT )], which
corresponds to the first n elements of the vectorized
signal ỹ[kNTs], where n is the number of ct measured
signals. Then, the sampler F is represented by the
n × nN matrix F = [In 0 · · · 0]. The discretized hold
element H produces a sequence of N pulses equal to
each filter output. Thus, it can be represented by a
matrix of dimension pN × p given by H = [Ip · · · Ip]

T ,
where p is the number of the filter outputs. Finally,
taking into account that FD̃1 = 0, the problem design
can be stated as follows: Given the fast sampled and
lifted system

x[(k + 1)T ] = Φ̃x[kT ] + Γ̃η̃[kT ], (17)

ys[kT ] = L1x[kT ],

z̃[kT ] = C̃2x[kT ] + D̃2η̃[kT ],

where L1 = FC̃1, find the stationary dt filter K given
by

K : x̂[kT ] = Φf x̂[(k − 1)T ] + Γfys[kT ],

ẑ[kT ] = HLf x̂[kT ] + HDfys[kT ], (18)

#### ####
L.D. HERNÁNDEZ, R.H. MILOCCO

#### ####
123



such that the cost JN (K) given by

JN (K) = Etr
{

ẽ(kT )ẽT (kT )
}

, (19)

where ẽ = ẑ[kT ] − z̃[kT ] is minimized. In the next
section we derive the optimal constant matrices Φf ,
Γf , Lf , and Df of K.

III. MINIMUM VARIANCE FILTER

DESIGN

Using the state space representation of the dt lifted
system in (17) and the dt filter K in (18), the state
space equations for the estimation error ẽ[k] are

X [k + 1] = AX [k] + Bη̃[k]

ẽ[k] = CX [k] + Dη̃[k], (20)

where the sampling time T is dropped from now on
and X , A, B, C, and D are given by

X [k] =

(

x[k]
x̂[k]

)

; A =

(

Φ̃ 0

ΓfL1Φ̃ Φf

)

;

B =

(

Γ
ΓfL1Γ

)

; C =
(

C̃2 −HDfL1 −HLf

)

;

and D = D̃2.
(21)

Then, the stationary covariance matrix of X is

P = E
{

X [k]X T [k]
}

=

(

P1 P12

PT
12 P2

)

. (22)

By replacing X [k] of equation (20) in equation (22) and
(19), it is easy to see that the stationary covariance
matrix and the cost JN (K) fulfil

P = A P AT + BBT (23)

JN (K) = tr{C P CT + DDT }. (24)

Note that the covariance matrix P does not depend on
Lf nor on Df . Then, in order to obtain the optimal
values of Φf , Γf , Lf , and Df , we start by minimiz-
ing the cost JN (K) with respect to Lf . To this end,
let Lf be all possible matrices of constants parame-
terized as Lf = Lfo + εΥ, where ε is a small scalar;
Υ, an arbitrary constant matrix; and Lfo, the optimal
matrix which minimizes the cost JN (K) in (24). No
matter which Υ is chosen, the minimum of the cost
function is obtained for the choice of the scalar value
ε = 0. The necessary condition for the minimum is

given by ∂JN (K)
∂ε

|ε=0 = 0 and the sufficient condition

is ∂2Jc

∂ε2
|ε=0 > 0. The last condition is always satisfied

(due to the convexity of JN (K)). By replacing C given
by (21) in (24) and by using Lf = Lfo + εΥ, the fol-
lowing optimal value of Lf is obtained by deriving the
cost with respect to ε and equating the result to zero:

Lfo =
HT (C̃2 −HDfL1)P12P

−1
2

N
. (25)

By using (25), we can rewrite C as

C =
(

a −HHT a
P12P

−1

2

N

)

, (26)

where
a = C̃2 −HDfL1. (27)

Then, the cost JN (K) in (24) can be written as

JN (K) = tr
{(

a −HH
T

N
a
)

(

P1 L
L L

)(

aT

−aT HH
T

N

)

+ D̃2D̃
T
2

}

,

(28)

where
L = P12P

−1
2 PT

12. (29)

We can rewrite the cost in a much more suitable form
as

JN (K) = tr

{

(

HH
T

N
a −HH

T

N
a
)

(

P1 L
L L

)

(

aT HH
T

N

−aT HH
T

N

)

− HH
T

N
aP1a

T HH
T

N

+aP1a
T + D̃2D̃

T
2

}

.

