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Abstract— We describe a numerical method
to solve the quasistatic Maxwell equations to
obtain the electric potential distribution gener-
ated by a point source of current density inside
a body of arbitrary shape and constant conduc-
tivity. The method needs only a set of nodes on
the surface and inside the body, but it does not
need a mesh connecting the nodes. The pro-
posed meshless method is compared against the
boundary elements method evaluating its per-
formance when solving the electroencephalog-
raphy forward problem.

Keywords— Electroencephalography, Nu-
merical solution of partial differential equa-
tions, Meshless methods.

I. INTRODUCTION

One of the aims of electroencephalography (EEG) is
to determine the location, orientation and intensity
of the electrical activity generated by sources of neu-
ronal activity in the brain. These sources can often
be described as current density sources which gener-
ate an electric potential distribution on the surface of
the head that can be measured with a suitable array
of electrodes. The computation of the electric poten-
tial distribution based on sources of known location,
orientation and intensity is known as the EEG for-
ward problem. The estimation of source parameters
based on electric potential measurements is the so-
called EEG inverse problem. This paper essentially
deals with the forward problem.

To get a good solution of the EEG forward problem
it is necessary to correctly model the shape of the head
layers and their respective conductivities (Hämäläinen
and Sarvas, 1989). Due to its irregular geometry, this
means that the problem has to be solved numerically.
The most common numerical methods, such as finite
elements (FEM) or boundary elements (BEM) require
placing some nodes on the surface of the head layers or
inside them, partitioning the domain of the problem
into a set of small elements. A simple variation is
assumed for the electric potential over each element,
and the differential or integral equations are solved to

get the potential at the nodes (de Munck, 1992; van
Oosterom and Strackee, 1983).

While it is relatively easy to select the location of
the nodes, based for example on magnetic resonance
scans or in X-ray tomography, the generation of a mesh
connecting them to define the elements is a difficult,
time-consuming job, even if done automatically. This
is especially true if the elements need some regularity,
as is the case, for example, to keep a reasonable shape
factor of the surface mesh for BEM (de Munck, 1992).
To overcome this complications a number of methods
that do not require a mesh connecting the nodes are
being developed for a wide range of applications (Be-
lytschko et al., 1997; Mukherjee and Mukerjee, 1997;
Nayroles et al., 1992; Zhu et al., 1998).

In this paper we develop a meshless method for solv-
ing the forward problem of the quasi-static Maxwell
equations. In particular, we will focus on a meshless
method for the EEG forward problem utilizing a Local
Boundary Integral Equation (LBIE) method (Zhu et
al., 1998). Since at this point we are mainly interested
in the viability of a meshless method for solving the
EEG forward problem, we chose a simple model for
the head, consisting in a constant conductivity arbi-
trarily shaped solid body. No detailed analysis of the
errors and the numerical behavior of the method is
presented here. An idea on how to demonstrate con-
sistence and convergence for meshless methods can be
found in (Duarte and Oden, 1996; Wendland, 1999).

In the following section the LBIE method is ex-
tended to solve the Poisson equation in a bounded
three dimensional (3D) domain, with general bound-
ary conditions and unknown boundary, except for a set
of points. In the third section we address some compli-
cations arising when this method is applied to the EEG
forward problem and restate it to avoid them. The
fourth section focuses in the solution of the Laplace
equation with Neumann boundary conditions (known
flux across the boundary), based on which the EEG
forward problem solution can be found. In the fifth
section we present results obtained with this method
and we compare them with results using BEM. The
results are compared for a spherical head model. This
simple geometry was chosen because its analytic solu-



tion to the forward problem is known (Zhang, 1995),
and this facilitates the analysis of the numerical perfor-
mance of the method and the comparison with other
methods. Finally, in the sixth section we draw some
conclusions with regards to the performance of the
method and state the next steps in this line of work.

