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Abstract  In this work the effects of relatively 

large amounts of insoluble surfactants on the forma-

tion and evolution of two-dimensional Faraday 

waves is analyzed by means of numerical experi-

ments.  To describe the functional relationship be-

tween the surface tension and the local concentration 

of the absorbed solute, two equations of state are 

used: the Frumkin and the Langmuir expressions.  A 

linear approximation is also employed for compari-

son.  Results obtained show that the threshold condi-

tions for the formation of the waves depend on the 

nature of the surfactant; nevertheless, the differ-

ences detected diminish as the amplitude of the ex-

ternal excitation is augmented. 

Keywords  free-surface, surfactants, finite-

element, Faraday waves. 

I. INTRODUCTION 

When a container partially filled with a liquid is verti-

cally vibrated, stationary waves with a frequency equal 

to one half the frequency of the external excitation can 

be observed at the liquid-air interface.  These waves 

were reported by Faraday in 1831 but it was not until 

1954 that the first theoretical analysis of this problem 

was presented by Benjamin and Ursell.  These authors 

studied the stability of the interface of an ideal fluid in 

irrotational motion, for infinitesimally small amplitudes 

of the free surface oscillations.  They derived an infinite 

set of Mathieu’s equation and they showed that reso-

nance is responsible for the wavy motion.  They also 

concluded that the system is always unstable when the 

frequency of the external vibration is equal to twice the 

natural frequency of the system, even for forcing ampli-

tudes infinitesimally small.  This unrealistic result is a 

consequence of the ideal behavior assumed. 

Since the pioneering work of Benjamin and Ursell 

(1954), many theoretical and experimental contributions 

dealing with different aspects of the problem have been 

published (for a review see Miles and Henderson 1990, 

Miles 1993, and Perlin and Schultz, 2000).  Even 

though the damping effect on surface waves produced 

by surface active agents is well known since ancient 

times (Franklin, 1774), very few articles are concerned 

with the influence of surfactants on Faraday waves.  

Miles (1967) performed a weakly non linear analysis in 

which approximate analytical expressions for the damp-

ing coefficients of surface waves under the influence of 

surfactants were established.  Henderson (1998) meas-

ured damping rates of the fundamental axisymmetric 

Faraday waves in a cylindrical container and compared 

the experimental values with those obtained evaluating 

the approximate analytical expression of Miles.  She 

found a reasonable agreement between them even when 

the amplitude of the waves were large. 

Kumar and Matar (2002a, b; 2004) presented three 

analyses about the role of insoluble surfactants on the 

critical oscillation amplitude required to form Faraday 

waves.  In the first of these studies, they performed a 

linear stability analysis for fluids of arbitrary viscosity 

and depth.  As a consequence of the assumptions intro-

duced, a time-independent concentration of surfactant is 

the only solution compatible with the existence of Ma-

rangoni flows, this solution being possible in the limit of 

very high Péclet number.  These authors proposed that 

the distribution of solute presents a spatial shift with the 

free surface deflections and they reported solutions us-

ing the spatial phase angle as an arbitrary parameter. 

The main conclusion reported is that the surfactant may 

either raise or lower the amplitude of the external oscil-

lation needed to produce a wavy interface, depending on 

the value of the shift. 

In the second article Kumar and Matar (2002b) es-

tablished the magnitude of the minimum external force 

needed to form two-dimensional Faraday waves at the 

free surface of a liquid layer covered with an insoluble 

surfactant.  The approach employed in this work is the 

lubrication approximation based on the assumption that 

the liquid thickness is very small compared to the wave-

length of the disturbance.  The results obtained show 

that the contaminated liquid layer becomes more stable 

as the elasticity number (i.e. the ratio between the Gibbs 

elasticity and the surface tension) increases;  neverthe-

less, they predict that a clean system meeting the re-

quirements of the approximations used can not be ex-

cited, a result that contradicts the predictions of the lin-

ear stability analysis (Kumar and Tuckerman, 1994). 

In the third work, Kumar and Matar (2004) analyzed 

the formation of standing waves when the free surface is 

covered with an insoluble surfactant.  They performed a 

full linear stability analysis of the problem in which 

surfactant convection is rigorously accounted for.  They 
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evaluated both the critical vibration amplitude and the 

critical wave number as a function of the Marangoni 

number. 

