# IMPROVED ACTIVITY AND STABILITY OF Ce-PROMOTED Ni/γ-Al<sub>2</sub>O<sub>3</sub> CATALYSTS FOR CARBON DIOXIDE REFORMING OF METHANE

A. VALENTINI $^{\dagger}$ , N.L.V. CARREÑO $^{\ddagger}$ , E.R. LEITE $^{\ddagger}$ , R.F. GONÇALVES $^{\ddagger}$ , L.E.B. SOLEDADE $^{\ddagger}$ , Y. MANIETTE $^{\sharp}$ , E. LONGO $^{\ddagger}$  and L.F.D. PROBST $^{\dagger}$ 

† Dto de Química, Univ. Federal de Santa Catarina, CP 476, 88040-900 Florianópolis, SC, Brazil. probst@gmc.ufsc,br

‡ Centro Multidisciplinar de Desenvolvimento de Materiais Cerâmicos (CMDMC), Dto de Química, Univ. Federal de São Carlos, CP 676, 13560-905 São Carlos, SP, Brazil

# Instituto de Química, Univ. Estadual de São Paulo, CP 355, 14801-970 Araraquara, SP, Brazil

Abstract— The  $CO_2$  reforming of  $CH_4$  was carried out over Ni catalysts supported on  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> and  $CeO_2$ -promoted  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>. The catalysts were characterized by means of surface area measurements, TPR,  $CO_2$  and  $H_2$  chemisorption, XRD, SEM, and TEM. The  $CeO_2$  addition promoted an increase of catalytic activity and stability. The improvement in the resistance to carbon deposition is attributed to the highest  $CO_2$  adsorption presented by the  $CeO_2$  addition. The catalytic behavior presented by the samples, with a different  $CH_4/CO_2$  ratio used, points to the  $CH_4$  decomposition reaction as the main source of carbon deposition.

*Keywords*— Methane; dry reforming; CeO<sub>2</sub>; carbon formation; syngas.

# I. INTRODUCTION

Oil is the main source of chemical products and fuels. In spite of this, the natural gas explored in many countries is a good alternative (Dry, 2002). The natural gas abundance, with  $CH_4$  as the main component, consists of an interesting  $H_2$  and synthesis gas source (Hu and Ruckenstein, 2002). This can furnish a fraction of the energetic and chemical products demands through the Fisher-Tropsch process (Hu and Ruckenstein, 2002; Rostrup-Nielsen, 2000).

The catalytic reforming of  $CH_4$  with  $CO_2$  (Eq. 1) for the production of synthesis gas is an interesting process. Besides the production of high-value compounds it is followed by the consumption of greenhouse gases (Tang et al., 1995; Kroll et al., 1996; Nichio, 2000).

Numerous authors (Nichio, 2000; Tomishige *et al.*, 2000; Tomishige *et al.*, 2001; Wang and Ruckenstein, 2001; Takeguchi *et al.*, 2001; Frusteri *et al.*, 2001; Xu *et al.*, 2001) have carried out the CO<sub>2</sub> reforming of CH<sub>4</sub> on different catalysts, and the major problem is the catalyst deactivation, induced by carbon deposition (Hu and Ruckenstein, 2002; Kroll *et al.*, 1996). Noble metal catalysts supported on different carriers exhibit better activity and high stability (Zhu and Stephanopoulos, 2001), but they are expensive. In spite of the carbon

deposition, the Ni-based catalysts have high activity, stability and selectivity and are cheap. Therefore, the development of such catalysts is an attractive challenge (Crisafulli *et al.*, 2002).

Several processes have been used for reducing the coke deposition on the catalysts. Recently, Leite *et al.* (2002) described a route to synthesize nanometric Ni particles embedded in a mesoporous silica material. This method showed promising results in the catalytic carbon dioxide reforming of methane, with low coke deposition (Probst *et al.*, 2002).

There are several publications reporting the CeO<sub>2</sub> application and properties (Trovarelli, 1996; Probst and Valentini, 2001; Piras et al., 2000; Rossignol and Kappenstein, 2001). But there is only a limited amount of work devoted to study the CeO<sub>2</sub> application as the metal support in the CO2 reforming of CH4 (Wang et al., 2001), due to the low CH<sub>4</sub> conversion observed (Montoya et al., 2000; Wang and Lu, 1998; Noronha et al., 2001). On the other hand, CeO<sub>2</sub> is an effective promoter for the Ni/Al<sub>2</sub>O<sub>3</sub> catalysts in the suppression of carbon deposition (Montoya et al., 2000; Wang and Lu, 1998; Xu et al., 1999). The CeO<sub>2</sub> enhancement in the catalytic properties like stability against coke deposition is attributed to the ability of Ce to reversibly change oxidation states between Ce<sup>4+</sup> and Ce<sup>3+</sup> (Noronha et al., 2001). The Ce<sub>2</sub>O<sub>3</sub> oxide present on the catalyst surface promotes the process of transferring oxygen (Xu et al., 1999).

It is known that the coke deposition during dry reforming is a function of operating conditions. Operations at high temperature (>800°C) and at high  $\rm CO_2/CH_4$  ratios (>1) avoid carbon deposition (Reitmeier *et al.*, 1948; Gadalla and Bower, 1988). However, lower temperatures and a  $\rm CO_2/CH_4$  ratio near unity are more interesting.