II. LBIE METHOD IN 3D DOMAINS

We have to obtain the electric potential on the surface
of a 3D conducting body of arbitrary shape and con-
stant conductivity, generated by a source distribution
inside it. The size and electromagnetic features of the
body allow a quasi-static approximation of Maxwell
equations (Hämäläinen et al., 1993). Let ΩG be the
region of space occupied by the body and ∂ΩG its
boundary (see Fig. 1).
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Figure 1: Layout of the electromagnetic problem

The LBIE method places nodes in points xi inside
or on the surface of the domain ΩG and associates an
equation to each node for the electric potential in it. A
linear system of equations is posed whose solution is a
vector with the potential at the nodes. The equations
relate the potential Φ of node i to an arbitrary region
ΩLi ⊂ ΩG surrounding the node. It is possible then to
write an expression for the electric potential in a node
by using Green’s identity

∫

ΩL

(ψ(x,x′)∇2Φ(x′)− Φ(x′)∇2ψ(x,x′)d3x′ =

=
∫

∂ΩL

(ψ(x,x′)∇′Φ(x′)− Φ(x′)∇′ψ(x,x′)) · nds′

where Ψ(·, ·) and Φ(·, ·) are sufficiently smooth func-
tions.

Let Φ denote the electric potential and Ψ the so-
called fundamental solution, i.e. the solution to

∇2ψ(x,x′) + δ(x− x′) = 0 .

Then, in Green’s identity we get

Φ(xi) =
∫

∂ΩLi

ψ(xi,x′)∇′Φ(x′) · ndS′ −

−
∫

∂ΩLi

Φ(x′)∇′ψ(xi,x′) · ndS′ −

−
∫

ΩLi

ψ(xi,x′)∇2Φ(x′)d3x′ (1)

The regions ΩL could have arbitrary shape. In par-
ticular, when they are spheres centered in a node, the
surface integrals in (1) take a very simple form. In
addition, it is possible to make ψ|∂ΩL

= 0 by taking
ψ(x,x′) = 1

4π|x−x′| − 1
4πr0

, where r0 is the radius of
the sphere ΩL. For internal nodes, i.e. those within
ΩG, it is always possible to find a value of r0 small
enough to make sure that the sphere ΩL is completely
contained in the domain ΩG. Then (1) for internal
nodes becomes

4πΦ(xi) =
1

r2
0i

∫

∂ΩLi

Φ(x′)dS′−

−
∫

ΩLi

(
1

|xi − x′| −
1

r0i

)
∇2Φ(x′)d3x′ (2)

For nodes on the surface of the body, the local re-
gion ΩL may be defined as the intersection between a
sphere and the domain ΩG (see Fig. 1). The bound-
ary of the local region is formed by two surfaces:
∂ΩL = Sf ∪ Sr. The surface Sf is part of a spher-
ical shell and Sr is part of the real boundary ∂ΩG of
the problem.

If the radius of the sphere defining the local region
is small, the unknown surface Sr can be taken as a
circular piece of a plane normal to n, the normal vector
of the real surface. Using this approximation Sf is half
a spherical shell and the vector xi−x, x ∈ Sr is normal
to n. From (1) we get for surface nodes

2πΦ(xi) =
1

r2
0i

∫

Sfi

Φ(x′)dS′ +

+
∫

Sri

(
1

|xi − x′| −
1

r0i

)
∇Φ(x′) · ndS′ −

−
∫

ΩLi

(
1

|xi − x′| −
1

r0i

)
∇2Φ(x′)d3x′ (3)

To solve the integral equations (2) and (3), the elec-
tric potential is locally approximated in the neighbor-
hood of any point x ∈ ΩG assuming a simple variation

Φ(x) ≈ Φh(x) = pT (x)a (4)

where p(x) is the basis of the approximating functions.
In this work we use a complete monomial basis of or-
der 2, therefore

p(x1, x2, x3) =

[1, x1, x2, x3, x1x2, x1x3, x2x3, x2
1, x2

2, x2
3]

T .



The vector a is a vector containing the coefficients of
the approximation. Due to the local character of the
approximation this vector varies in space (a = a(x)).
It can be obtained by minimizing the following func-
tional

J(x) =
n∑

j=1

wj(x)(Φ̃j − pT (xj)a)2 (5)

The weight functions wj(x) are responsible for the
local character of the approximation. They give more
importance to the nodes near to x, decrease as the
nodes become farther apart from x and are null for
the farthest ones. In this way, only the n nearest nodes
to the point x participate in the determination of the
coefficients a(x). There exist several options, but the
weight functions used in this work are the so-called
radial Gaussian functions defined as

wj(x) =

{
e−(|x−xj |/λj)2−e−(Rj/λj)2

1−e−(Rj/λj)2 |x− xj | ≤ Rj

0 |x− xj | ≥ Rj

(6)
where λj is a positive constant and Rj is the size of
the support of the weight function, also known as the
influence region of node j.

