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Abstract– In this paper the analytical solu-
tion of nonlinear ordinary differential systems
is addressed. Some of the problems are classi-
cal in the related literature and exhibit chaotic
behavior in certain ranges of the involved para-
meters despite being simple-looking determin-
istic systems. The solutions are approached by
means of the old technique of power series to
solve ordinary differential equations. The inde-
pendent variable is time in all the illustrations
and elementary recurrence algorithms are ob-
tained. This is an alternative to the standard
numerical techniques and ensures the theoreti-
cal exactness of the response. Several examples
are included and trajectories diagrams, phase
plots, etc. are shown. The desired numerical
precision is attained using time steps several
times larger than the usual ones. The avail-
ability of an analytical solution may be an addi-
tional tool within a standard qualitative analy-
sis. The solution of higher order problems and
governed by partial differential equations is un-
der study.

Keywords– ordinary differential equations,
nonlinear equations, power series.

I. INTRODUCTION

Power series is an old technique to solve ordinary dif-
ferential equations (ODE’s). A wide open literature
is available on the subject. Simmons, 1972, Codding-
ton, 1989, Kreyszig, 1999 may be useful as references
in this methodology. The efficiency of this standard
technique in solving linear ODE’s with variable coef-
ficients is well known. Also an extension known as
Frobenious method allows to tackle differential equa-
tions with coefficients that are not analytic. Numerical
tools such as time integration schemes (e.g. Runge-
Kutta, Newmark method, central difference, see for
instance Bathe, 1995) are commonly employed to solve
nonlinear differential problems. The authors have ad-
dressed similar problems with a variational method

named WEM (Rosales and Filipich, 2000, 2002). The
authors have applied power series numerical tools in
various problems (Filipich and Rosales, 2001a, 2002).
A method to solve nonlinear differential problems

governed by ordinary equations (ODEs) is herein em-
ployed. The solution is found with an analytical solu-
tion using algebraic series. A previous manipulation
of the equations leads to very convenient recurrence
algorithms which ensure the exactness of the solution
as well as the computational efficiency of the method.
The approach is straightforward and is illustrated with
several problems, i.e. a) projectile motion; b) N bod-
ies with gravitational attraction; c) Lorenz equations;
d) Duffing equations and, e) a strong nonlinear oscil-
lator. In all the cases the results are given in plots
(state variables vs. time, phase plots, Poincaré maps).
Neither divergence nor numerical damping was found
in any case. The availability of an analytical solution
may be also a helpful tool in the qualitative analysis
of nonlinear equations.
In this section the general algebra of the approach is

stated. The examples will be presented in the following
sections Let us consider an analytical function x =
x(τ) in [0, 1]. We will denote its expansion in power
series as (with N →∞, theoretically)

[x] =
NX
k=0

a1k τk (1)

and for powers m

[xm] =
NX
k=0

amk τk (2)

In order to fulfill an algebraic consistence (A.C.) con-
dition the following relationships have to be satisfied

[xm] =
£
xm−1

¤
[x] (3)

After replacing the series expressions in each factor of
this equation, one obtains the next recurrence formula
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(Cauchy products)

amk =
kX

p=0

a(m−1)pa1(k−p) (4)

or

amk =
kX

p=0

a(m−1)(k−p)a1p (5)

Now let us expand an analytical function f = f̂(x) =

f̂(x(τ)) = f(τ) in Taylor series

bf(x) = MX
m=0

αm xm (6)

where αm are known and in particular, we denote

[1] =
NX
k=0

a0k τk (7)

where a0k = δ0k are the Kronecker delta´s. If we sub-
stitute Eq. (2) in Eq. (6) we may write

[f(τ)] =
NX
k=0

φk τk (8)

in which

φk =
MX
m=0

αm amk

This expression will be used for any analytical func-
tion. Now if we have to deal with a rational functionbF (x)

F̂ (x) =
ĝ(x)

f̂(x)
=

g(τ)

f(τ)
= F (τ) (9)

being ĝ(x) and f̂(x) analytical functions and f̂(0) 6= 0.
Also ĝ(x) =

PM
m βmx

m and βm are known. Then it is
possible to write

[g(τ)] =
NX
k=0

�k τk (10)

�k =
MX
m=0

βm amk

Let us denote

[F (τ)] =
NX
k=0

λk τk (11)

Now the A.C. must be applied

[F (τ)] [f(τ)] = [g(τ)] (12)

