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Abstract— In this work we study the expo-
nential stability of a class of hybrid dynami-
cal systems that comprises the sampled-data
systems consisting of the interconnection of a
time-varying nonlinear continuous-time plant
and a time-varying nonlinear discrete-time con-
troller, assuming that the sampling periods are
not necessarily constant. For this purpose we
develop an Indirect Lyapunov Method of anal-
ysis, and show that under adequate hypotheses
the exponential stability of the hybrid dynami-
cal system is equivalent to the exponential sta-
bility of its linearization.

Keywords— Sampled-data systems; Lya-
punov stability; Hybrid systems; Discrete-time
systems.

I. INTRODUCTION

Sampled-data control systems consisting of the inter-
connection of a continuous-time nonlinear plant (de-
scribed by a system of non autonomous first order
ordinary differential equations) and a nonlinear dig-
ital controller (described by a time-varying system of
first order difference equations) is a hybrid system, in
the sense that some of its variables evolve smoothly
in continuous time while the others change only in a
discrete set of time instants. The coexistence of these
two different time scales makes it hard to analyze the
stability properties of this kind of systems.

Stability analysis of sampled-data systems in the
whole time scale was primarily studied for linear sys-
tems (Francis and Georgiou, 1988; Iglesias, 1994). The
nonlinear case was addressed in the recent papers (Hou
et al., 1997; Mancilla-Aguilar et al., 2000; Hu and
Michel, 2000a, 2000b), in which qualitative properties
of sampled-data control systems, where the plant and
the controller are time-invariant, were obtained.

In (Mancilla Aguilar et al., 2000), in particular, we
analyzed the stability of a class of hybrid dynami-
cal systems, those described by time-invariant hybrid
equations, that contains as particular cases the inter-
connected system consisting of a continuous time plant
and a digital controller and that of a continuous time

plant and a certain class of hybrid controllers pre-
sented in (Rui et al., 1997). In this work we consider
the class of hybrid systems described by time-varying
hybrid equations with non regular sampling times, and
extend some results of (Mancilla Aguilar et al., 2000)
to the class of hybrid systems described by this type
of equations. To be more precise, we obtain necessary
and sufficient conditions for the exponential stability
of the system in terms of its linearization, developing
in this way an Indirect Lyapunov Method for this kind
of dynamical systems. Our results can be straightfor-
wardly applied to the study of the exponential stabil-
ity of sampled-data systems whose plant and controller
are nonlinear and time-varying, as these systems are
a particular class of those under study. They also jus-
tify the method of design of nonlinear digital local ex-
ponential stabilizers based on the discretized model
of the linearization of the original nonlinear control
system (a more complete treatement of these topics
can be found in (Mancilla Aguilar, 2001)). Two rea-
sons motivated the treatment of non-regular sampling.
The first is the uncertainty that could appear in the
frequency of the sampler oscillator, that in certain ap-
plications should be of importance. The second is that
our results can also be applied to the stability analysis
of certain classes of switched systems whose switching
times are not necessarily regularly spaced.

The paper is organized as follows. In section IT we
establish some notation and state the main result of
the paper. In section III we present some results about
the exponential stability of a perturbed discrete-time
time-varying linear system. In section IV we use these
results to obtain stability properties of perturbed hy-
brid linear systems, that enable us to develop the Indi-
rect Lyapunov Method already mentioned, and prove
the main result of the paper. Finally, in section V we
present some conclusions.

II. NOTATION AND MAIN RESULT

First, we introduce some notation that will be used in
this work.