(30)
Since P1, a, and D̃2 do not depend on Φf and Γf , we
are able to find the minimum of the cost with respect
to Φf and Γf by just minimizing the first term. Thus,
we rewrite the first term as

tr

{

HH
T

N
a
(

I −I
)

(

I 0
0 P12P

−1
2

)

(

P1 P12

PT
12 P2

)(

I 0
0 P−1

2 PT
12

)

(

I
−I

)

aT HH
T

N

}

.

(31)

Taking into account that the covariance matrix of the
error in the states (x̃) is

P̃ = E(x̃[k]x̃T [k]) =
(

I −I
)

P

(

I
−I

)

, (32)

where x̃ = x − x̂, we will show that the minimum of
(31) is reached by minimizing P̃ in the positive def-
inite sense. In the minimum, the estimation error x̃
is uncorrelated with the estimation x̂ of x. This is
the optimal error that can be achieved for the covari-
ance matrix P̃ since otherwise, if the estimation er-
ror x̃ was correlated with x̂, a further decrease in P̃
could be achieved. Then, E(x̃x̂T ) = 0 holds, which
leads to the following equality: P12 = E(xx̂T ) =
E(x̃x̂T ) + E(x̂x̂T ) ⇒ P12 = P2. By using this equality,
equation (31) is written as

tr

{

HHT

N
aP̃aT HHT

N

}

. (33)
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Since the term in (33) is positive definite, its optimum
value is given by the minimum of P̃ . Then, we need
to find the minimum of P̃ with respect to Φf and Γf ,
subjected to the bias constraint E(x̃) = 0. The op-
timal stationary solution to this problem is given by
the stationary dt Kalman filter (Anderson and Moore,
1975) according to the following equations:

Ψ = (Φ̃P̃ Φ̃T + Γ̃Γ̃T )
Γf = ΨLT

1 (L1ΨLT
1 )−1

Φf = Φ̃ − ΓfL1Φ̃.

(34)

The optimal value of Df still remains to be obtained.
To this end, we replace (33) in (30), which gives

J(K) = tr{
HHT

N
a(P̃ − P1)a

T HHT

N
+ aP1a

T +

+D̃2D̃
T
2 }

= tr{
HHT

N
aP̃aT HHT

N
+ D̃2D̃

T
2 }. (35)

In the same way as with Lfo, we obtain the optimum
Dfo by using the parametrization Df = Dfo + εΥ. By
deriving the cost with respect to ε, and equating to
zero, the optimal value is

Df =
HC̃2P̃LT

1

N
(L1P̃LT

1 )−1. (36)

The optimal stationary dt filer K is given by (18),
where Φf , Γf , and Df are given by (34) and (36). Lf

from (25) is given by

Lf =
HT (C̃2 −HDfL1)

N
. (37)

The expression of P̃ still remains to be derived. This
can be made by using (32) with P defined by (23). By
means of the expressions of Φf and Γf , the following
dt algebraic Riccati equation (DARE) is achieved:

P̃ = Ψ − ΨLT
1 (L1ΨLT

1 )−1L1Ψ. (38)

Then, the minimum of the cost function is given by
(35) together with the solution of (38).

IV. EXAMPLE

Consider the following scalar prediction problem de-
picted in Fig. 2. The prediction of the continuous time
signal z(t) at time t+1 sec. is desired. The signal z(t)
is the output of the ct system S1. The measured out-
put ys(t) is the signal z(t) corrupted by additive noise
v(t). z(t) is the output of the ct system S2. Both sys-
tems are excited by the inputs η1(t) and η2(t), which
are uncorrelated white noise processes with spectrum
amplitudes α2 and β2 respectively. The predictor is
a digital ensemble that operates at a sampling rate of
T = 1sec.. In Fig. 2, ẑ(t + T |t) means the prediction
of z(t) at time t+1, taking into account measurements
until time t. The same consideration is made for the
discrete signal ẑ(k +1|k). This prediction problem de-
sign can be formulated as in Fig. 3, which is similar
to the assemble in Fig. 1.

S1

I

S2 j+-
?

-

-

-

?

η1

η2

z(t)

y(t)v(t)

F K H- - -
ẑ(t + T/t)

SK

Figure 2: Prediction problem set-up.

S1

delay

S2 i+-
?

-

-

?

η1

η2

z(t)

y(t)v(t)

F K H- - -
ẑ(t)

SK

i

6

? -e(t)

Figure 3: Equivalent representation of the prediction
problem set-up.