Ã
NX
k=0

λk τk

!Ã
NX
k=0

φk τk

!
=

NX
k=0

�k τk (13)

where

�k =
kX

p=0

φpλ(k−p)

The λk are unknowns and the sets φk and �k are
known. It is apparent that λ0 = �0/φ0. Then the
recurrence relationship for λk is

λk =
�k −

Pk
p=1 φpλ(k−p)
φ0

(14)

where k = 1, 2, . . . ,N. It should be noted that φ0 6= 0
in order for F (0) to exist.
Equations (4), (5), (14) and similar ones are the basis

of this proposal of the analytical solution. That is, the
approach is based on the calculation of the series (2)
for arbitrary powers of x(τ) by systematically stating
Cauchy products taken two by two.

II. ILLUSTRATIVE EXAMPLES: Analytical
solutions

Five problems will be addressed with this technique:
a) projectile motion; b) N bodies with gravitational
attraction; c) Lorenz equations; d) Duffing equations
and, e) a strongly nonlinear oscillator. The detailed
algebra and some numerical examples will be shown
in the next five subsections.

A. Projectile motion

Here the problem of the 3D trajectory of a ball fired
out in the air (see for instance, Symon, 1979) is tackled
by means of the statement of the analytical solution
using algebraic recurrence as was shown in the Intro-
duction. The effects of gravity, resistance of the air
and wind action are taken into account. The govern-
ing equations are

x00 = −β̄[x0 − TVx(z)]e
−z/h

y00 = −β̄[y0 − TVy(z)]e
−z/h

z00 = −β̄[z0 − TVz(z)]e
−z/h − gT 2 (15)

where x = x(τ); y = y(τ) and z = z(τ). τ = t/T is
the dimensionless time, [0, 1] . T is an interval of time
to be chosen opportunely. β̄ is proportional to the air
resistance, Vx(z), Vy(z) and Vz(z) represent the wind
pressure distribution, and h is the height of the stud-
ied domain. The prime denotes the derivative with
respect to τ . In order to state the algebraic recurrence
let us expand the functions x, y, zm according to the
notation (1) with a1k ≡ Ak, a1k ≡ Bk and amk ≡ Cmk

respectively. Similarly we introduce the representation
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of x0,y0,z0 with a1k ≡ p1k, a1k ≡ q1k and a1k ≡ r1k re-
spectively. The following relationships are true

p1k ≡ (k + 1)Ak+1 ;

q1k ≡ (k + 1)Bk+1 ; (16)

r1k ≡ (k + 1)C1(k+1)

The left hand sides of the governing equations are writ-
ten as

[x00] =
N−2X
k0

ϕ2kAk+2τ
k

[y00] =
N−2X
k0

ϕ2kBk+2τ
k (17)

[z00] =
N−2X
k0

ϕ2kCk+2τ
k

in which k0 denotes k = 0 and ϕlk ≡ (k+ l)!/k!, k and
l are integers. It will be necessary to represent the an-
alytical function f̂(z) = e−z/h in terms of Taylor series
(see Eq. (6)) with αm = (−1/h)m/m!. Additionally
the expression of this function in power series of τ is
given by

[f ] ≡ [f(τ)] = [e−z(τ)/h] =
NX
k0

σkτ
k (18)

σk =
MX
m0

αmCmk

The functions representing the wind velocity varying
with the height z, Vx = V̂x(z); Vy = V̂y(z); Vz = V̂z(z)
are now expanded in Taylor series (Eq. (6)) where
αm ≡ ∆xm, αm ≡ ∆ym and αm ≡ ∆zm, respectively.
In turn these functions may be expanded in series of τ

[V̂x(τ)] =
NX
k0

Rxkτ
k ;

[V̂y(τ)] =
NX
k0

Rykτ
k ; (19)

[V̂z(τ)] =
NX
k0

Rzkτ
k ;

Rxk =
MX
m0

∆xmCmk ;

Ryk =
MX
m0

∆ymCmk ; (20)

Rzk =
MX
m0

∆zmCmk

If we now make use of the A.C. condition ( 3) it is

possible to obtain the following recurrence equation

Cmk =
kX

p=0

C(m−1)pC1(k−p) (21)

with m = 2, 3, . . . ,M and taken two by two. Let us
introduce a simplifying notation

[X] ≡ [x0]− T [Vx] ≡
NX
k0

α∗kτ
k ;

