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Abstract— A model for calculating the effec-
tiveness factor and the concentration and tempera-
ture profiles for finite cylindrical either hollow or
solid catalyst particles is presented. The model
accounts for dispersion in both radial and axial
directions and non-isothermal behavior. The re-
sulting differential partial equations system is dis-
cretized by a centered finite difference method and
a program written for the Excel electronic sheet
solves the highly nonlinear algebraic system. The
numerical technique can be extended for any Kki-
netic expression; for illustration, some results for n
-th order reactions rate expressions are shown.

Keywords— Effectiveness factor, Finite cylin-
drical catalysts, Bi-dimensional dispersion, Non-
isothermal model.

I. INTRODUCTION

In heterogeneous catalytic studies it is important to
establish the mechanism that is limiting the overall
rate of transformation within the catalytic particle, that
is, to know whether the diffusive effects are control-
ling the process rate, or whether the chemical reaction
at the particles surface controls.

To have an idea of the relative importance of dif-
fusion and chemical reaction phenomenon, an effec-
tiveness factor for catalytic particles is defined, for a
steady state flow condition, as

Actual amount of substance reacting
in the whole particle

Amount that would react if the whole particle were at

M

the external surface temperature and concentration

which can also be expressed in terms of molar veloc-
ity through the external surface particle by

Molar velocity of component
External surface
i through the external X ( j
area of catalytic
surface particle

= 2)
N Formation rate of component
volume of

i at the external surface X ) )
catalytic particle

temperature and concentration
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As stated by Eqn. 2, a value of unit for the effective-
ness factor (for isothermal conditions) indicates that
there are not diffusive barriers to the overall rate of
transformation and the activation energy of the chemi-
cal reaction at the surface of the particle is the rate
determinant step. An effectiveness factor less than unit
shows that the diffusive effects are important in the
control of global velocity of transformation: the
smaller the effectiveness factor is, the larger impor-
tance of the physical processes of mass transfer are.

The case of an effectiveness factor greater than
unit can also appear, which indicates that heat transfer
effects are important, and even though in appearance
this would be an ideal situation, in practice this is not
recommendable due to catalytic deactivation origi-
nated by high temperatures within the particle.

There are a great number of published articles

where the parameters of major influence in the effec-
tiveness factor are studied. Among those parameters,
the particle geometry is perhaps of major concern. In
particular, the studies for cylindrical pores (Carberry,
1961), for spherical particles (Smith, 1956; Carberry,
1976), for flat slabs (Morbidelli et al., 1982a) for
cylindrical pellets (Morbidelli ef al., 1982b), and more
recently, the investigation of Wang et al., (1994) for
rectangular reticulated particles are remarkable.
Doraiswamy and Sharma (1984) showed a good
summary of the geometric influence in the effective-
ness factor and in the concentration profiles inside the
particle.
The influence of the kinetic expression for the chemi-
cal reaction in the effectiveness factor is also an aspect
widely studied: there are studies for first and second
order rate expressions (Wakao et al., 1978; Lee, 1979;
Lin et al., 1986), for reactions type Langmuir-
Hinsehelwood (Krasuk and Smith, 1965; Morbidelli et
al., 1982a,b), for negative order rate expressions
(Morbidelli and Varma, 1983) and even for multiple
reactions (Wohlfahrt, 1982). Doraiswamy and Sharma
(1984) , Satterfield and Sherwood (1963) and
Satterfield (1991) also showed the analytic equations
of effectiveness factor for a great number of reactions
with highly complexes kinetic expressions.

Almost all works in literature consider in their
mathematical models the diffusion phenomenon in
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Fig. 1. Catalytic pellet with hollow cylindrical shape
and volume differential element.

axial direction only with non-isothermal behavior. To
solve the differential equations system that these mod-
els generate, there are simplifications to special cases
to allowing an analytical solution (Scott et al., 1984;
Singh, 1985) or numerical solutions by using orthogo-
nal collocation methods (Lin et al., 1986; Trotta and
Guidice, 1985; Rusic and Zrncevic, 1994) and simula-
tions with Montecarlo methods (Wang et al., 1994).