The aim of the present study is to obtain a better understanding of the nature of the carbon deposition on  $CeO_2$ -promoted  $Ni:Al_2O_3$  catalysts prepared by the impregnation method. Are investigated the catalytic performance and carbon deposition behavior in the  $CO_2$  reforming of  $CH_4$  under atmospheric pressure and with different  $CH_4/CO_2$  ratios operating at moderate temperature. The sample characterization was performed by

means of X-ray diffraction (XRD),  $H_2$  and  $CO_2$  chemisorption, specific surface area measurement (BET), elemental analysis (CHN) and transmission electron microscopy (TEM).

## II. MATERIALS AND METHODS

## A. Catalyst preparation

The Ce-doping supports were prepared by the impregnation of an aqueous solution of  $Ce(NO_3)_3$  (Aldrich, 99,99 %) on  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> (AL-3996R, 200 m<sup>2</sup>/g, Engelhard Exceptional Technologies). The  $CeO_2$  content was (0, 5, 10, 15 and 20 wt%). After impregnation the supports were dried for 24 h at 100°C and calcined at 450°C during 2h. The supports were denominated AlCe-X (with X =  $CeO_2$  wt%).

The Ni addition was carried out by impregnation of an aqueous solution of Ni(NO<sub>3</sub>)<sub>2</sub> (Fluka, 98 %) on  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> and on AlCe-X supports. The samples with 10 wt% of Ni were dried for 24h at 100°C and calcined at 650°C during 3h.

## **B.** Characterization

The amount of metal (Ni) in the solids was determined by atomic absorption spectrometry, using an HITACHI Z8230 equipment.

The TPR profiles were taken in the Micromeritics TPD/TPR 2900 model equipment, using 10°C/min of heating rate and monitoring the hydrogen consumption from a  $5\%H_2/N_2$  mixture at the 50-930°C temperature range. The surface area and porosity measurements following the nitrogen adsorption method (-196°C), the metallic accessibility using  $H_2$  chemisorption at 27°C and the  $\rm CO_2$  chemisorption at 27 and 625°C were determined in an Autosorb-1C (Quantachrome Instruments). The amount of irreversible  $H_2$  uptake was obtained from the difference between the total adsorption of  $\rm H_2$  on the catalyst and a second adsorption series of  $\rm H_2$  determined after evacuation of the catalyst sample for 30 minutes at the same temperature.

Elementary chemical analysis was employed to estimate the total coke content after the catalytic reaction (Carlo Erba EA 1110 CHNS-O). The XRD spectra were acquired by the use of a Siemens D-5000 diffractometer with Cu-K $\alpha$  radiation and a graphite crystal monochromator.

For the microstructure characterization were used the transmission electron microscope CM200 200 kV and the scanning electron microscope DSM940A.

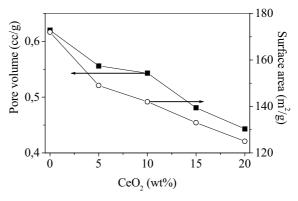
# C. Catalytic activity

Reactions were performed in a tubular fixed-bed flow reactor made of a stainless steel tube of 9.5 mm inner diameter. The catalyst (0.050 g) was *in situ* pretreated in a H<sub>2</sub> stream at 650°C for 1h. The reaction gas was composed of carbon dioxide, methane and nitrogen in the (CO<sub>2</sub>:CH<sub>4</sub>:N<sub>2</sub>) ratios of 1:1:4, 1:2:6 and 2:1:6 with the total flow rate of 35 cm<sup>3</sup>/min. All catalytic tests were performed at 625°C under atmospheric pressure. Nitro-

gen was used as a diluent and an internal standard for the analysis. The reactant and the product gases were analyzed with an on-stream gas chromatograph (GC) SHIMADZU GC 8A, equipped with a thermal conductivity detector (TCD), Porapak-Q and a 5A molecular sieve column (with Ar as the carrier gas). The systematic errors in the conversions are  $\pm 1\%$ .

## III. RESULTS AND DISCUSSION

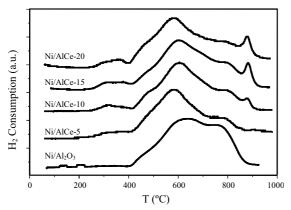
The results of chemical analysis, H<sub>2</sub> chemisorption and specific surface area for the catalysts are summarized in Table 1.


A gradual surface area decreasing is observed with the  $CeO_2$  loading. It is known that low  $CeO_2$  loading could stabilize  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> against surface area loss (Piras *et al.*, 2000; Ozawa and Kimura, 1990) when calcined at high temperature (>900°C). However, in this work the samples have higher then 5 wt% of  $CeO_2$  and were heattreated at 650°C, a low temperature to promote a  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> surface area loss.