[Y ] ≡ [y0]− T [Vy] ≡
NX
k0

β∗kτ
k ; (22)

[Z] ≡ [z0]− T [Vz] ≡
NX
k0

γ∗kτ
k ;

α∗k = p1k − TRxk ;

β∗k = q1k − TRyk ; (23)

γ∗k = r1k − TRzk

After the above definitions and notations we are able
to find a recurrence algorithm to solve the differential
system (15). First let us write the differential equations
in terms of the series

[x00] = −β̄[X][f ] ≡ −β̄[U ]
[y00] = −β̄[Y ][f ] ≡ −β̄[V ] (24)

[z00] = −β̄[Z][f ]− T 2[G] ≡ −β̄[W ]− T 2[G]

where the following notation was introduced

[U ] =
NX
k0

ukτ
k; [V ] =

NX
k0

vkτ
k;

[W ] =
NX
k0

wkτ
k; [G] = g

NX
k0

δ0kτ
k;

uk =
kX
p0

α∗pσ(k−p); vk =
kX
p0

β∗pσ(k−p);

wk =
kX
p0

γ∗pσ(k−p)

The necessary recurrence relationships are given by

Ak+2 = − β̄uk
ϕ2k

Bk+2 = − β̄vk
ϕ2k

(25)

C1(k+2) = − β̄wk

ϕ2k
− T 2gδ0k

ϕ2k

Then the algorithm is complete. Briefly the steps
are the following

1. Data αm, ∆xm, ∆ym, ∆zm,C00 = 1 and C0k = 0
are input;
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Table 1: Data of projectile motion examples. r and
ṙ are the initial position and velocity vectors respec-
tively.

EX I.C. WIND
r(x, y, z) ṙ (Vx,Vy,Vz)

1 (0, 0, 0) (4, 0, 0.5) (10z,5z,0)
2 (0, 0, 10) (−4, 0, 0.5) (10z,5z,0)

Figure 1: Projectile motion. Example 1.

2. Given the initial conditions, C10, A0, B0, A1, B1
and C11 are found;

3. A value of T is chosen;

4. The calculation is thus performed during a num-
ber of steps which depend on the value of T and
duration of the experiment;

5. The trajectories x, y and z are finally obtained.

Figures 1 and 2 show the 3D trajectories for data
depicted in Table 1. For both examples M = N = 20,
β̄ = 0.01, g = 10m/ s2, h = 1000m, T = 0.01 s.

B. N-orbiting bodies

The behavior of N bodies attracted to each other in
a gravitational force field is tackled by means of the
statement of the analytical solution using algebraic re-
currence. The forces are assumed varying inversely as
the square of the separation among the bodies. Let us
define the position vectors of each body in an inertial
reference system as

�ri(τ) = (xi, yi, zi) (26)

where i = 1, 2, . . . ,NB. NB is the number of bodies.
If the non-dimensional time is defined as τ = t/T in
[0, 1] and T is the interval of interest (parameter to be
chosen), the scalar equations of motion may be written

Figure 2: Projectil motion. Example 2.

as

x00i = G

Ã
NBX

k=i+1

mk(xk − xi)

R3ik

!
−

G

Ã
i−1X
k=1

mk(xi − xk)

R3ki

!
(27a)

y00i = G

Ã
NBX

k=i+1

mk(yk − yi)

R3ik

!
−

G

Ã
i−1X
k=1

mk(yi − yk)

R3ki

!
(27b)

z00i = G

Ã
NBX

k=i+1

mk(zk − zi)

R3ik

!
−

G

Ã
i−1X
k=1

mk(zi − zk)

R3ki

!
(27c)

G ≡ T 2G∗, G∗ = 6.67 1011Nm2/kg2 is the gravita-
tional constant and mi are the masses of each body.
The prime denotes derivative w.r.t. τ . Additionally
the following notation was introduced

Rij ≡ |�Rij | =q
(xj − xi)2 + (yj − yi)2 + (zj − zi)2

in which conventionally j > i and �Rij is the relative
position vector.
To obtain the algebraic recurrence let us expand

functions xi, yi, zi according to notation (1) with a1k ≡
Aik, a1k ≡ Bik and a1k ≡ Cik respectively and
i = 1, 2, . . . , NB. Similarly we introduce the represen-
tation of x2, y2, z2, from (2), as a2k ≡ aik, a2k ≡ bik
and a2k ≡ cik, respectively. Other series of type (1)
are also necessary: xixj , yiyj , zizj , Rij , and 1/R