In a previous work, we numerically investigated the 

elastic effects of an insoluble surfactant on the forma-

tion and evolution of two-dimensional Faraday waves 

(Ubal et al., 2004).  The numerical experiments carried 

out, establish the minimum value of the external force 

required to form standing waves of a given wavelength 

as a function of the elasticity of the surface active agent.  

We show the existence of a temporal phase shift be-

tween the motion of the liquid in the bulk and along the 

interface; this phase shift is related to the magnitude of 

the external force needed to excite the system. 

In all the works mentioned above, it is assumed that 

the surface tension is a linear function of the concentra-

tion of the adsorbed surfactant, a hypothesis that is rea-

sonable when both the free surface deflection and the 

interfacial concentrations of the surface active agents 

are small. 

In the present study we numerically analyze the ef-

fects of an insoluble surfactant on two dimensional 

Faraday waves without the limitations associated to the 

use of a linear equation of state for surface tension.  

Therefore, we can compute solutions for larger values 

of the free surface amplitude and larger amounts of sol-

ute absorbed; moreover, we are able to predict the con-

ditions under which a linear equation of state underes-

timates or overestimates the threshold conditions for 

surface wave generation.  We use two thermodynamic 

equations that can be derived from the Langmuir and 

Frumkin isotherms (see, for instance, Edwards et al.,

1991).  Results computed with them and with their lin-

ear approximations are presented and discussed. 

II. MATHEMATICAL FORMULATION 

A. Governing equations 

We consider a layer of an incompressible Newtonian 

liquid covered by a monolayer of an insoluble surfac-

tant.  The liquid is lying on the horizontal (x, z) plane, 

and its height at rest is H0.  The viscosity ( ) and den-

sity ( ) of the liquid are constant, and the air above it is 

inviscid.  The pressure of the gas phase is the reference 

pressure of the system and is taken equal to zero. 

Initially, a 2-D perturbation of amplitude H0 and 

wave number k is imposed to the free surface and the 

time evolution of the disturbance is followed.  The ex-

tension of the domain in the x-direction is equal to one 

half the wavelength of the initial perturbation imposed; 

therefore, lateral boundaries are symmetry planes and 

the wavy motion developed is mirrored at both sides of 

the domain.  Under these conditions the free surface is 

described by a function of one spatial coordinate and 

time: h(t, x).

The reference frame adopted is attached to the solid 

boundaries which oscillate with frequency  and ampli-

tude a0; therefore, the externally induced acceleration is 

added to gravity.  The equations of momentum and 

mass conservation are 
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where Re= H0
2/2 2 is the Reynolds number, 

Fr= 2H0/4 g is the Froude number, and F=a0
2/g

gives the ratio between the external imposed force and 

gravity force.  The characteristic scales adopted are 

/k= H0/  for lengths, 2 /  for time, H0/2  for ve-

locities, and ( H0/2 )2 for pressures and stresses.  The 

initial perturbation imposed to the free surface is 

10,cos1,0 xxxh . (3) 

The boundary conditions required by Navier-Stokes 

equation are summarized in Fig. 1 where u and v are the 

x and y components of the velocity vector, respectively. 

At the bottom wall the non-slip condition is imposed 

while at the lateral planes, symmetry is required. 
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Fig. 1.  Schematic representation of the flow domain, 

boundary conditions, and coordinate system adopted. 

To establish the boundary conditions at the interface, 

we presume that the free surface is a material surface; 

therefore, the kinematic condition applies 

v
x

h
u

t

h
. (4

Besides, the free surface is Newtonian and inviscid, so 

that the dimensional surface stress tensor T
(S) is 

T
(S)= (I-nn), where I is the identity tensor, n is the 

outwardly directed unit vector normal to the interface, 

and  is the gas-liquid surface tension that is a function 

of the amount of surfactant ( S) locally adsorbed; thus, 

the interfacial balance of stresses results 

Fds

d

We
,

1
tnT . (5) 
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In Eq. (5), We= 2H0
3/4 3

F is the Weber number, F

is the surface tension of the corresponding “clean” sys-

tem, and t is the unit vector tangent to the free surface 

pointing in the direction of increasing arc-length s.  If 

there are not surfactants on the interface, Eq. (5) will 

simplify to the boundary condition usually imposed to 

the free surface.  On the other hand, in the presence of 

surfactants, this equation must be complemented with 

an appropriate equation of state that specifies the de-

pendence of the interfacial tension on surfactant concen-

tration.  In this work, the expressions adopted can be 

derived from the Frumkin isotherm; that is, 

2

2
1ln1

A . (6) 

In Eq. (6), 1  represents the local variation in sur-

face tension relative to the interfacial tension of a clean 

interface.  =RT S/ F is the elastic number, R being 

the perfect gas constant, T the absolute temperature and 
S the maximum concentration of solute that can be 

absorbed on the interface; and  is the dimensionless 

interfacial concentration of surfactant measured in units 

of S.