Let No, R and R™T the sets of non-negative integer,
real and non-negative real numbers respectively. We
consider the real ¢g-space R? as a normed space, with



norm | - |. We denote by @ = R™ x R™, its elements
(£,2) = w, and we consider in Q the norm ||w|| =
|€] +|z|. B, C Q is the closed ball of radius p centered
at the origin. Given r > 0 a function ¢ : [0,r] = R*
is of class K if it is continuous, strictly increasing and
»(0) =0.
We denote with II := {t;,k € No} C R™* the set
of sampling points and assume that 0 = tg < t; <
-, Supg(tr41 —tr) < oo and limg_yo0 t = o0; ||II|| =
supy (tg+1 — tx) is the norm of II.
In this paper we will study qualitative properties of
the hybrid system X g described by the time-varying

hybrid equations
{ () = filt,z(t),z(te), 2(th)) te <t <trp
z(tk_H) = fz(k,$(tk),z(tk)) k € Np.
(1)

As was mentioned in the Introduction, this type of
systems includes, as a particular case, the sampled-
data system consisting of a plant described by the set
of time-varying equations

{a’:(t) = f(t,=(t),u(t)) (2)
y(t) = h(t,z(t))

where the state z(t) € R™, the control u(t) € R/, the
output y(t) € R? and t € R, and a digital controller
described by the difference equations

{Z(tk+1) = g(k,2(tr), w(tx)) 3)
o(ty) = r(k,2(tk), w(tr))

with states z(t;) € R™, inputs w(ty) € RP, and out-
puts v(t;) € R!, interconnected via sampling and
zero-order hold (ZOH), i. e. w(ty) = y(tx) and
u(t) = v(ty), ty <t <tpe1 k € No.

In order to assure the existence and uniqueness of
the solutions of (1) (see (Mancilla Aguilar et al., 2000;
Mancilla Aguilar, 2001) for the definition of solution of
(1)) we assume that the function f; : Rt xR"xQ — R
verifies:

H1 For each t € R* and (£,2) € Q, fi(t,,§, 2) is
continuous in R™, and for each (z,£,z) € R™ x Q,
f1(-, 3, €, 2) is Lebesgue measurable in R™.

H2 For each compact set K C R™ and each (§,z) € Q
there exist a constant L* > 0 such that

|f1(t7$7§7z) - fl(t7$17§73)| < L*|$ - '7;,' vt € R
Vr,z' € K.

We suppose in addition that the origin is an equi-
librium for (1), i. e. f1(¢,0,0,0) = 0 V¢t € RT and
f2(k,0,0) = 0 Vk € Ny, that fi(¢,-,-,-) is differen-
tiable at (0,0,0) for all t € RT and that fs(k,-,-) is
differentiable at (0,0) for all k¥ € Ny. Let

_of oh

A(t) o (¢,0,0,0), B11(t) = 8_§(t’0’0’0)’
of
B12(t) - g(t,0,0,0), (4)
Boak) = 22(6.0,0), Bk = 2L (k0.0). )

Then, associated with X 7, we have the linear hybrid
system X1 g described by the linearization of (1) at the
origin:

B(t) = A@®o(t) + B (®)a(te) + Bua(t)2(te)
te <t <tpy1
z(tk_H) = Bgl(k)x(tk) + BQQ(k)Z(tk) k € Ng

Let us recall the definition of local exponential sta-
bility of system (1): we say that the origin is an ex-
ponentially stable equilibrium of system (1) if there
exist positive numbers 1, p and r such that for any
w = (§,z) € By, and any t; € II, [|(t, t,w)|| <
nl|w|le #tt) for all t > ti, where ¢(t,ty,w) is the
maximally defined solution of (1), starting at w in time
tr.-

The following theorem, which is the main result of
this work, establishes stability properties of the ori-
gin for Xy based on its stability properties for X g.
In other words, we will develop an Indirect Lyapunov
Method for dynamic systems described by equations of
the type (1).

Theorem II1 Suppose that A(t), Bii(t) and
Bj2(t) in (4) are bounded and that the nonlin-
ear terms resulting from the linearization of (1)
91 (t7 z,¢, Z) =f (tv z,¢&, Z) - A(t)x - Bn(t)f - Bl?(t)z
and gg(k,g, Z) = fQ(k, g, Z) — Bgl(k)§ — ng(k)z verify

|gl(t7m7€7 Z)l

im T2 2 = () uniformly in t € R
z|+E[+]z]—0 |2] + |€] + |2]

and

H4 lim lg2(k, €, 2)] =0 uniformly in
€1+1z=0 (trr — tr) (€] + [2])

k € Np.