3
ij

represented with coefficients σijk.
The following A.C. conditions applied to the func-
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tion xi are true£
x2i
¤
= [xi]

2 ; (a) [xixj ] = [xi] [xj ] ; (b)
(28)

Analogously with functions yi and zi. Other A.C.
conditions must be satisfied£

R2ij
¤
= [Rij ]

2
=
£
x2i
¤
+
£
x2j
¤− 2 [xixj ] +£

y2i
¤
+
£
y2j
¤− 2 [yiyj] +£

z2i
¤
+
£
z2j
¤− 2 [zizj ] (29a)£

R3ij
¤
=

£
R2ij
¤
[Rij] (29b)

For the sake of brevity the recurrence expression for
all the coefficients introduced above are not included.
They are derived from the A.C. conditions resulting in
equations of the type ( 4) or ( 5). Finally the solving
equations are

ϕ2kAi(k+2) = G

Ã
NBX

n=i+1

mnXink

!
−

G

Ã
i−1X
w=1

mwXwik

!
(30a)

ϕ2kBi(k+2) = G

Ã
NBX

n=i+1

mnYink

!
−

G

Ã
i−1X
w=1

mwYwik

!
(30b)

ϕ2kCi(k+2) = G

Ã
NBX

n=i+1

mnZink

!
−

G

Ã
i−1X
w=1

mwZwik

!
(30c)

in which k = 0, 1, 2, . . . , N − 2. The next definitions
were introduced

Xrsk =
kX

p=0

σrsp
¡
As(k−p) −Ar(k−p)

¢
(31a)

Yrsk =
kX

p=0

σrsp
¡
Bs(k−p) −Br(k−p)

¢
(31b)

Zrsk =
kX

p=0

σrsp
¡
Cs(k−p) − Cr(k−p)

¢
(31c)

The necessary steps to find the solution are the fol-
lowing

1. A value of T is chosen;

2. Given the initial conditions, i.e. �ri(0) (position)
and �r 0i (0) (velocity) the values of Ai0, Bi0, Ci0,
Ai1, Bi1 and Ci1 are known;

Table 2: N orbiting bodies example. Data.
Body Initial Initial

Position Velocity
1 (0,0,0) (0,0,0)
2 (3,0,0) (0,0,0)
3 (3,4,0) (0,0,0)
4 (1.5,1.5,0) (-0.00125,0.0005,0.0005)

Figure 3: Example of four orbiting bodies.

3. The calculation is thus performed using Eqs. (30)
and (31) during a number of steps which depend
on the value of T and the duration of the exper-
iment;

4. The position �ri(τ) and velocity �r
0
i (τ) are finally

obtained for each body (i = 1, 2, . . . , NB).

The case of four bodies (NB = 4) was numerically
solved. Figure 3 shows the relative position among
four bodies of masses m1 = 1, m2 = 1, m3 = 5 and
m4 = 1, respectively. The spheres denote the initial
position of the bodies, which along with the velocities
are given in Table 2. The experiment was run during
750000 s taking 5000 steps of T = 150 s each. See also
Filipich et al. 2001b.

C. Lorenz equations

Lorenz (see for instance Strogatz, 1994) discovered in
1963 the chaotic motions of a model of convection
rolls in the atmosphere. The behavior of this problem
is such that very small changes in the initial condi-
tions lead to different solutions, but as Lorenz showed,
bounded in a three dimensional butterfly-shaped do-
main. Here the power series are used to solve the fol-
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Figure 4: Lorenz attractor. Time trajectory

lowing system of differential equations

u̇ = σ∗(v − u)

v̇ = r∗u− v − uw (32)

ẇ = uv − b∗w

where σ∗, r∗, b∗ > 0 are parameters; u = û(t); v =
v̂(t); w = ŵ(t). After introducing the variable τ = t/T ,
the following series are adopted

[u] =
NX
i=0

Aiτ
i; [v] =

NX
i=0

Bi; τ i [w] =
NX
i=0

Ciτ
i

(33)

After the replacement of the series in the differential
system the recurrence system is obtained

Ai+1 =
σ

ϕ1i
(Ai −Bi)

Bi+1 =
1

ϕ1i
(rAi − TBi − TSi) (34)