**Table 1:** Chemical analysis and surface properties measured by N<sub>2</sub> physisorption and H<sub>2</sub> chemisorption.

| Catalysts                         | $Sg (m^2/g) \ddagger$ | Ni<br>(wt%) | H <sub>2</sub> (μmol/g) |       |
|-----------------------------------|-----------------------|-------------|-------------------------|-------|
|                                   |                       |             | Tot.#                   | Ir.*  |
| Ni/Al <sub>2</sub> O <sub>3</sub> | 172                   | 8.6         | 62.88                   | 42.39 |
| Ni/AlCe-5                         | 149                   | 7.1         | 72.99                   | 43.24 |
| Ni/AlCe-10                        | 142                   | 8.5         | 71.09                   | 41.23 |
| Ni/AlCe-15                        | 133                   | 9.2         | 56.61                   | 37.00 |
| Ni/AlCe-20                        | 125                   | 8.4         | 69.98                   | 39.50 |

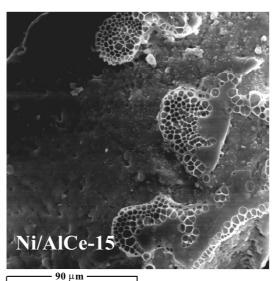
 $\ddag$  - Measured by  $N_2$  adsorption at –196°C; # - Based on total  $H_2$  adsorption at 300 K; \* - Based on irreversible  $H_2$  adsorption at 300 K

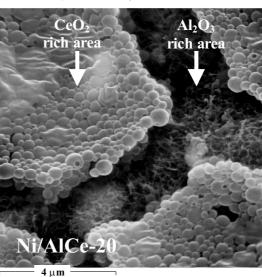

The surface area decreasing promoted by the  $CeO_2$  addition points to a partial pore obstruction. In the impregnation process, the Ce is mainly deposited inside the  $\gamma$ -Al $_2O_3$  pores. The profile behaviors observed in Fig. 1 confirm that the pore volume decreasing follows the surface area loss.



**Fig. 1-** Pore volume and surface area change promoted by the CeO<sub>2</sub> loading increase.

On the other hand, the CeO<sub>2</sub> loading promoted an increase in the total H2 chemisorption (Table 1). This points to a higher metal (Ni) dispersion, the best result is observed for the sample with the lowest CeO<sub>2</sub> loading (NiAlCe-5). Similar results have been reported (Wang and Lu, 1998; Montoya et al., 2000). It suggests that low CeO<sub>2</sub> loading actuates as a textural promoter. In the reduction treatments, the Ni particles can be partially decorated by the CeO<sub>2</sub> (Bernal et al., 2003). With this, the metal particles show a better resistance against sintering. However, the occurrence of spillover phenomena should be considered when CeO<sub>2</sub> is present (Bernal et al., 2003). The irreversible H<sub>2</sub> chemisorption corroborates to that. With the Ni/AlCe-5 sample exception, the CeO<sub>2</sub>-doping promoted a decreasing in the irreversible H<sub>2</sub> adsorption.

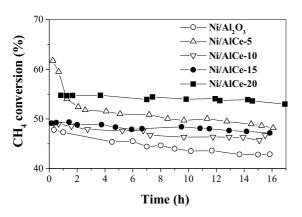

Temperature programmed reduction (TPR) profiles for the catalysts are presented in Figure 2. The Ni/Al<sub>2</sub>O<sub>3</sub> exhibited one peak at 600°C and a second one at 770°C. The peak at 600°C is likely due to the more accessible Ni and the peak at 770°C due to the Ni inside the pore material, what can present a strong support influence on the Ni reduction (Molina and Poncelet, 1998; Chen et al., 1991). It is seen that CeO<sub>2</sub> loading shifts the peak around 600°C to a lower temperature value, pointing to the changes in the catalysts properties promoted by CeO<sub>2</sub>. The H<sub>2</sub> consumption around 900°C is attributed to the CeAlO<sub>3</sub> formation (Piras et al., 2000; Damyanova et al., 2002) what was confirmed by XRD. A broad reduction feature ranging from 270°C and 400°C that increases with the CeO<sub>2</sub> loading is attributed to the partial CeO<sub>2</sub> surface reduction (Trovarelli, 1996; Damyanova et al., 2002; Perrichon et al., 1994; Fajardie et al., 1998); however, likewise it can be related to the Ni present in CeO<sub>2</sub> rich areas (Wang et al., 2001).




**Fig. 2**- Temperature programmed reduction (TPR) profiles of Ni/Al<sub>2</sub>O<sub>3</sub> and CeO<sub>2</sub> loading catalysts.

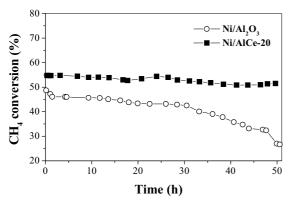
By the scanning electron microscopy (SEM) images illustrated in Fig. 3 for Ni/AlCe-15 and Ni/AlCe-20 samples, it is possible to see high  $CeO_2$  concentration areas on the catalyst surfaces.

In the Ni/AlCe-20 sample it is possible to see the typical spherical shape of the  $CeO_2$  particles.