Equation (5) posses a moving least squares problem
for a, with the following well known solution

a(x) = (PT W(x)P)−1PT W(x)Φ̃ (7)

where

P = [p(x1), . . . ,p(xn)]T

W(x) = diag{w1(x), . . . , wn(x)} .

The coefficients vector is Φ̃ = [Φ̃1, . . . , Φ̃n]T . The min-
imization of the functional (5) minimizes the difference
between the coefficients Φ̃i, i = 1, . . . n and the elec-
tric potential at the nodes Φ(xi), i = 1, . . . n. To get
a least squares problem with a unique solution, the
number of nodes in the influence region of the point x
has to be larger than the number m of elements from
the basis of the approximation p(x) (m = 10 for the
proposed monomial basis of order 2).

Let ΨT (x) = pT (x)(PT W(x)P)−1PT W(x) then,
from (4) and (7)

Φh(x) = ΨT (x)Φ̃ =
n∑

j=1

Ψj(x)Φ̃j (8)

The functions Ψj(x) are called shape functions of node
j, and it can be shown that

∑

j

Ψj(x) = 1 ∀ x ∈ ΩG .

Notice that since Ψj(xi) 6= δij the method does not
interpolate the value of the electric potential between
the nodes as BEM or FEM do. This explains why the
coefficients Φ̃ usually have a different value than the
electric potential Φh(x) at the nodes. Figure 2 shows
a one- dimensional representation of this situation.
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Figure 2: Electric potential approximation.

If the approximation Φ(x) = Φh(x) is considered valid,
from (8) and (2) it is possible to write the electric
potential of internal nodes as

4π

n∑

j=1

Ψj(xi)Φ̃j =
1

r2
0i

∫

∂ΩLi

n∑

j=1

Ψj(x′)Φ̃jdS′−

−
∫

ΩLi

(
1

|xi − x′| −
1

r0i

)
∇2Φ(x′)d3x′ (9)

and the potential of surface nodes, from (3), as

2π

n∑

j=1

Ψj(xi)Φ̃j =
1

r2
0i

∫

Sfi

n∑

j=1

Ψj(x′)Φ̃jdS′ +

+
∫

Sri

(
1

|xi − x′| −
1

r0i

)
∇Φ(x′) · ndS′ −

−
∫

ΩLi

(
1

|xi − x′| −
1

r0i

)
∇2Φ(x′)d3x′ (10)

III. THE FORWARD PROBLEM IN EEG

The EEG forward problem has Neumann boundary
conditions; i.e. the normal flux component through
the body surface is null. The group of active neurons,
source of the electric activity, can be described in many
cases as a point source of current density or an electric
potential dipole (de Munck et al., 1988). Hence the
problem, in local or differential form, is the following

∇2Φ(x) = ∇ · (qδ(x− p))
∇Φ · n|∂ΩG

= 0

where q and p are the dipole moment (intensity and
orientation) and position respectively, with p ∈ ΩG,
p 6∈ ∂ΩG. Although it is possible to solve the forward
problem using this expressions in (9) and (10), this
approach has some drawbacks.

It can be seen from the equations that the dipole
must be in one of the local regions, i.e. ∃j /p ∈ Ωj .
This means that they should cover all the body (∪Ωj ⊃
ΩG) and this is done by making the local regions as
large as the distance between neighboring nodes. It



will be seen that the performance of the method for
such a situation is not good.

Another problem arises because the real electric po-
tential has spatially rapid variations in the neighbor-
hood of the dipole, with values up to±∞. The approx-
imation to the real potential made with the proposed
set of basis functions is necessarily very poor.

There is a means of avoiding these complications
restating the forward problem as follows. The elec-
tric potential can be found as the superposition of two
terms Φ(x) = ΦF (x)+ΦN (x), where each term is given
by

∇2ΦF (x) = ∇2Φ(x) = ∇ · (qδ(x− p)){ ∇2ΦN (x) = 0
∇ΦN (x) · n|∂ΩG

= −∇ΦF (x) · n|∂ΩG

(11)

The term ΦF (x) corresponds to the electric potential
generated by a dipole source in an infinite homoge-
neous medium. This term and its normal flux can
be computed analytically hence, in order to solve the
complete forward problem, the only term that needs to
be computed numerically in (11) is ΦN . This term cor-
responds to a Laplace equation with Neumann bound-
ary conditions whose solution is smoother than the
solution for the original problem.

IV. IMPLEMENTATION

In this section we describe the implementation of the
proposed meshless method for solving the Laplace
equation in the domain ΩG with Neumann boundary
conditions.