The mathematical models of non-isothermal diffu-
sion in both radial and axial directions generate a
partial differential equations system that had not been
studied extensively. In this work it is shown the for-
mulation of a mathematical model for effectiveness
factor calculation in finite cylindrical particles (hollow
or solid). Non-isothermal behavior and diffusion in
radial and axial directions simultaneously are consid-
ered with reactions rate expressions in potential law.
As a different alternative to those in literature, the
partial differential equations system is solved simulta-
neously by the central finite differences method. The
results of the model solution are compared with the
data presented by Davis (1990) who utilized the
DISPL computer program to solve the system of dif-
ferential equations.

II. MATHEMATICAL MODEL

The mathematical model for the effectiveness factor

calculation of hollow cylindrical pellets showed in this

work, was developed by the application of mass and

energy conservation equations around a volume dif-

ferential element as shown in Fig. 1, with the follow-

ing suppositions:

e Diffusion of substances in axial and radial direc-
tions simultaneously

e Non-isothermal situation

o Kinetic equation expressed by potential law, that is,

velocity equations like:(-r5 ) =k * C,"

Chemical reactions without change in total moles

number.

Steady state.

Constant properties of substances (D.a, ke, AH,,

etc.).

Temperature and concentration profile are concen-

tric.

The last supposition was confirmed experimentally by
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Wakao er al., (1978) for chemical reactions of first
order in spherical particles and the extension to cylin-
drical particles and kinetic expressions of higher order
is supposed valid.

By realizing a mass balance around the volume dif-
ferential element of Fig. 1 and by applying the Fick’s
law for steady state, we obtain:

D 2
e A 2 ra& +DL, p a C;A
or oz

With the following boundary conditions (taking the
pellet’s center as origin of coordinates):

3)

- KC; =0
r or

r = Ry Yz = CA(Rl,Z):CAS
r =R, Yz = CA(Rz,Z):CAS
z=1L12 Vr = Ca(r,LR2)=C,°
z=0 RISFSRZ = OCA/OZ =0

An energy balance around the volume differential

element in union with the Fourier’s law under steady
state conditions results in:
k, o°T

k, o( or
—|r— |+
rAH or\  or ) AH oz
The boundary conditions to solve the differential Eqn.
4 are:

~KC' =0 (4)

r = R vz =  TR,,2)=T
r =R, Vz = TRy,z2)=T°
z=L12 Vr =  T@,L2)=T
z=0 R, <r<R, = oT/oz =0

With the purpose of allowing the numerical solution
of differential Eqns. 3 and 4; it is preferable to write
them in function of dimensionless variables as:

f = Co/Cy° Concentration
A= (r—-R)/(R,-R) Radial length
= 2z/L Axial length
t=T/T Temperature

The mass balance equation in function of the new
dimensionless variables is:

Fr, (R-R) o [2A=-R)T&f
o\ A(R,-R)+R OA L or?
) (1) (&)
R-R)(C; B
_ ( 2 )D( : ) / K;'e“{(l/f D =

e A

where y = E, / R T°. The boundary conditions are
transformed to:

A=0 vr = f,I) =1,

A= 1 v = f(1,r) =1,

r=1 Vv A = fo, 1) =1,

r=20 VA = of/or =0,
And the new energy balance equation is

6_2t+ (R -R) g_i_ 2(R -R) 28_2’

o’ MR-R)+ROL | L o
2 s )" 6
Jeryantre) ], ©

7

ke TX
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with its boundary conditions:
A=0 vTI = t(0,I) =1,
A= 1 v I = t(1,I) =1,
=1 VA = t(A, 1) =1,
r=0 VA = ot/or =0.

The differential equations for the solid cylindrical
pellet case, as much in real as in dimensionless vari-
ables, are the same Eqns. 3 to 6, the only changes
required are in the boundary conditions for r = 0. In
this case, R; equals to zero in all expressions and
therefore A= 0. On the other hand, the suppositions
listed for the hollow case are held.
In case of solid cylindrical particles, the boundary
condition in r = 0 (A= 0), are:
A=0 vT
A=0 vTI

of/for=0
ot/lor=10

=
=

Effectiveness Factor

The effectiveness factor calculation is made by
means of definition given in Eqn. 1: “the actual
amount of substance that reacts in the whole particle”
(numerator) was calculated by summation of all con-
tributions to the reaction at each volume differential
element, taking the average concentration and with
evaluation of velocity of reaction at the average tem-
perature of each element.