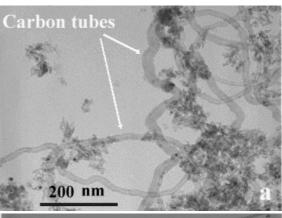


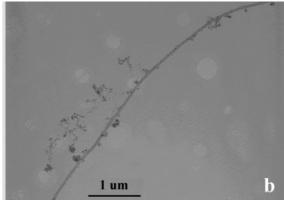


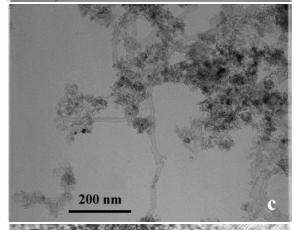

**Fig. 3**- Scanning electron microscopy (SEM) images of Ni/AlCe-15 and Ni/AlCe-20 samples after activation at 650°C/1h.

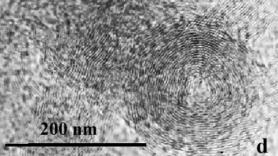

The catalytic performances in the CO<sub>2</sub> reforming of CH<sub>4</sub> for the catalysts are presented in Fig. 4. With the exception of the Ni/AlCe-5 (5 wt% of CeO<sub>2</sub>), the catalytic CH<sub>4</sub> conversion shows a gradual increase with the CeO<sub>2</sub> loading. The particular behavior for the Ni/AlCe-5 sample can be attributed to the higher H<sub>2</sub> chemisorption, which points to a higher Ni dispersion (Table 1).

A CH<sub>4</sub> conversion increase promoted by the CeO<sub>2</sub> loading is followed by the catalytic stability increase. The stability improvement can be estimated by the ratios between the CH<sub>4</sub> conversion after 15h and the CH<sub>4</sub> conversion after 2h of time-on-stream (C<sub>15</sub>/C<sub>2</sub>). The C<sub>15</sub>/C<sub>2</sub> ratios were: 0.91, 0.92, 0.95, 0.96 and 0.98 for Ni/Al<sub>2</sub>O<sub>3</sub>, Ni/AlCe-5, Ni/AlCe-10, Ni/AlCe-15 and Ni/AlCe-20, respectively. It is shown that the CeO<sub>2</sub> addition favors the enhancement of the Ni/Al<sub>2</sub>O<sub>3</sub> catalytic properties in the CO<sub>2</sub> reforming of CH<sub>4</sub>.





**Fig. 4-** Profiles of  $CH_4$  conversion with time-on-stream for the catalysts. Activation at  $650^{\circ}C/1h$ ,  $625^{\circ}C$  of reaction temperature, wt = 50 mg


In order to confirm the stability increase promoted by the CeO<sub>2</sub> loading, a catalytic test was performed during 50h with a CH<sub>4</sub>/CO<sub>2</sub> ratio of 1:1 at 625°C for the Ni/Al<sub>2</sub>O<sub>3</sub> and Ni/AlCe-20 samples. Figure 5 shows that the deactivation rate of Ni/Al<sub>2</sub>O<sub>3</sub> is higher than Ni/AlCe-20. The ratios between the CH<sub>4</sub> conversion after 50h and its initial conversion ( $C_{50}/C_{i}$ ) are 0.55 and 0.94 for Ni/Al<sub>2</sub>O<sub>3</sub> and Ni/AlCe-20, respectively. The CH<sub>4</sub> conversion decreases linearly with time-on-stream for Ni/AlCe-20, however the Ni/Al<sub>2</sub>O<sub>3</sub> catalyst showed the same behavior only in the initial test. After 25h of catalytic reaction a non-linear deactivation is considerable for the Ni/Al<sub>2</sub>O<sub>3</sub> catalyst. This behavior can be related to the coke and carbon filament formation that promotes a blocking of the active surface. This suggests that with the coke and carbon filaments continuous grow with the time-on-stream, the metal particles are encapsulated in the carbon filaments and there is a critical point in the carbon nanotube growth above which the catalyst deactivation is more




**Fig. 5-** Profiles of stability performance for the catalysts on  $CH_4$  conversion with time-on-stream. Activation at  $650^{\circ}C/1h$ ,  $625^{\circ}C$  of reaction temperature, wt = 50 mg









**Fig. 6**- BF-TEM images of the catalysts. Images of the  $Ni/Al_2O_3$ , (a) 15h of time-on-stream and (b) 50h of time-on-stream. Ni/AlCe-20, (c) 50h of time-on-stream, (d) transversal image of a carbon tube formation with a metal particle in the center.

pronounced. The limit of reagent diffusion to the metal particles should be considered, in the case of coke deposition, even with no particle encapsulation.

The condensation of carbon over the Ni crystals exposed on the surface of the catalysts allows the formation of a sheet around the metal particle surface (Hester and Louchev, 2002) with subsequent growth of the nanotubes following the detachment of Ni from the support (Tsang *et al.*, 1995). This leads to the encapsulation of the metal particles that causes the activity loss. Bright-Field (BF) TEM images of Ni/Al<sub>2</sub>O<sub>3</sub> sample after catalytic test (Fig. 6) evidences an abundant carbon nanotube growing out of the Ni particles.