Then, the origin is an exponentially stable equilib-
rium for Yy if and only if it is an exponentially stable
equilibrium for X 4.

Remark II1 Hypothesis H3 and H4 (without the
term ¢xy1 — t in the denominator) are standard ones
of the First Method of Lyapunov in the stability the-
ory of Ordinary Differential and Difference Equations
respectively. The term tjy1 — t; must be included in
H4 because we do not consider that o = tr41 — tg
is bounded from below by a positive constant. In the
case that inf 0y = 0, Theorem II1 is not valid if that
term is removed from H4.

III. ON THE EXPONENTIAL STABILITY
OF DISCRETE-TIME SYSTEMS

In order to prove Theorem II1 we need some results
about the exponential stability of the discrete-time
system described by the equation

w(tk+1) = Hi(w(tr)) (6)

where Hy, : Q) — Q and Q; C Q for all £ € Ng.
We denote with ¢(tg,tr,,w) the solution in time tj



of (6) with the initial condition (tg,,w), and assume
that there exists r > 0 such that B, C ; and that
H(0) = 0 for all £ € Ng. It follows from the last
assumption that the origin is an equilibrium of (6).
The following result, that can be easily proved employ-
ing standard techniques of Lyapunov Stability theory,
gives a sufficient condition for the exponential stability
of the origin of (6) in terms of Lyapunov functions.

Proposition IIL1 Suppose there exists a scalar
function V : Ny x B, — RT such that

L. cp||w|? < V(k,w) < ca||w||* Vk € No Vw € By;

2. V(k+1,Hy(w)) = V(k,w) < —(tpr1 — te)es|w]?
Vk € Nog Yw € B,

with 0 < r’ < r and, ¢y, cs and c3 positive constants.
Then the origin is an exponentially stable (ES) equilib-
rium of (6), i. e., there exist positive numbers r*, u and
0 such that [|¢(tk, tee,w)|| < nllwlle o) Vi >
thy, Yw € Bps.

It is possible, when the discrete-time system is lin-
ear, to obtain propositions that are converse to Propo-
sition III1, i. e. it is possible to obtain converse Lya-
punov theorems. Next, we consider the discrete-time
linear system

W(tkt1) = Apw(te) (7)

with Ay matrices of proper dimensions. Then, Qf = 2
and 0 will always be an equilibrium for (7).

In addition, @(tg,tg,wo) = P(tk,tr,)wo, where
D (ty, tr,) is the transition matriz, that verifies

o O(ty,,th,) =1 and
(] @(tkatko) =Ap 1 Ap_o-- 'Ako Yk > ko.

Remark III1 Due to the linearity of ¢(tx,tk,,wo)
with respect to wy, the following facts are easily estab-
lished:

1) If the origin is an exponentially stable equilibrium,
it is a global one, 4. e. there exist positive constants
n and g such that [[¢(t, by, wo)l| < lluolle#(t~tsa)
for all k > k¢ and all wg € R™.

2) Due to this last inequality, ®(tx,tx,) verifies
1 (tk, tho )| < e #(tx~tr0) for all k > ko.

The following converse Lyapunov theorem will be
useful in the sequel.

Theorem III1 Suppose the origin is an ES equi-
librium for (7). Then, there exists a scalar function
V : Ny x Q = Rt that verifies, for all £k € Ny and all
w,w' e

a) cif|wl|* < V(k,w) < caf|w]l;

b) V(k+ 1, Arw) — V(k,w) < —(trs1 — tr)cs|lw||?;

¢) [V(k,w) = V(k,w')| < eallw + o'l [lw — ],

with ¢1,..., ¢4 positive constants.