Finally, in this expression, A is a parameter that 

measures the degree of non-ideality of the interface; A is 

positive or negative for cohesive or repulsive interac-

tions between the surfactant molecules, respectively. 

The Langmuir equation of state is a special case of Eq. 

(6) that supposes the interface to be ideal; that is, A = 0.  

It is also worth noting that Eq. (6) reduces to the com-

monly used linear equation of state 

1  (7) 

in the dilute limit, 1 .  Although Eq. (7) has been 

used in all previous works concerning this problem, it is 

easy to verify that it is only valid in the limit of very 

low concentrations of surfactant.  In fact, the curves 

illustrated in Fig. (2) corresponding to the evaluation of 

Eq. (6) with A equal to 0, 4 and –4, put into evidence 

that non linear effects can be important when the initial 

surface coverage is relatively low. 

Since the interfacial tension is a function of the local 

concentration of the surface active agent adsorbed at the 

interface, the system of governing equations must be 

complemented with the interfacial mass balance of sur-

factant; for an insoluble contaminant, this equation is 

(Stone, 1990) 

02
1 00 ns

n

Hv
sPe

v
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where v0s and v0n are the tangential and normal compo-

nents of the interfacial velocity, respectively, H is the 

dimensionless curvature of the interface, and

Pe=2 2DS/ H0
2 is the surface Péclet number; DS being 

the interfacial diffusivity of the solute. 

Symmetry boundary conditions must be satisfied at 

both ends of the interface implying that 

0shs .
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Fig. 2.  Surface tension versus surface coverage evalu-

ated with Eqs. (6) and (7) with  = 1. 

Next, we briefly summarize the numerical technique 

employed to solve the system of governing equations 

and boundary conditions. 

B. Numerical technique 

The Galerkin/finite-element method is used to obtain 

the spatial discrete version of the governing equations 

(1), (2), (4), and (8) with their boundary conditions, 

while the free surface location is traced with the aid of a 

suitable parameterization (Kheshgi and Scriven, 1984). 

The flow domain is tessellated into quadrilateral 

elements and each element is mapped isoparametrically 

onto a unit square; this transformation applied to all the 

elements defines the computational domain in which the 

free surface is a coordinate line.  Mixed interpolation is 

used to approximate the velocity and pressure fields. 

The interfacial concentration of surfactant is interpo-

lated by the one-dimensional specialization of the bi-

quadratic basis functions used to approximate the ve-

locities. 

The weighted residuals of the governing equations 

are built in the usual form; thus a set of ordinary differ-

ential equations is obtained.  This set is reduced to a set 

of nonlinear ordinary equations by means of a finite-

difference predictor-corrector scheme and it is solved 

using a Newton loop.  The size of the time step is con-

trolled using Crisfield’s method. 

The criteria adopted to select an appropriate finite 

element mesh are the following: 

- There is one boundary layer near the solid wall 

and another one near the interface; conse-

quently, the mesh is refined in these regions. 
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- Numerical oscillations associated to large Pé-

clet values should be negligible. 

- Errors in the surfactant mass balance should be 

bounded to a small amount; typically the cumu-

lative error between the first and the last time 

step of a simulation is less than 2%. 

From the numerical experiments performed, we con-

cluded that a mesh with 140 elements was appropriated 

to follow the evolution of the free surface and the inter-

facial concentration of surfactant in almost all the situa-

tions presented in this work.  In fact, only in few oppor-

tunities a more refined mesh was employed. 

A complete discussion of the numerical algorithm 

employed and a detailed description of the numerical 

tests performed are reported elsewhere. (Ubal et al.

2003, 2004). 