Ci+1 =
1

ϕ1i
(TZi − bCi)

where σ = σ∗T, r = r∗T, b = b∗T and the Cauchy
products are

Si =
iX

p=0

ApCi−p; Zi =
iX

p=0

ApBi−p

Numerical results were obtained with initial condi-
tions u0 = 0, v0 = 1, w0 = 0, T = 0.1, σ∗ = 10,
r∗ = 28, b∗ = 8/3. N = 20. The time trajectory
is shown in Fig. 4 and the phase plane in Fig. 5.
The well-known strange attractor is reproduced with-
out numerical perturbation. Being very sensitive to
initial conditions these problems pose a challenge to
any numerical tool.

Figure 5: Lorenz strange attractor.

D. Forced Duffing equation

The well-known nonlinear equation extensively known
as Duffing oscillator is governed by (see for instance
Thompson and Stewart, 1986):

ü+ p∗u̇+ q∗u3 = B∗f(t) (35)

u(0) = U0; u̇(0) = V ∗0

It is a helpful low-dimensional mathematical model
to understand the behavior of more complex dynamic
systems. In mechanical engineering this equation may
model the response of a forced beam with large deflec-
tions. Ueda (1980) identified the chaotic behavior of
the response for certain range of the parameters. In
this equation u = û(t). After non-dimensionalization
the equation reads

v00 + pv0 + qv3 = Bf(τ); v(0) = U0; v0(0) = V0
(36)

in which p = Tp∗; q = T 2q∗; B = T 2B∗; V0 = TV ∗0
and v0 = dv/dτ . Now let us apply expansions (1) to
v and (2) to v3 and (6)) and (8)) to the driving force
f(τ). Also the derivatives of v may be written as

[v0] =
N−1X
i=0

ϕ1ia1(i+1)τ
i (37)

[v00] =
N−2X
i=0

ϕ2ia1(i+1)τ
i (38)

and finally the differential equation is transformed into

N−2X
i=0

τ i[ϕ2ia1i+ 2 + pϕ1ia1i+ 1 + qa3i −Bφi] = 0
(39)
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Figure 6: Forced Duffing equation. Time trayectory.

A recurrence relationship may be found by stating the
A.C. It is possible to find all the values of the coeffi-
cients ami starting from the initial condition. That is,
from Eq. (4) or (5)

a2i =
iX

p=0

a1pa1(i−p); a3i =
iX

p=0

a2pa1(i−p)
(40)

Then from Eq. (39) and since a10 = U0 and a11 = V0
the following recurrence expression is obtained

a1(i+2) =
Bφi − pϕ1ia1(i+1) − qa3i

ϕ2i
(41)

An illustrative example was numerically solved with
the following data: U0 = 3, V ∗0 = 4, p∗ = 0.05, q∗ =
1, f(τ) = cos(ωτT ), B∗ = 7.5,N = 20. The arbitrary
time of interest was chosen T = 0.35 s. Fig. 6 depicts
the time trajectory and the corresponding phase plot
is shown in Fig. 7.
These results are coincident with the ones reported
by Thompson and Stewart, 1986. As is known, this
problem is extremely sensitive to initial conditions
changes. This feature is one possible condition for
chaos. Consequently the numerical behavior of the
employed methodology is relevant to the reliability of
the results.

E. STRONGLY NONLINEAR OSCILLATOR

Let us introduce the following differential equation

ẍ+ ω2x+ �ẋx2 sin 2t = 0 (42)

This equation is related to rotor dynamics. Mahmoud,
2001 studied it with an extended average theorem al-
gorithm. It may represent the scalar part of a complex

Figure 7: Forced Duffing equation. Phase plot.

equation governing a damped nonlinear system. Ex-
amples of this behavior appear also in robots and shells
as reported in Mahmoud and Aly, 2000.
When � is not restricted to be a small number

this equation represents a strongly nonlinear oscilla-
tor. The non-dimensionalized equation is

x00 +Ax+Bx0x2 sin 2Tτ = 0 (43)

where x = x(τ), in [0, 1] , τ = (t − t0)/T is the non-
dimensional time, t0 is the initial time, T is a time
interval to be selected and (·)0 = d (·) /dτ. The con-
stants in the differential equation (43) are A = (ωT )

2

and B = �T. In order to solve the equation by means
of the power series, function x and its derivatives are
expanded as follows

[x] =
NX
k=0

a1kτ
k;