Proof Consider the semidefinite positive function de-
fined by

Vi(k,w) = wT P(k)w (8)

with P(k) the positive definite matrix given by

P(k) =Y (tj41 — ;)7 (t),6) B(t;, 1) 9)
Jjzk

In order to prove that this matrix is well defined we
recall that as the origin is exponentially stable, then
|®(t;, tx)|| < me#ti—t) (see Remark ITI1); hence

”P(k)” S Z(t]+1 - tj)n2e_2“(tj_tk)

Jjzk
= Z(tj_H — tj)n26—2u(tj+1—tk)eQN(t]._H_tj)
Jj>k
< "7262“”1_[” Z(tj-i-l _ tj)n2e_2”(tj+1—tk)
jzk
<M,

since the series above is uniformly bounded. In conse-
quence, 0 < Vi(k,w) < M||w||?. In addition, from (8)
and the bound ||P(k)|| < M Vk € Ny we easily obtain

Vi(k,w) = Vi(k,w")] £ Mllw + w'[[[lw = &'ll,

for all w,w' € Q.
On the other hand, as ®(¢;, ty+1)Arw = B(¢5, t)w
for all j > k£ > 0 and all w € (2, it follows that

Vilk + 1, Ayw) — Vi(k,w) = —(tpg1 — tg)||w]|>
Consider now

Va(k,w) = maxw" &7 (t;, ) B(t), ).
J1Z

This function is well defined since, due to the expo-
nential stability of the origin, lim;_,o ®(t;,tx) = 0
for all &k > 0. In addition, as ®(tg,tx) = I, then
Va(k,w) > [lw]|” and as [|®(t;, tx)|| < et we
have Va(k,w) < n?||w||?.

Let us fix k > 0; it follows that for a given w € 2
there exists j* = j*(w) > k such that

{/2(]{’.7 UJ) = qu)(tj* ) tk:)Tq)(t]* ) tk)w'
As a consequence, for w, w' € Q,

Va(k,w) — Va(k,w') < wl®(tj, k)T ®(t;,k)w

—(UIT(I)(t]‘*,k)T(I)(t]‘*,k)UJI
< 0Pllw + w'lllw = 'l

with 7 as above. Then, by symmetry, Va(k,w') —
Va(k,w) < n?||lw + '||||w — «'||, and we obtain

|Va(k,w) = Va(k,w")| < 7°llw +w'[[l|lw — ']

Recalling once again that ®(t;, tk41)Arw = ®(t;, tr)w
for all j >k > 0 and all w € 2, we deduce that

Va(k +1, Agw) — Va(k,w) < 0.



Finally, consider V(k,w) = Vi (k,w) + Va(k,w). It is
easy to see that this function verifies the thesis with
ci=cz=landcy=c,=M+n2 1

The previous results enable us to study the qual-
itative properties of perturbations of system (7), de-
scribed by an equation of the form

w(tp1) = Apw(ts) + Fi(w(te))

where Fy, : Qp — Q is the perturbation term, and
are subsets of 2 such that there exists » > 0 with
B, C Qp for all k € Ng. Next we will address the
case of vanishing perturbations (when Fy(0) = 0 for
all k € No) and will establish robust stability results
in the sense of Lyapunov of the trivial solution of (10).

(10)

Proposition III2 Consider the discrete-time sys-
tem described by equation (10) and assume that

[k ()l

m — =
llwll—0 (tg+1 — tr)[|wl|

(11)

uniformly in k& € Ng. Then, if the origin is an ES
equilibrium of (7), it is also an ES equilibrium of (10).
Proof Due to the exponential stability of the origin
with respect to (7) ®(tg,tr,) < ne M=) < g for
every k > ko and certain positive numbers 7, i (see
Remark III1); it follows that ||Ag|| < n for all k € Np.
Consider now the scalar function V : Ng x @ — R*
given by Theorem III1 and pick € < 1 that verifies
s

2¢4(2n + [ITI[1)°

) there exists § = §(g) > 0 such that

O<e<

Then, due (11
1F (@) < e(rr — te)llwll < [[TI] [|o]]
for all £ € Ng and all w € Bs.
then
Vk+1, 4w + Fp(w)) —
=V(k+1,Aw+ Fr(w)) —
+V(k+1, Ayw) — V(k,w)
<|V(k+1,Aw + Fr(w)) —
= (tre1 — tr)csllwll®
124w + Fi (@) lleal [ Fx @)l = (tesr — ti)eslwll?
(20 + [T eacllwll® Ersr = tr) = (terr — tr)es]wl]]?