The volume of i-th differential element (numbered
consecutively from center to outside) is given by:

AV = nAz[(R1 +iAr) —(R, +(i—1)Ar)2} yAw

And in dimensionless variables:
82 R9R R R +G-D9R-R) | 8

Then the amount of component A reacting in that i-th
volume differential element is:

(1), =k, ,(C)I AV, ©9)

and the expression for effectiveness factor can be
written as the relation between summation of contri-
butions to the chemical reaction at each partition and
the reaction evaluated with external surface tempera-
ture (T®) and concentration (C,%)

82’ Z: ;T'(/./)(E,l ):’lﬂj)A V:

i=1 j=1

(10)
nLk  (C )" (R}~ R})

T‘l:

where n, and n; are the number of volume differential
elements considered in axial and radial directions
respectively.

ITI1. SOLUTION OF MATHEMATICAL MODEL

The effectiveness factor calculation implies the simul-
taneous solution of differential Eqns. 5 and 6. In this
work, the partial differential equations system was
discretized by central finite differences and the result-
ing system of algebraic equations is solved simultane-
ously (due to the completely implicit formulation) by
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means of a computer program in an electronic sheet
(Excel™).

Considering the central finite differences equations
and the expressions in dimensionless variables (Eqns.
5 and 6), the following expressions for each node of a
mesh that divides the catalytic particle can be obtained
(after some algebraic arrangement)

Equations for internal and external nodes (0 <A < 1;
0<T<1
e Mass balance

fx+1,r _2fx,r +fx-1,r
(A’
) (R,—R) fm,r _fx-l,r
MR -R)+R  2AL
+|:2(Rz _Rl):|2 fx,r+1 _2fx,r + fk,I‘-l
L (A’
{(Rz ~R) (f,0) )"k

an

:|e—“/(1/’7.r—1) -0
D

e A
Energy balance
tx+1,1‘ _2tx,r 'Hx-l,r

(A%)? A (R,-R)+R
+{

2
2(R, - Rl)j| tx,rn _2tx,r +tx,r-1

L (AT
(R-R)* (f.:C)" (AH) k;
kT
At center of the particles A = 0 and a mathematical
indetermination occurs in the finite differences equa-
tions which can be solved by using the L’Hopital’s
rule

(Rz _Rl)

lx+1,r - tx-l,r

2 AL

(12)

:|e7(1/’;_ r-1) — O

Equations for nodes at the dimensionless longitudinal
axis (A=0,T = 0)
e Mass balance

4 fl,r _fx,r 4 Z(Rz —R,) ’ fo,nl _2f0,r +fo,r4
AN L AT
B 2 n s\(n-1) s (13)
R -RY () (€)" k; }(/ Dy
Dc,A
e  Energy balance
4 tl,r _tx,r i 2(R2 —R.) ’ to,r+1 _2to,r +t0,l"—1
AN L AT
0 S\n s 14
(R,~RY (for CY QDK | oy P
B kT erh=0

IV. ALGORITHM OF SOLUTION AND
DESCRIPTION OF COMPUTER PROGRAM

To solve the mathematical model and for its imple-
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Table 1. Concentration profiles from Davis and calcu-
lated in this work for a finite solid cylindrical
catalyst. First order kinetics. B =0.1. y= 30.
L/D=1.9=1.T' =0.25.

DISPL This work
A Ca/C, Ca/C,
0,000 0,728 0,7298
0,250 0,745 0,7469
0,500 0,797 0,7981
0,750 0,882 0,8829
1,000 1 1

mentation in the electronic sheet, a quarter of catalytic
particle was considered, which was in turn divided by
amesh of 100 nodes (AX = AT =0.1)

Because the system of equations is highly non-
linear, the velocity of convergence can be low, and to
find or not a solution depends on high degree on val-
ues with which the dimensionless variables are initial-
ized; After some preliminary tests, the initial value for
dimensionless concentrations matrix (If) was taken as
zero for all nodes (If; =0.0). The dimensionless tem-
perature matrix (It) was initialized as unit for all nodes
(Ito = 1.0), with these values a high stability and ve-
locity of convergence was obtained.