[x0] =
N−1X
k=0

ϕ1ka1(k+1)τ
k (44)

[x00] =
N−2X
k=0

ϕ2ka1(k+2)τ
k

The nonlinear terms are tackled similarlyThe succes-
sive coefficients of the involved functions are obtained
with repeated applications of the basic recurrence

£
x2
¤
=

NX
k=0

a2kτ
k;

[x0x2] =
NX
k=0

φkτ
k (45)

[x0x2 sin 2Tτ ] =
NX
k=0

λkτ
k
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Figure 8: Trajectory x(t).

expressions after imposing the A.C. of the type (3),
(4)(5) and (6).
In order to handle a step-wise algorithm the solution

is extended to P steps of length T . Then we define τp
in [0, 1] and p = 1, 2, ...P. The sine function is now
expanded as

[sin 2T (τp + p− 1)] =

cos 2T (p− 1)
NX
k=0

qkτ
k +

sin 2T (p− 1)
NX
k=0

rkτ
k (46)

where {qj} and {rj} are known coefficients of the sine
and cosine functions. At this stage the differential
equation (43) is written for each step

ϕ2ka1(k+2) +Aa1k +Bλk = 0 (47)

(k = 0, 1, 2, ..., N − 2)
The initial conditions in each step give place to the
starting values a10 = x0p and a11 = x00p. The algo-
rithm is complete after the necessary A.C. of type (3),
(4) and (5).
A numerical example was carried out setting T =

0.125 s, ω2 = 0.306, � = 5, t0 = π, x0 = −0.5, x00 =
0, N = 50.The same example was solved in Mah-
moud, 2001 with an averaging method, as an extension
to the approach for weakly nonlinear systems. Mah-
moud reports the time trajectory in a range [π, 28.14]
in which only two waves are observed. His results are
close to the numerical solution (Runge-Kutta 4th. or-
der) though a difference is noticeable in the plot de-
spite the short interval depicted. Fig. 8 shows the
trajectory found with the above described algebraic re-
currence plotted in the time domain [π, 375] .One may
infer that the response is quasi-periodic given the mod-
ulation of the curve.

In Fig. 9 the same trajectory is plotted in a smaller
range together with a numerical solution found using

Figure 9: Algebraic series solution (thick line). Nu-
merical solution (forward Euler) (thin line).

Figure 10: Phase diagram. Time of experiment: 375
sec.

the integration scheme known as forward Euler, im-
plemented in the software MAPLE V as the default
algorithm to solve differential equations. The second
solution starts to diverge before the 30 s. The corre-
sponding phase diagram is depicted in Fig. 10.
In order to have more elements to confirm the sup-

posedly quasiperiodic behavior, a Poincare map is
plotted in Fig. 11. It was found for 750 s of dura-
tion of the experiment and a sampling time of π. A
diamond shaped array of points is observed. Although
it might seem that for a longer time of experiment the
points would fill the curve (feature of a quasiperiodic
response), this is not the case since after a transient
behavior the system settles down to a fixed finite num-
ber of points which corresponds to a periodic response
of several periods.

F. CONCLUSIONS

A methodology to find the analytical solution of non-
linear differential equations has been presented. The
technique makes use of the well-known power series
with a systematic handling of nonlinearities and vari-
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Figure 11: Poincaré map. Time of experiment: 750
sec. Sampling time π, 240 points.

able coefficients. In order to find the arbitrary powers
of the time functions, the Cauchy products are taken
two by two. The differential equation is satisfied in
each step unlike other numerical schemes which make
use of truncated series. The convergence of the method
allows to extend the duration of the numerical exper-
iments making possible a long time analysis of the re-
sponse. Other numerical techniques may show diver-
gence at early stages of the time domain.
Several examples are derived in detail. The well-

known forced Duffing equation and the Lorenz attrac-
tor are solved. Also, the illustrations include the mo-
tion of a projectile including the air resistance and the
wind pressure, and the orbiting of N bodies under the
action of forces inversely proportional to the square of
the distance among them. Finally the equation gov-
erning a strongly nonlinear oscillator was tackled with
the methodology.
The answer is, in all cases, given by a power series

with known coefficients. Then the user may have not
only the numerical result but the “analytical” expres-
sion of the solution.
Although this power series technique is very old, the

availability of symbolic algebraic manipulation pack-
ages might facilitate the systematization of its appli-
cation.
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