Therefore, there is a close relation between catalytic activity decreasing and the metal particle blocking by the carbon filaments, as illustrated in Fig. 6. Otherwise, the CeO<sub>2</sub>-doped catalysts do not have the tendency of carbonaceous structure formation. The TEM analysis of Ni/Al<sub>2</sub>O<sub>3</sub> after 50h of catalytic reaction showed a carbon tube formation higher than 10 mm, Fig. 6b. On the other hand, the Ni/AlCe-20 presented carbon tubes lower than 1 mm. Figure 6d shows the thick carbon tube formation from the carbon deposition on the metal particles. This carbon structure will promote the metal particles disintegration or abstraction from the support.

The ordered carbon structure is detected also by XRD. The powder diffraction patterns of the fresh samples and of the samples after the catalytic reaction are presented in Fig. 7. Both, fresh and spent CeO<sub>2</sub>-doped catalysts presented a broader and weaker intensity of Ni peaks. This suggests that CeO<sub>2</sub> promotes a higher dispersion of Ni or there is an interface region between metal and support, associated to the interaction. This second point is in agreement with Ni dispersion obtained by the irreversible H<sub>2</sub> adsorption. Assuming that only Ni<sup>0</sup> is responsible for the irreversible H<sub>2</sub> adsorption, data from Table 1 points to a decrease in the metal surface area or an increase in the interfacial



**Fig. 7-** X-ray diffraction patterns of the samples (a) activated at 650 °C for 1 h in  $H_2$  flow, (b) after catalytic reaction at 625 °C for 15h.  $\Diamond = \text{CeO}_2$ ;  $\# = \text{Al}_2\text{O}_3$ ;  $\clubsuit = \text{Ni}$ ; \* = coke deposition.

region, with the  $CeO_2$  loading, what is unable to adsorb irreversible  $H_2$ .

This distinct interfacial region promoted by  ${\rm CeO_2}$  addition may be responsible by the lower carbon deposition, as indicated by the decreasing in the ordered carbon peak in the samples after the catalytic test (Fig. 7b). A decrease in the carbon deposition for all Ni/AlCe samples was confirmed by CHN analysis (Table 2).

 ${\rm CO_2}$  adsorption isotherms uptake were performed at 625°C, the reaction temperature, and at 27°C. The results (Table 2) showed an increase in the  ${\rm CO_2}$  adsorption with  ${\rm CeO_2}$  loading. This suggests that the principal  ${\rm CeO_2}$  contribution is to improve the  ${\rm CO_2}$  adsorption in the interfacial region that leads to a lower carbon deposition, via  ${\rm CH_4}$  decomposition reaction (Eq. 2), as well as via  ${\rm CO}$  disproportionation (Eq. 3), by shifting the equilibrium concentrations (Bradford and Vannice, 1999).

$$CH_4 \leftarrow C + 2H_2$$
 (2)

**Table 2**: CO<sub>2</sub> chemisorption and elementary chemical analysis of catalysts after CO<sub>2</sub> reforming of CH<sub>4</sub>.

| Catalysts                         | $CO_2$          |       | Co   | Coke deposition             |  |
|-----------------------------------|-----------------|-------|------|-----------------------------|--|
|                                   | $(\mu mol/m^2)$ |       |      | $(g C/g_{cat.})$            |  |
|                                   | 27°C            | 625°C | 15h  | 9h                          |  |
|                                   |                 |       |      |                             |  |
| Ni/Al <sub>2</sub> O <sub>3</sub> | 2.28            | 0.08  | 30.4 | $(0.2)^*, (35.1)^{\bullet}$ |  |
| Ni/AlCe-5                         | 2.57            | 0.15  | 9.5  | -                           |  |
| Ni/AlCe-10                        | 2.81            | 0.16  | 9.9  | -                           |  |
| Ni/AlCe -15                       | 2.71            | 0.27  | -    | -                           |  |
| Ni/AlCe -20                       | 3.52            | 0.24  | 9.8  | $(0.1)^*, (32.2)^{\bullet}$ |  |
|                                   |                 |       |      |                             |  |

In order to support this conclusion, the  $Ni/Al_2O_3$  and Ni/AlCe-20 catalysts were tested with different gas compositions,  $CH_4/CO_2 = 0.5$  and 2.0. The  $CH_4$  conversions for these new  $CH_4/CO_2$  ratios are plotted in Fig. 8.

A higher CH<sub>4</sub> conversion is observed with the increase in the  $\rm CO_2$  concentration as a consequence of the equilibrium shifting (Eq. 1). In this condition (CH<sub>4</sub>/CO<sub>2</sub> = 0.5) the Ni/Al<sub>2</sub>O<sub>3</sub> sample presented better initial catalytic performance with higher CH<sub>4</sub> conversion (Fig. 8a). However, with the CH<sub>4</sub> concentration increase (CH<sub>4</sub>/CO<sub>2</sub> ratio of 2:1), the better catalytic performance, CH<sub>4</sub> conversion and stability, is presented by the Ni/AlCe-20 sample (Fig. 8b).