The algebraic relations for the nodes, obtained
from the finite differences formulation, were written
in the target temperature and concentration matrix (Ot
and Of respectively).

Lastly, the mathematical model was programmed
for simultaneous calculation of values of matrix If and
It making the coefficients of matrix Of and Ot satisfy-
ing the differential equations.

In Fig 2 are shown the concentration and tempera-
ture profiles for a solid cylindrical particle in which a
first order reaction takes place. The calculated effec-
tiveness factor for this case was 1.215. This results
differs from that obtained with the typical calculation
with diffusion in radial direction only (Fig. 3), which
produces an effectiveness factor of 1.447 (19%
higher), and the procedure outlined in this work shows
that in the center of the particles the concentration is
20.66% higher and the temperature is 1.31% lesser
than that obtained with calculating diffusion in radial
direction only.

By way of results validation, in Table 1 the re-
ported data for Davis (1990) (calculated with the
computer program DISPL) and that obtained with the
algorithm introduced in this work are shown for a
dimensionless length I = 0.25 and the same condi-
tions reported for Fig. 2. The agreement of results
obtained with those programs is excellent.

Figure 4 corresponds to temperature and concen-
tration profiles in a hollow cylindrical particle in
which a second order reaction takes place. The effec-
tiveness factor of 18.81 is a clear consequence of heat
transfer effects inside the particle.

34:17-22 (2004)

V. CONCLUSIONS

The computer program developed is a robust tool to
analyze the efficiency of utilization of cylindrical
catalysts. On the other hand, the design of this algo-
rithm, taking into account the diffusion in two direc-
tions, allows a clearer appreciation (compared with
the calculation of diffusion in only one direction) of
effects that the diffusion and heat transfer produces
inside cylindrical catalysts.

The proposed algorithm constitutes a flexible tool
for the effectiveness factor calculation, additionally,
this algorithm can be easily extended to other kinetic
expressions, and can be used to optimize the geomet-
ric parameters of catalytic pellets, which will be the
main objective of the future work.

Finally, it should be highlighted that the numeric
strategy becomes very stable, safe in convergence and
of high velocity

NOMENCLATURE

C = Concentration

D = Diffusivity.

E, = Energy of activation of reaction.

f = Dimensionless Concentration.

AH = Enthalpy of reaction.

I = Initiation matrix.

Ky = Reaction velocity constant evaluated at
temperature 7.

K. = Effective conductivity.

L = catalyst length.

r = Radial direction

Ry, R, = Interior and exterior radius of cylindrical
particle.

t = Dimensionless Temperature.

R = Universal constant of gases.

T = Temperature

V = Volume

z = Longitudinal Direction.

Greek letters

B = Physical-chemical Parameter [=AH D,
CA /(Ko T)]

n = Effectiveness Factor

A = Dimensionless radial Direction.

r = Dimensionless longitudinal direction

Y = Energy of activation parameter

o) _= Thiele’s modulus [= R( K./D.)*’]

Sub/superscripts

A = Component in the reaction

e = Effective.

n = Order of reaction

n, = Number of elements in radial direction

n, = number of elements in longitudinal direc-
tion.

(0] = Initial.

S = Surface.
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Fig. 2. Concentration and temperature profiles for a finite solid cylindrical catalyst. First order kinetics. 3 =0.1.

y =30. Cas = 3.65%¥10" mol/em®. T s =623 K. R, =0.5cm.L =1 cm. ®=1.1m =1.215
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Fig. 3. Concentration and temperature profiles considering radial diffusion only. The geometric, kinetics and
properties are the same of Fig. 2. n = 1.447
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Fig. 4. Concentration and temperature profiles for a hollow cylindrical catalyst. Second order kinetics. 3 = 0.37,
¥=29.86. Cy = 3.65%107 mol/cm®. T g =623 K. R,=0.5 cm, R;=0.1 cm L =1 cm, n =18.81
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