In the example, systems S1 and S2 are given by the
transfer functions

S1(s) =
α((1/1.41ωo)s + 1)

(1/ω0)s2 + (1.41/ω0)s + 1
(39)

S2(s) =
β

(1/ω0)s2 + (1.41/ω0)s + 1
.

The optimal sampled-data predictor K, which mini-
mizes the predictor error variance, is obtained by per-
forming the following steps:

1. Obtain the zero-order hold discretization of ct
systems S1 and S2 at sampling time Ts = T/N
with T = 1sec and an arbitrary value of N .

2. Build the state equations of both systems includ-
ing the delay and express it as in equation (14).
Note that the number of states increases from
four to five.

3. Lift the dt system and apply the operator F to
obtain the state space representation as in (17).

4. Obtain the value of P̃ using the DARE equation
(38).

5. Compute the cost JN (K) of equation (35).

6. Compare the cost obtained in the former step
with respect to the previous iteration. If there
exists no significant difference, then the optimal
filter approximation has been obtained. Other-
wise, increase the value of N and return to step
1.
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For different values of ωo (the natural frequency of
the systems), the optimal discrete predictor was de-
signed by following the steps previously described. Op-
timal dt filters of first order-degree are obtained for
every ωo -keeping the sampling rate T = 1sec con-
stant. The cost JN (K) tends towards the minimum as
N increases. In our example, the cost obtained with
N = 20 constitutes, in fact, an approximation to the
optimal solution with an error lower than 1%. In Figs.
4 and 5, the minimum of the cost obtained versus the
natural frequency ωo is shown.

In order to asses the performance of the proposed de-
sign method, the cost without predictor (K = 0), the
cost with N = 1 -which corresponds to the standard
discrete time design-, and the cost obtained by means
of the optimal ct design are depicted. The ct filter
design was achieved by using a 10th Padé delay ap-
proximation. By increasing the order of the Padé ap-
proximation, no significant improvements were made.
The different costs were obtained in the case where the
noise amplitudes are α = 1 and β = 0.01, and they are
depicted in Fig. 4. In Fig. 5, the same costs are shown
when both α and β are equal to 1.

The example shows that considerable improvements
can be made with respect to the classical discrete time
design (N = 1) by using the proposed sampled-data
design method. The differences in cost among the dif-
ferent designs become less significant as the natural
frequency decreases. This is obvious since the mini-
mum of the cost obtained by means of the optimal ct
filter is equivalent to the discrete one as Tωo tends to
zero. Fewer improvements are obtained in the case of
higher noise power (Fig. 5). The filter parameters in
the case of Fig. 4 when ωn = 0.6 are the following:

K : x̂[kT ] = −0.2684x̂[(k − 1)T ] + ys[kT ],

ẑ[kT ] = 3.847x̂[kT ] − 2.063ys[kT ]. (40)

V. CONCLUSIONS

A sampled-data minimum variance filter design prob-
lem enclosing deconvolution, prediction, and smooth-
ing has been presented. The optimal solution can be
found by an approximation method based on lifted
systems. The optimal filter is designed by using the
solution of the algebraic Riccati equation. Although
the original sampled-data system is transformed into
an equivalent LTI dt system with infinite-dimensional
input-output space, the Riccati equation and the de-
signed filter are finite dimensional.

Our design requires the solution of a dt algebraic
Riccati equation instead of the two diophantine equa-
tions and the spectral factorization used in the poly-
nomial approach design as in Milocco (1996). There
exist standard algorithms in Arnold and Laub (1984)
to solve the DARE efficiently.

An example of sampled data prediction has been
presented to show the design procedure. In the exam-
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Figure 4: Cost versus ωo with α = 1 and β = 0.01
(1)-Cost without predictor K=0; (2)-Cost using the
dt solution; (3)-Cost using the sampled-data design;
and (4)- Cost using the ct design.
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Figure 5: Cost versus ωo with α = 1 and β = 1 (1)-
Cost without predictor K=0; (2)-Cost using the dt
solution; (3)-Cost using the sampled-data design, and
(4)-Cost using the ct design.

ple, under certain sampling conditions, improvements
up to 20% with respect to the classical discrete time
solutions were obtained without increasing the filter
structure complexity.

The filter obtained is optimal when the ct systems
are linear and time invariant. However, the design can
be extended to deal with time-variant system. In such
case, instead of using the expressions of the linear time
invariant lifted system given in (16), equivalent expres-
sions for linear time-variant lifted systems should be
used. The approach can also be extended to deal with
uncertain systems as in Milocco and Muravchik (2003).
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