C3
< _E(tk+1 — ti)||wlf.

Pick now such an w;

V(k,w) =
V(k+1,Aw)

V(k+1, Apw)|

<
<

Then, the function V satisfies the hypotheses of Propo-
sition III1 with § and § instead of ' and c3 respec-
tively. It follows that the origin is exponentially stable
for the perturbed system (10). @

Remark III2 Examples can be exhibited which
show that Proposition III2 fails if condition (11) is
replaced by the following weaker one:

(1% (@)

[l

=0, (12)

llwl|—0

uniformly in k& € Ng.
Nevertheless the converse of Proposition III2 holds
under this hypothesis.

Proposition IIL13 Consider the discrete-time sys-
tem described by equation (10) and assume that it
verifies (12). Then, if the origin is an ES equilibrium
of (10), it is also an ES equilibrium of (7).

IV. STABILITY OF PERTURBED
HYBRID LINEAR SYSTEMS

In this section we apply the results of the previous
section to the analysis of the stability properties of
the origin of O = R™ x R™ for the perturbed hybrid
linear system Xy p described by the equations

() = A(t)z(t) + Bii(t)z(ty) + Bia(t)z(ts)
+91(t, 2(t), 2(tr), 2(tr)), th <t <trya
2(tk41) = Bai(k)z(tr) + Baa(k )Z( k)
+92(k, z(tr), 2(tx)), k € No

(13)

where A(-), By1(-) and Bjx(:) are bounded Lebesgue
measurable matrix functions in R+, and Bs;(-) and
By, (-) are matrix functions defined in Ny. We assume
that the perturbation term g, verifies H1 and H2. We
will also assume that the perturbations are vanishing,
i. e. g1(t,0,0,0) = 0 and g2(k,0,0) = 0 for all t € R
and k € Ny respectively. Using (13) we compute the
discretized perturbed hybrid linear system Ypgrp

z(terr) = Aa(k)z(ty) + Ba(k)z(tr)
+§1(k x(tk) (tk)) (14)
2(tk41) = Bai(k)a(ty) + Baa(k)z(tr)
+92(k, 2(tr), 2(tk)), k € No
where

ftk+1 CI’ tk+1 S)Blg( )dS,

Ad(k) (I)(tk+1 tk + ftk-H CI) tk+1,S)Bll(5)dS,
Gk, x(ty), 2(te)) = [+ A(s, 2(s), z(tr), 2(tx))ds,
A5, 2(s), a(t), 2(t2)) = B(txpn, 5)g1 (5, 2(s), 2(te),

z(ty)) and ®(t, s) is the transition matrix correspond-
ing to the matrix equation X = A(¢)X, X(s) =I. Let

w(ty) = (2(tx)T, 2(tx)T)T; then (14) can be written
W(tpt1) = Apw(ty) + Fr(w(ty)) (15)

where Ay = [;;((]2)) BB;(Z((]Z))]’

wd Floe)) = B0

Let us also consider the unperturbed (i. e. with
g1 = 0 and g2 = 0) hybrid linear system Xy associ-
ated with EHLP:

z(t) = A(t)z(t) + Bi1(t)z(ty) + B12(t)z(tx)
by <t < tips
Z(tk+1) = le(k)x(tk) + B22(k)2(tk) k € Ny



and its discretization, the discretized unperturbed hy-
brid linear system ¥pyrs, which coincides with the
unperturbed discrete hybrid linear system associated
with EDHLP:

= Aa(k)z(tk) + Ba(k)z(tk),
= le(k)x(tk) + Bm(k)z(tk), k € Ng

Now we may state the main result of this section.