Writing an equation for each node based on expres-
sions (9) and (10), with null Laplacian and known nor-
mal flux through the boundary, we get the following
linear system of equations

ΨΦ̃ = GΦ̃ + f (12)

where
Ψij = Ψj(xi)

For internal nodes:

fi = 0

Gij =
1

4πr2
0i

∫

∂ΩLi

Ψj(x′)dS′

and for surface nodes:

fi =
1
2π

∫

Sri

(
1

|xi − x′| −
1

r0i

)
∇Φ(x′) · ndS′

Gij =
1

2πr2
0i

∫

Sfi

Ψj(x′)dS′ (13)

If we consider that in the expression (4) for the electric
potential the coefficients a(x) are constant in a neigh-
borhood U of the point x and that the sphere ΩL is

contained in the neighborhood U , then the shape func-
tions are given by

Ψj(x) = pT (x)aj(xi) if x ∈ εi

and the rows of matrix G by

gT
i ≡

∫

Si

pT (x′)dS′Mi

where Mi = (PT W(xi)P)−1PT W(xi). The integral
now can be easily solved analytically, with a change
of coordinates of the functions of the basis to local
spherical coordinates.

For internal nodes the surface Si ≡ ΩLi
is a spherical

shell and the integral gives

∫

Si

pT (x′)dS′ =

=
[

1 0 0 0 0 0 0
r2
0i

3

r2
0i

3

r2
0i

3

]

For surface nodes Si ≡ Sfi is half a spherical shell and
if the coordinate system is chosen so that the normal
vector of the surface equals to the unit vector along
the axis x3, the integral results in

∫

Si

pT (x′)dS′ =

=
[

1 0 0 − r0i

2 0 0 0
r2
0i

3

r2
0i

3

r2
0i

3

]

We can write ΨT (x) = pT (x)M and working in local
coordinates for node i, we get then

ΨT (xi) = [1 0 0 0 0 0 0 0 0 0]Mi

Since the surface nodes are the only known points of
the surface, the normal component of the flux through
the boundary is also only known at the surface nodes.
Again if we chose a small radius for the local regions,
the surface integral in (13) can be solved by assuming a
simple variation of the flux over the surface Sr. A logic
choice would be to have a linear variation, for the flux
is the gradient of the potential for which a quadratic
variation is assumed in the local regions. Then the
integral in (13) can be solved analytically

∫

Sri

[1 x′1 x′2 x′3]
(

1
|x′| −

1
r0i

)
dS′ =

[r0i

2
0 0 0

]

Thus, the coefficients Φ̃ from (12) must be chosen
as those which are solution to the system

HΦ̃ = f (14)

with the rows of matrix H given by

hT
i = −

[
0 0 0 − k

r0i

2
0 0 0

r2
0i

3
r2
0i

3
r2
0i

3

]
Mi



and the elements of vector f :

fi = k
r0

2
∇Φ(xi) · n

with k = 0 for internal nodes and k = 1 for surface
nodes.

The local character of the methods is evident be-
cause only a certain number of neighboring nodes af-
fect the potential of each point. This is the reason
why the matrix H is a sparse matrix. Moreover, note
that the potential problems with Neumann boundary
conditions do not have a unique solution but rather an
infinite number of them that differ only in a constant
value. Hence, the matrix H has a null singular value,
corresponding to a constant eigenvector. This means
that the problem has to be solved with the generalized
inverse or with a technique such as deflation.

Once the coefficients Φ̃ are known, the electric po-
tential approximation for any point x ∈ ΩG is given by
the expression (8). For instance, if we are interested
in the electric potential at the nodes we have

Φ = ΨΦ̃

where Φ = [Φ(x1), . . . , Φ(xn)] is a vector containing
the computed potential at the nodes.

V. RESULTS

Several tests were setup to determine the performance
of the proposed method. Although the method can
be used for an arbitrarily shaped head model, in this
section a spherical geometry was chosen, with radius
and conductivity equal to one. As mentioned in the
introduction, the reason for this geometry is that it
allows for an analytical computation of the solution
(Zhang, 1995).

For all the examples shown in this section, a Gaus-
sian weight function (6) is used, with parameter set
to Rj/λj = 2.5. Another value for the parameter
or different weight functions would result in differ-
ent shape functions. Although a good choice of the
weight function can improve the performance, this is
not a crucial point. The shape function would still
be smooth radial basis functions, with similar prop-
erties regarding consistence and convergence (Duarte
and Oden, 1996).