With the  $\mathrm{CH_4/CO_2}$  ratio of 2:1, the catalysts showed a high initial deactivation rate and an apparent stabilization after 3h of time-on-stream. This behavior is attributed to the coke deposition as a consequence of the favorable coking reaction condition, low temperature and high  $\mathrm{CH_4/CO_2}$  ratio (Gadalla and Bower, 1988;

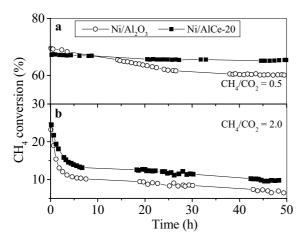


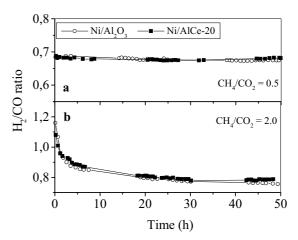

Fig. 8- Profile performance for the catalysts on  $CH_4$  conversion with time-on-stream at different  $CH_4/CO_2$  ratios. Activation at 650°C/1h, 625°C of reaction temperature, wt = 50 mg

Bradford and Vannice, 1999). With a high CH<sub>4</sub> concentration, the metal particles that have a higher tendency to promote the carbon deposition via CH<sub>4</sub> decomposition are deactivated faster.

In spite of the higher initial  $CH_4$  conversion for  $Ni/Al_2O_3$  with  $CH_4/CO_2$  ratio of 1:2, it is seen that Ni/AlCe-20 has a superior performance on the catalytic stability in all reaction composition.

The results presented in Fig. 8 show that an increase in the CO<sub>2</sub> adsorption promoted by the CeO<sub>2</sub> loading is very important to improve the catalytic performance.

On the other hand, increases in the  $CO_2$  concentration promote a lower  $H_2/CO$  ratio, mainly through the reverse water gas shift (RWGS) reaction (Eq 4), that leads to the  $H_2$  consumption and CO production.


$$H_2 + CO_2 \leftarrow CO + H_2O$$
 (4

The  $H_2/CO$  ratios presented in Fig. 9 are in agreement with this, in spite of the higher  $CH_4$  conversion.

Experimental observations reported in the literature (Richardson and Paripatyadar, 1990) showed that the main contributor to carbon deposition is the CO disproportionation. A low CO<sub>2</sub> concentration (CH<sub>4</sub>:CO<sub>2</sub> ratio higher than unity) favors the *Boudouard* reaction (Eq. 3), in agreement with thermodynamic calculations (Reitmeier *et al.*, 1948; Gadalla and Bower, 1988).

The profile of H<sub>2</sub>/CO ratio presented in the CH<sub>4</sub>/CO<sub>2</sub> ratio of 2:1 (Fig. 9b) suggests that the carbon deposition is promoted mainly by the CH<sub>4</sub> decomposition reaction (Eq. 2). It is observed a high H<sub>2</sub>/CO ratio (>1.0) in the initial reaction. These behaviors suggest a fast deactivation of the main active sites that promotes the CH<sub>4</sub> decomposition. This signs that after 3h of time-on-stream only the active sites with lower deactivation affinity, or coke generation, are actives. It is known that CH<sub>4</sub> decomposition is a structure sensitive reaction (Beebe *et al.*, 1987), therefore this site deactivation promotes a

decrease in the  $CH_4$  conversion. With decreasing of the  $CH_4$  decomposition, the  $H_2$  production drastically diminished, the same is not observed for the CO formation.



**Fig. 9-** Profiles of H<sub>2</sub>/CO performance for the catalysts on CH<sub>4</sub> conversion with time-on-stream at different CH<sub>4</sub>/CO<sub>2</sub> ratios

In a simple form,  $CO_2$  plays an important role in the coke elimination by reacting with the carbon (Eq. 5) deposited by  $CH_4$  decomposition (Eq. 2). If the equilibrium reaction presented in Eq. 5 is not fast enough to simultaneously eliminate the carbon generated by the  $CH_4$  decomposition reaction, as it is deposited, the coke is accumulated.

The reactions of Eq. 2 and Eq. 5 are endothermic and the equilibrium constants increase with the increase of the temperature, promoting the  $CH_4$  decomposition and the  $CO_2$  reaction with the deposited carbon (Eq. 5). This is in agreement with thermodynamic calculations (Reitmeier *et al.*, 1948; Gadalla and Bower, 1988) that point to a lower carbon deposition with high reaction temperature and high  $CO_2/CH_4$  ratio.

In addition, the  $CH_4$  decomposition reaction (without  $CO_2$ ) carried out for the  $Ni/Al_2O_3$  and Ni/AlCe-20 samples, presented a  $CH_4$  conversion of 25 and 16% at 2min of reaction time, respectively, and at 7min the  $CH_4$  conversion was near 1%.

# IV. CONCLUSIONS

The activity and stability of Ni/Al<sub>2</sub>O<sub>3</sub> catalysts are improved by CeO<sub>2</sub> addition. The catalyst deactivation is promoted by carbon deposition, which is mainly due to the CH<sub>4</sub> decomposition reaction.

The main CeO<sub>2</sub> contribution is on the CO<sub>2</sub> adsorption increase, which plays an important role on the coke elimination.

#### **ACKNOWLEDGEMENT**

The authors acknowledge the financial support from the Brazilian agencies CNPq and FAPESP/CEPID.