III. RESULTS AND DISCUSSION 

As we have already mentioned in the Introduction, in 

this work we are primarily concerned with insoluble 

surfactants of different nature and the effects they have 

on the formation of the waves.  More specifically, we 

compare the behavior of the system under the influence 

of Langmuir and Frumkin surfactants.  Also, we con-

sider the linear form of these equations in order to ex-

plore the range of validity of this approximation. 

For this purpose, we carried out numerical simula-

tions for a particular set of the dimensionless parame-

ters:

2Re=39.478, 3We=4.429, Fr=3.206,  (9) 

which corresponds to the following typical values of the 

physical variables 

=1000kg/m3, =25 10-3 Pa s,

F=70 10-3 N/m, H0=10-3m, =200  s-1.

These parameters were employed in the simulations 

of both a contaminated surface and a system free of sur-

factant.  In addition, when a surface active agent is pre-

sent, the following value for the Péclet number —that 

corresponds to a typical value of the surface diffusion 

coefficient (DS=2.5 10-9 m2/s)— was specified 

2Pe=394784. (10) 

The numerical solutions presented in this section are 

organized as follows.  First, we select a particular wave 

number ( ) in order to define a reference case for the 

numerical experiments.  Then we analyze the influence 

of the amount of surfactant adsorbed at the interface on 

the critical conditions required to form standing waves 

of wave number ; this study is carried out using Eq. 

(6) with A equal to 0, 4 and –4.  Finally, the effect of 

increasing the amplitude of the external force on these 

systems is studied. 

A. Selection of the reference case 

In order to determine a base case for the analysis, we 

conducted a first set of numerical simulations in a sys-

tem free of surfactant; that is, =0.  The results obtained 

are summarized in Fig. 3, where crosses and circles rep-

resent the outcome of each numerical experiment. 

Every simulation starts with the liquid at rest, the free 

surface slightly perturbed from the horizontal flat state 

according to (3) with  =0.001, and a uniform concen-

tration of surfactant ( 00 / S , S0 being the initial 

dimensionless interfacial length and SS

00 ; S

0

is the initial concentration of surfactant adsorbed on the 

interface).  In this figure, crosses denote unstable solu-

tions while circles denote stable ones.  The criterion 

adopted for this classification is the following: when the 

amplitude initially imposed to the free surface decays to 

zero, the numerical experiment is considered stable, 

otherwise it is catalogued as unstable. 

The unstable solutions shown in Fig. 3 define a re-

gion in which the oscillation of the free surface has a 

frequency equal to one half the frequency of the exter-

nal vibration and a wavelength equal to 2 /k (in dimen-

sional units).  Under these conditions, there exists a par-

ticular wave number ( C) that requires a minimum exci-

tation amplitude (FC) to raise a wavy motion.  The point 

marked with  (FC=12.31, C =1.18) represents the 

approximate critical conditions for wave generation. 

This particular wave number together with the set of 

dimensionless numbers (9) and (10) define the reference 

set (RS) that will be employed in the numerical experi-

ments carried out in this work to study the influence of 

the surface active agents on the generation of the waves. 
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Fig. 3.  Stability map in the F-  plane for a clean sys-

tem characterized by (9). 

B. Effect of the initial surface coverage on FC

In this section we analyze the influence of the initial 

surface coverage 0  on the minimum vibration ampli-

tude required to form the standing waves. 
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We fixed  equal to 1 i.e. a typical value for the 

elasticity number  and we computed solutions for RS 

and several values of the initial surface coverage 0 , in 

order to detect the minimum amplitude needed to pro-

duce the waves.  In all the cases considered, we em-

ployed Eq. (7) and Eq. (6) with A equal to 0, 4 and –4, 

these last two values represent a surfactant with strong 

cohesive and repulsive interactions, respectively (John-

son and Borhan, 1999). 

As we have mentioned in the Introduction, the 

damping effect that films of insoluble surfactant have on 

surface waves is well known since a long time ago.  

When a wavy motion is established and the Péclet num-

ber is large, the liquid moving from the valley toward 

the crest of the wave convects surfactant to this region 

creating a positive concentration gradient directed from 

the trough toward the crest of the wave.  This gradient 

gives rise to a non zero tangential component of the 

traction vector along the interface (see Eq. (5)) pointing 

toward the region of larger interfacial tension (lower 

concentration of the surface active solute).  These ten-

sions, that are known as Marangoni tensions, try to re-

store a uniform concentration of surfactant by pulling 

the interface in the opposite direction to the motion of 

the bulk damping, in this way, the surface waves. 