Theorem IV.1 Suppose that g; and g in (13) verify
in addition H3 and H4, respectively.

Then, the following properties are equivalent:
1. The origin is an ES equilibrium for Xy p.
2. The origin is an ES equilibrium for Xgry.
3. The origin is an ES equilibrium for Xpgp.
4. The origin is an ES equilibrium for ¥pgpu.

Proof 1. = 3. and 2. = 4. hold trivially and since
4. = 2. is a particular case of 3. = 1., then it suffices
to prove 3. = 1. and 4. & 3.

First we show that 3. = 1. In order to prove it
we need a technical lemma. Let w = (£,2) € Q; we
denote with @(t,t,w) the solution of (13) with initial
conditions (tx,w) and with [tg,T(k,w)) its maximal
interval of definition. We have the following lemma.

Lemma IV.1 Asumme that the hypotheses of The-
orem IV hold. Then there exist positive constants
c and r* such that for all K € Ng and all w € B,
lo(t, tr, w)ll < cllwl| VE € [tr, trta)-

Proof Since g; satisfies H3, there exist » > 0 and
p : [0,7] = R™T of class K such that |g1(t,z,&,2)| <
p(lz| + 1€ + |2])(|z| + |€] + |2]) for all t € RT and all
(2,6,2) ER" x Q: |z| +|€| + |2| < 7.

Takeu:0<u<randr*=ﬁwith

= (1 p(r) [T + T et t+<I,

and ¢ > 0 such that ||A(t)|| + || B11 (¢)|| + || Bi2(#)]| < ¢
vVt € R*, and consider w = (£,2) € B}. Then, for
all t € [tg,t*) = [tr, T(k,w)) N [tk, tht1), &t ty,w) =
(2(t),2) with z(t) = €+ [ [A(s)a(s) + Bu(s)¢ +
BIQ(S)Z+gl(8,$(8),§,z)]d$-

Let 7 = {t € [tx,t*) : |x(s)| < & Vs € [tx,t]}; then,
tr € I since |2(ty)| = [£| < r* < §. In consequence
T # 0 and it follows from the continuity of z(-) that
T = [ty, t*) with t** < ¢*.

Consider now t € Z, then |2(t)| + |{] + |2 < & +r* <

u < r and in consequence, for all t € Z,
|lz(t)] < €]
¢
+ /t 1A Ilz(s)] + [ Bra(s)I[€] + [|Br2(s)]l|2|ds

t
n / p(12(5)] + €] + [2)(2(5)] + [€] + |#])ds
t
< 1€l + (g + 12 / (C + p(r))ds

+ [ poniatoas

< Je] + (Ie] + DI + () )
+ /t:<c+p<r>)|x<s>|ds

< (€] + |=)(1 + I+ p(r) )

t
+ / (¢ + p(r)]ax(s)]ds

tr
< (1 + p(r)[[TT[| + ¢TI )OI (€] 4 |2))
=o(l¢l + |2D),

where the last inequality is obtained applying Gron-
wall’s Lemma. It follows that t** = t*; (if t** <
t*, then due to the continuity of z(-), |z(t**)| =
limy_ypen— |2(t)] < 6([E] + |2]) < 0r* < § and t** € Z
which is a contradiction). In consequence, for all
t € [tg,t*), and all w = (£,2) € By, ||o(¢, tr,w)|| =
|2(6)] + |€] + (2] < o(I¢] + [2]) + €] + |2] = (6 +1)(|€] +
|2]) = ¢||w||- Finally we prove that t* = t;41; be this
not the case t* = T'(k,w). But ¢(¢,tx,w) € B, for all
t € 7 and, due to standard theorems about ordinary
differential equations, t* < T'(k,w) which is a contra-
diction, and the lemma follows. 1

Now we prove 3. = 1. Suppose then that 0 is an
ES equilibrium of Xpgrp and let ¢*(tg, tr,,w) the so-
lution of (14) with initial conditions (tz,,w). Then
there exist positive numbers n*, u* and k* such that
Vk > ko € Ng Yw € By,

16 (B, thos )| < 7 e (B tho).