#### REFERENCES

- Beebe, T.P., Goodman, D.W., Kay, B.D., Yates, J.T., "Kinetics of the activated dissociative adsorption of CH<sub>4</sub> on the low index planes of Ni single-crystal surfaces," *J. Chem Phys.*, 87, 2305-2315 (1987).
- Bernal, S., Calvino, J.J., Cauqui, M.A., Gatica, J.M., Cartes, C.L., Omil, J.A.P., Pintado, J.M., "Some contributions of electron microscopy to the characterisation of the strong metal-support interaction effect," *Catal. Today*, 77, 385-406 (2003).
- Bradford, M.C.J., Vannice, M.A., "CO<sub>2</sub> reforming of CH<sub>4</sub>," *Catal. Rev. Sci. Eng.*, 41, 1-42 (1999).
- Chen, S.L., Zhang, H.L., Hu, J., Contescu, C., Schwarz, J.A., "Effect of Al<sub>2</sub>O<sub>3</sub> supports on the properties of supported Ni catalysts," *Appl. Catal.*, 73, 289-312 (1991).
- Crisafulli, C., Scirè, S., Minicò, S., Solarino, L., "Ni–Ru bimetallic catalysts for the CO<sub>2</sub> reforming of CH<sub>4</sub>," *Appl. Catal.*, *A*, 225, 1-9 (2002).
- Damyanova, S., Perez, C.A., Schmal, M., Bueno, J.M.C., "Characterization of ceria-coated alumina carrier," *Appl. Catal.*, A, 234, 271-282 (2002).
- Dry, M.E., "The Fischer-Tropsch process: 1950-2000," *Catal. Today*, 71, 227-241 (2002).
- Fajardie, F., Tempere, J.F., Manoli, J.M., Djega-Mariadassour, G., Blanchard, G., "Ce lattice O ion substitution by Cl during the reduction of Rh(Cl)CeO<sub>2</sub> catalysts. Formation and stability of CeOCl," *J. Chem. Soc. Faraday Trans.*, 94, 3727-3735 (1998).
- Frusteri, F., Arena, F., Calogero, G., Torre, T., Parmaliana, A., "K-enhanced stability of Ni/MgO catalysts in the dry-reforming of CH<sub>4</sub>," *Catal. Commun.*, 2, 49-56 (2001).
- Gadalla, A.M. and Bower, B., "The role of catalyst support on the activity of Ni for reforming CH<sub>4</sub> with CO<sub>2</sub>," *Chem. Eng. Science*, 43, 3049-3062 (1988).
- Hester, J.R., Louchev, O.A., "Nanoparticle-templated carbon nanotube ring nucleus formation," *Appl. Phys. Lett.*, 80, 2580-2582 (2002).
- Hu, Y.H. and Ruckenstein, E., "Binary MgO-based solid solution catalysts for CH<sub>4</sub> conversion to syngas," *Catal. Rev. Sci. Eng.*, 44, 423-453 (2002).
- Kroll, V.C.H., Swaan, H.M., Mirodatos, C., "CH<sub>4</sub> reforming reaction with CO<sub>2</sub> over Ni/SiO<sub>2</sub> catalyst I. Deactivation studies," *J. Catal.*, 161, 409-422 (1996).
- Leite, E.R., Carreño, N.L.V., Longo, E., Pontes, F.M., Barison, A., Ferreira, A.G., Maniette, Y., Varela, J.A., "Development of metal SiO<sub>2</sub> nanocomposites in a single-step process by the polymerizable complex method," *Chem. Mat.*, 14, 3722-3729 (2002).