Therefore, as the amount of surfactant adsorbed at 

the interface increases one should expect larger values 

of the minimum external amplitude needed to form the 

waves, whenever a larger amount of surfactant implies 

larger elastic effects ( dd ).  It can easily be verified 

(see Eq. (6) and Fig. 2) that this quantity depends upon 

the type of surfactant adsorbed at the interface; conse-

quently, the dynamic behavior of the system for a 

Langmuir or a strongly repulsive surfactant will be dif-

ferent compared to the behavior of a strongly cohesive 

one. 

The results of the numerical solutions computed are 

reported in Fig. 4.  One should note that 00 , repre-

sents a limit case in which the amount of surfactant ad-

sorbed is negligible and consequently, 1;  there-

fore, the value of FC corresponds to the situation in 

which the concentration of surfactant is nearly zero (in-

finite dilution),  being equal to 1.  The solutions illus-

trated in this figure show that FC increases with the ini-

tial surface coverage when A is equal to 0 or –4, as ex-

pected.  On the other hand, for A = 4, FC slightly in-

creases with 0 when this quantity is between 0 and 0.1, 

and from this point it remains almost constant within the 

range of initial surface coverage considered in this 

analysis.
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Fig. 4.  Influence of the initial surface coverage on FC

for  =1, and A equal to 0, 4 and –4.  The other parame-

ters of the system correspond to RS. 

In order to understand the trends of the curves illus-

trated in Fig. 4, one should notice that for a fixed surfac-

tant coverage Eq. (6) predicts larger values of dd

when A is equal to 0 (ideal surfactant) or negative (re-

pulsive interactions between the surfactant molecules) 

than for a positive A (attractive interactions between the 

surfactant molecules).  The isotherms depicted in Fig. 2 

for A equal –4 and 0, show that this quantity increases 

rapidly with , and consequently, the surface tension 

diminishes fast as the concentration of surfactant is aug-

mented.  On the other hand, the curve corresponding to 

A = 4, shows that dd  is almost zero when the sur-

face coverage is smaller than 0.7; therefore, the surface 

tension is almost insensitive to changes in concentration 

within this range of surfactant concentration . 

According to the above remarks, it is easy to under-

stand why FC increases with the amount of surfactant 

adsorbed at the free surface in a system covered with 

either an ideal surfactant (Langmuir) or a surfactant 

with strong repulsive interactions (Frumkin with A= -4). 

Moreover, the larger values presented by dd  in the 

last case are responsible for the higher external forces 

required to form the waves. 

When the deviation from the ideal behavior (A = 0) 

is due to large attractive forces between the surfactant 

molecules, dd  is small (see Fig. 2); therefore, FC

slightly increases from the value corresponding to infi-

nite dilution, as the results in Fig. 4 indicate. 

Next, we analyze the effects of increasing F beyond 

its critical value on the dynamic behavior of a system 

covered with a Langmuir or a Frumkin surfactant that 

presents either repulsive or cohesive interactions. 
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C. Evolution of the interfacial variables for increas-

ing external amplitude and a fixed surface coverage. 

It is interesting to study the dynamic behavior of the 

system when the external force is larger than the mini-

mum value needed to form the waves, and the surfactant 

adsorbed on the interface is a Langmuir or a Frumkin 

surfactant.

To this end, we computed solutions for F between 

FC and 17, when the parameters of the system stand for 

the RS,  =1, and the relationship between surface ten-

sion and the concentration of surfactant corresponds to 

either the Langmuir equation or the Frumkin equation 

with A = 4 and A = -4.  Also, in order to detect the limits 

of validity of the linear approximation, we computed 

solutions with Eq. (7). 

In Fig. 5, the time-periodic maximum amplitude of 

the free surface oscillation is illustrated as a function of 

F, for the different types of surfactants considered in 

this work. 
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Fig. 5.  Values of the free surface maximum amplitude 

as a function of F, for three types of surfactants (A equal 

to 0, -4 and 4), 0 = 0.1, and  =1.  The other parameters 

of the system correspond to RS.  Results computed with 

Eq. (7) are also included. 

Results depicted in Fig. 5, show that the maximum 

amplitude of the oscillation when the external force is 

fixed is larger when A = 4 and it is smaller for A = -4.  