The measure used for the electric potential distribu-
tion error on the surface of the sphere is the relative
difference measure (RDM) (Schlitt et al., 1995)

RDM =

√∑
i(Φa(xi)− Φn(xi))2∑

i Φa(xi)2

where the sum runs over all the surface nodes, Φa is
the analytically computed potential and Φn the nu-
merically computed potential.
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Figure 3: Convergence study - Tangential dipole
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The nodes where chosen in a roughly regular pattern
over the surface and in the interior of the sphere, trying
to maintain a constant distance between neighboring
nodes. The rationale behind this distribution of nodes
is to keep the uniformity of the predictable numeric
errors (Wendland, 1999).

The convergence of the method was studied in first
place; the results are shown in Figs. 3 and 4. The fig-
ures show the mean error versus the number of surface
nodes of the problem for dipoles located at depths of
0.6 and 0.8 times the radius of the sphere. Figure 3
corresponds to the results obtained for tangentially
oriented dipoles, and Fig. 4 to radially oriented ones.
We performed a comparison against BEM, a method
widely used to solve the EEG forward problem. The
convergence of BEM for problems with the same num-
ber of surface nodes is also plotted in Figs. 3 and 4. It
can be seen that for dipoles near the surface the per-
formance of BEM is better, while for deeper dipoles
both methods have a similar performance.

Figures 5 and 6 show the error as a function of the
dipole depth. The problem was solved with 522 nodes,
162 of them on the surface; and for 1591 nodes, 642
of them on the surface. The error of the solution to
the same problem solved with BEM is plotted too.
It was computed for a sphere with 642 surface nodes



and a mesh connecting them forming 1280 triangular
elements over which the potential varies linearly. It
is clear that BEM outperforms the proposed meshless
method for dipoles near the surface, nevertheless the
performance of the LBIE method is acceptable, and
by increasing the number of nodes the error for dipoles
near the surface can be reduced.

0 0.25 0.5 0.75 1
0

0.05

0.1

0.15

0.2
 

Dipole depth [1/r]

R
D

M

BEM 642 nodes 

Meshless 522 nodes
(162 surface nodes) 

Meshless 1591 nodes
(642 surface nodes) 

Figure 5: Error as a function of dipole depth.
Tangential dipole.
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Radial dipole.
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Figures 7 and 8 show the sensitivity of the method
to the radius of the local regions and to the size of the
influence region of the nodes. The latter is directly
related to the number of nodes in the zone of influ-
ence. The results shown are from a sphere with 1591
nodes, 642 of them on the surface. In Fig. 7 we see
that the sensitivity to the size of the local regions is
very low, while Fig. 8 shows a large sensitivity to the
size of the influence region. The size of the influence
region was chosen as to include 50, 80 or 110 nodes,
with fixed node density. If the influence region is small
the method is too local, resulting in a poor global solu-
tion. On the other hand, if there the influence region
is too big, the error of the approximating functions
rises because the lineal approximation for the poten-
tial variation is inadequate.
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VI. CONCLUSIONS

In this work we described a numerical method for solv-
ing the EEG forward problems in bodies of constant
conductivity of arbitrary shape. The method does not
need a mesh connecting the nodes of the problem.

From the comparison against the boundary elements
method, it is clear that the meshless method needs
more nodes to achieve solutions with the same preci-
sion. This could have been predicted since BEM needs
only surface nodes, roughly lowering the dimension of
the problem in one order. On the other hand, the ma-
trix related to the meshless method is sparse, while
BEM matrices are full. This amounts to an impor-
tant saving in time and in the number of operations
needed to solve a system like (14). Since the inverse
problem usually involves many consecutive computa-
tions of the direct problem, the savings in the compu-
tational effort becomes an important advantage. The
FEM and meshless method matrices share the sparsity
property therefore, a comparison between them would
be interesting.

It is important to remember that the generation of
the meshes for BEM and FEM in 3D problems is a
computationally expensive job that is not required by



the meshless method. This is especially true for the
intricate shapes involved in the layers for the EEG and
related problems.

Since the performance of the method is quite accept-
able, the next step would be to extend it to problems
with several layers of different conductivity. This is
required if a better model of the head is used. An
extension of the method to allow the computation
of the magnetic field generated by the source is also
planned, as a tool for solving the Magnetoencephalog-
raphy (MEG) inverse problem.
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