Let 7* and c as in Lemma IVl and k = min{;—:, K*};
hence Vk > ky € Ng Yw, ||lw]|| < &,

16* (8, by )| < [l (4 tvo),

Consider w € By, and t such that t5, <t <t < tpq1
for k > ko € Ny. Then, by Lemma IV1,

166, t5g. )| < ellg” (it )
< e olle" (st

e [ofJet 440 n ¢t

en* ||w||e”” Ml g =+ (t=tro)

IA

nllwlle# 1),



and the origin is an ES equilibrium for Xy p.

Next we prove the statement 3. & 4. Let w =
(£,2) € By« with r* as in Lemma IV.1; first we prove
that g1 (k, &, 2) in (14) verifies lim |0 % =
0 uniformly in £ € Ngo. If z(¢) is the solution of
(13) with initial conditions (tx,w), then according to
Lemma TV, |z(t)] < 6(|]+|2]) and (J=(£)[+[¢]+]2]) <
w < r for all t € [tg,trs1), for all k& € Ng. Then, from
(13) - (14), we obtain

try1
191 (K, &, 2)] S/ @ (1, 8)lllgr (s, 2(s), €, 2)|ds

tr

try1
< / e<(Bs1=5) y(|2(s)| + [€] + | 2]) %
172
% (|2(s)] + |€] + |2])ds

tr41
< eI [ (5 1)(€] + )06 + 1)) + |z

th

since, ||®(t,s)|| < e¢*=*l with ¢ as in the proof of

Lemma IVI. If we define p : [0,57¢] - R™* as

p(N) = eI + 1)p((6 + 1)A), j is a function of
class K and it follows, by the inequalities above, that
191 (K, & 2)] < (trar — te)p(IE] + [2])(|€] + |2]), and in
consequence, lim,| o % = 0 uniformly in
k € Np.

Then, due to the assumption about g2(k, €, 2), Fi(w)

in (15) verifies lim, 0o ﬁg‘i)l = 0 uniformly in

llwl
k € Ny. Hence, according to Propositions III2 and
IT13, the origin is ES for ¥pgrp if and only if it is ES

for EDHLU- | |

Remark IV.1 Part 1. < 3. of Theorem IV.1 extends
the results obtained by Iglesias (1994) for time-varying
linear systems in two ways: we consider time-varying
sampling periods instead of constant ones and we con-
sider time-varying nonlinear equations.

In addition, some sufficient conditions for the uni-
form asymptotic stability reported in the literature
may be readily obtained from this theorem. In fact,
Theorems 1 of (Hou et al.,1997), Theorem 1 of (Rui et
al., 1997) and Theorem 2.1 of (Hu and Michel, 2000b)
are corollaries of Theorem IV.1, since the conditions
under which their results hold imply the exponential
stability of EDHLU-

Proof of Theorem II1 A(t), Bi1(t) and Bia(t)
in (4) are bounded (by hypothesis), and are also
Lebesgue measurable since f; in (1) verifies H1 and
H2; it follows that g; and go also verify H1 and H2.
In addition, since (1) can be written in the form (13),
the hypotheses of Theorem IV.1 hold for Xy and ¥
instead of ¥gpp and Ygyry respectively. In conse-
quence, the theorem follows from Theorem IV.1. &

V. Conclusions

In this work we presented results about the exponen-
tial stability of the class of hybrid systems described

by time-varying hybrid equations, which comprises the
class of sampled-data systems consisting of the in-
terconnection of a time-varying nonlinear continuous
time plant and a time-varying nonlinear discrete-time
controller, assuming that the sampling periods are not
necessarily constant. For this purpose we developed
an Indirect Lyapunov Method of analysis, and showed
that under adequate hypotheses the exponential sta-
bility of the hybrid dynamical system is equivalent to
the exponential stability of its linearization.
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