Also, the predictions of the linear model are very similar 

to those computed with Langmuir equation, an expected 

result if one takes into account that the surface coverage 

considered is relatively low.  As we have already men-

tioned, the damping effect of a surface active agent on 

the surface waves is primarily due to the Marangoni 

traction whose magnitude depends on dd .  For the 

case under analysis, this variable is smaller when A = 4 

and it is larger for A = -4, while the values correspond-

ing to the linear approximation (7) and to A = 0 are very 

similar (see Fig. 2). 

It is interesting to note, that the differences observed 

between the models are larger near the onset, including 

those between the Langmuir expression and the linear 

approximation (7), even for the small surface coverage 

considered here.  All the curves merge at F=17, pointing 

out that when the external force is large the effects of 

the surfactant on the system are practically negligible. 

The generation of the waves results from the compe-

tition between capillary, viscous, inertia, Marangoni, 

and external forces.  Capillary and Marangoni forces are 

related to the type of surfactant adsorbed at the inter-

face.  Their values depend on surface tension and sur-

face elasticity that in turns depends on the interfacial 

concentration gradients generated by interfacial convec-

tion and interfacial deformation.  On the other hand, 

inertia forces depend directly on the velocity.  There-

fore, it is interesting to analyze the maximum value of 

the time-periodic surface velocity in all the examples 

reported in Fig. 5. 

In Figs. 6 and 7 we illustrate the normal and tangen-

tial components of the interfacial velocity as a function 

of F, respectively.  As it is shown, the magnitude of 

these variables increases as F is augmented; moreover, 

all the curves follow a similar trend to that observed in 

Fig. 5 for the free surface amplitude.  The differences 

are larger near the onset and they diminish as the exter-

nal acceleration is increased.  For a fixed F, the larger 

velocities are detected for a surfactant with molecules 

attracting each other and the smaller ones are presented 

by a surface active agent whose molecules repel each 

other.  Also, the values computed for a Langmuir sur-

factant are very close to those computed with the linear 

approximation (7). 
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Fig. 6.  Maximum values of the normal component of 

the interfacial velocity, as a function of F, for three 

types of surfactants (A equal to 0, -4 and 4), 0 = 0.1, 

and  =1.  The other parameters of the system corre-

spond to RS.  Results computed with Eq, (7) are also 

included. 
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A careful inspection of the flow field (not shown 

here) indicates that the magnitude of the normal compo-

nent of the surface velocity typifies well the magnitude 

of this variable in the whole domain.  Thus, for an in-

crease of the surface velocities with F as is depicted in 

Figs 6 and 7, one might expect the inertia forces to be-

come rapidly dominant over the remaining forces. In 

particular, their magnitude should grow large enough to 

make negligible any difference in the Marangoni forces.  

This explains why all the curves corresponding to both 

the magnitude of the interfacial velocity (Figs. 6 and 7) 

and the amplitude of the free surface waves (Fig. 5) tend 

to merge when the excitation amplitude is high. 
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Fig. 7.  Maximum values of the tangential component of 

the interfacial velocity, as a function of F, for three 

types of surfactants (A equal to 0, -4 and 4), 0 = 0.1, 

and  =1.  The other parameters of the system corre-

spond to RS.  Results computed with Eq, (7) are also 

included. 

On the contrary, near the onset of the instability the 

velocities are small, and even small differences in Cap-

illary and Marangoni forces associated to the character-

istics of the surfactant considered, should be noticeable 

there.

IV. CONCLUDING REMARKS 

In this work we numerically analyze the influence of 

the equation of state relating surface tension and local 

interfacial concentration of surfactant on the formation 

of Faraday waves. 

The numerical technique employed, which uses the 

Galerkin/finite element method combined with a suit-

able parametrization of the free surface for the spatial 

discretization, and a second order predictor-corrector 

scheme to march in time proved to be well suited for 

our purposes. 

The numerical experiments carried out show that the 

commonly employed linear relationship between sur-

face tension and interfacial concentration of surfactant, 

is only valid in the very dilute case.  In fact, the results 

obtained, show differences associated to the type of 

surfactant present in the system when the initial surface 

coverage is as low as 0.1.  These differences diminish 

when the amplitude of the external vibration imposed to 

the system increases, and they become negligible above 

a certain value of this parameter. 
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