- Molina, R., Poncelet, G., "α-Al<sub>2</sub>O<sub>3</sub>-Supported Ni Catalysts Prepared from Nickel Acetylacetonate: A TPR Study," *J. Catal.*, 173, 257-267 (1998).
- Montoya, J.A., Romero-Pascual, E., Gimon, C., Del Angel, P., Monzon, A., "CH<sub>4</sub> reforming with CO<sub>2</sub> over Ni/ZrO<sub>2</sub>-CeO<sub>2</sub> catalysts prepared by sol-gel," *Catal. Today*, 63, 71-85 (2000).
- Nichio, N., Casella, M.L., Santori, G.F., Ponzi, E.N., Ferretti, O.A., "Stability promotion of  $Ni/\alpha$ - $Al_2O_3$  catalysts by tin added via surface organometallic chemistry on metals: Application in  $CH_4$  reforming processes," *Catal. Today*, 62, 231-240 (2000).
- Noronha, F.B., Fendley, E.C., Soares, R.R., Alvarez, W.E., Resasco, D.E., "Correlation between catalytic activity and support reducibility in the CO<sub>2</sub> reforming of CH<sub>4</sub> over Pt/Ce<sub>x</sub>Zr<sub>1-x</sub>O<sub>2</sub> catalysts," *Chem. Eng. J.*, 82, 21-31 (2001).
- Ozawa, O., Kimura, M., "Effect of Ce addition on the thermal stability of  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> support," *J. Mater. Sci. Lett.*, 9, 291-293 (1990).
- Perrichon, V., Laachir, A., Bergeret, G., Fréty, R., Tournayan, L., "Reduction of Cerias with Different Textures by Hydrogen and their Reoxidation by Oxygen," *J. Chem. Soc. Faraday Trans.*, 90, 773-781 (1994).
- Piras, A., Trovarelli, A. and Dolcetti, G., "Remarkable Stabilization of Transition Al<sub>2</sub>O<sub>3</sub> operated by Ce under reducing and redox conditions," *Appl. Catal.*, *B*, 28, L77-L81 (2000).
- Probst, L.F.D., Leite, E.R., Carreño, N.L.V., Longo, E., Valentini, A., "Synthesis of mesoporous silica with embedded nickel nanoparticles for catalyst applications," *J. Nanosc. Nanotechnol.*, 2, 89-94 (2002).
- Probst, L.F.D., Valentini, A., "Ni Suportado em γ-Al<sub>2</sub>O<sub>3</sub> e γ-Al<sub>2</sub>O<sub>3</sub>/CeO<sub>2</sub> Influência do Método de preparação na Performance Catalítica," *Anais Assoc. Bras. Quím.*, 50, 156-161 (2001).
- Reitmeier, R.E., Atwood, K., Bennett Jr, H.A. and Baugh, H.M., "Production of synthesis gas by reacting light hydrocarbons with steam and CO<sub>2</sub>," *Ind. And Eng. Chem.*, 40, 620-626 (1948).
- Richardson, I.T. and Paripatyadar, S.A., "CO<sub>2</sub> reforming of CH<sub>4</sub> with supported Rh," *Appl. Catal.*, 61, 293-309 (1990).
- Rossignol, S., Kappenstein, C., "Effect of Doping Elements on the thermal Stability of Transition Al<sub>2</sub>O<sub>3</sub>," *Int. J. of Inorg. Material*, 3, 51-58 (2001).
- Rostrup-Nielsen, J.R., "New aspects of syngas production and use," *Catal. Today*, 63, 159-164 (2000).
- Takeguchi, T., Furukawa, S., Inoue, M., "Hydrogen spillover from NiO to the large surface area CeO<sub>2</sub>-ZrO<sub>2</sub> solid solutions and activity of the NiO/CeO<sub>2</sub>-ZrO<sub>2</sub> catalysts for partial oxidation of CH<sub>4</sub>," *J. Catal.*, 202, 14-24 (2001).
- Tang, S.B., Qiu, F.L., Lu, S.J., "Effect of supports on the carbon deposition of Ni catalysts for CH<sub>4</sub> reforming with CO<sub>2</sub>," *Catal. Today*, 24, 253-255 (1995).

- Tomishige, K., Himeno, Y., Matsuo, Y., Yoshinaga, Y., Fujimoto, K., "Catalytic performance and carbon deposition behavior of a NiO-MgO solid solution in CH<sub>4</sub> reforming with CO<sub>2</sub> under pressurized conditions," *Ind. Eng. Chem. Res.*, 39, 1891-1897 (2000).
- Tomishige, K., Matsuo, Y., Sekine, Y., Fujimoto, K., "Effective CH<sub>4</sub> reforming with CO<sub>2</sub> and O<sub>2</sub> under pressurized condition using NiO-MgO and fluidized bed reactor," *Catal. Commun.*, 2, 11-15 (2001).
- Trovarelli, A., "Catalytic properties of ceria and CeO<sub>2</sub>-containing materials," *Catal. Rev. Sci. Eng.*, 38, 439-520 (1996).
- Tsang, S.C., Claridge, J.B., Green, M.L.H., "Recent advances in the conversion of CH<sub>4</sub> to synthesis gas," *Catal. Today*, 23, 3-15 (1995).
- Wang, H.Y., Ruckenstein, E., "CO<sub>2</sub> reforming of CH<sub>4</sub> over Co/MgO solid solution catalysts effect of calcination temperature and Co loading," *Appl. Catal.*, *A*, 209, 207-215 (2001).
- Wang, J.B., Tai, Y.L., Dow, W.P., Huang, T.J., "Study of Ce-supported Ni catalyst and effect of Y doping on CO<sub>2</sub> reforming of CH<sub>4</sub>," *Appl. Catal.*, A, 218, 69-79 (2001).
- Wang, S. Lu, G.Q., "Role of CeO<sub>2</sub> in Ni/CeO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> catalysts for CO<sub>2</sub> reforming of CH<sub>4</sub>," *Appl. Catal.*, *B*, 19, 267-277 (1998).
- Xu, B., Wei, J., Wang, H., Sun, K., Zhu, Q., "Nano-MgO: novel preparation and application as support of Ni catalysts for CO<sub>2</sub> reforming of CH<sub>4</sub>," *Catal. Today*, 68, 217-225 (2001).
- Xu, G., Shi, K., Gao, Y., Xu, H., Wei, Y., "Studies of reforming natural gas with CO<sub>2</sub> to produce synthesis gas X. The role of CeO<sub>2</sub> and MgO promoters," *J. Mol. Catal. A*, 147, 47-54 (1999).
- Zhu, T., Stephanopoulos, M.F., "Catalytic partial oxidation of CH<sub>4</sub> to synthesis gas over Ni–CeO<sub>2</sub>," *Appl. Catal.*, *A*, 208, 403-417 (2001).

Received: June 25, 2003. Accepted for publication: July 26, 2003. Recommended by Subject Editor R. Gómez.