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Abstract— The design or synthesis of sys-
tems exhibiting a prescribed trajectory is pre-
sented in this paper. The design process is
based on algebraic concepts, and it relies heav-
ily on the use of Groebner bases. It is assumed
that both the trajectory and its dynamics can
be represented as algebraic relationships be-
tween the variables of the system and their first
derivatives. The method yields a dynamical
systems with the desired behavior as one of its
many solutions.

Keywords— Groebner bases - control the-
ory - dynamical systems - differential equations.

I. INTRODUCTION

Over the last years, a great progress has been per-
formed in the field of differential equations through
the study of the different dynamical configurations ob-
tained when varying some parameters of the system.
In this field, one of the most promising results is the
representation of certain dynamic phenomena using an
elementary form, with polynomial-type relationships
among their variables, the normal form. This repre-
sentation describes the typical effects in the simplest
way not only among the main variables (normal form)
but also its parameters (unfoldings), after making a
series of transformations on the original system.

The normal form and its unfoldings in the parame-
ter space explains the elementary dynamics exhibited
by the system, and this model is still valid for certain
perturbations in higher order terms (4.e., relationships
between polynomials of higher order). Synthesizing
dynamical systems by means of normal forms became
feasible with the appearance of algebraic symbolic al-
gorithms, contributing to study the system dynamics
in an analytic way. Although in the majority of the
nonlinear systems it is not possible to find explicit so-
lutions, except through the use of numerical methods,
these techniques are still very powerful for validating
the results.

Advances in computer technology and the availabil-
ity of software packages to perform symbolic mathe-
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matics, like Mathematica, Maple, Reduce, etec. stimu-
lated the study of some theories and techniques devel-
oped previously, particularly the concept of Groebner
bases, formulated by Buchberger in 1965. (A brief re-
view of the algebraic concepts used through the paper
is contained in the Appendix.) Buchberger proved the
fundamental theorems on which the theory is based
and proposed an algorithm to compute such bases
(Buchberger, 1965, 1970, 1995). The advent of spe-
cialized software for computational algebra (CoCoA,
Macaulay and Singular, etc.) expanded the studies of
computational algebra to other fields, for example dy-
namical systems and control theory (Forsman, 1995;
Fortell, 1995; Jirstrand, 1996; Alwash, 1996, among
others).

The design of dynamical systems exhibiting a pre-
scribed orbit as one of its solutions is explored in this
paper. The design process consists in finding a dif-
ferential system from the specification of the desired
orbit and its dynamical behavior by means of Groeb-
ner bases. It seems that normal forms —a polynomial
characterization of the system dynamics— and Groeb-
ner bases will develop profound connections in a near
future. In this vein, this paper constitutes a first step
in enlightening some preliminary applications of syn-
thesis of nonlinear systems using Groebner bases.

II. OBJECTIVE

The synthesis process developed in this paper aims at
designing a system & = f(x) with an a prior: chosen
solution # = z4(t), and also endowing this solution
with asymptotically orbital stability. The proposed
solution defines a trajectory or orbit, 1.e. the image v
of z4(t) in the state-space,

7={x€]1%"|:r=md(t),t20}.

This set is positively invariant, and the dynamical be-
havior of the solution is determined by the restriction
of f(.) onto the set 4, given by the time derivative of
the solution 44(t) = f(24(t)). In other words, we will
impose that every solution with an initial condition in
7, remains in it for all ¢ > 0. We will also require
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that the proposed orbit v has asymptotic stability, 4.e.
that every solution z(¢) remains in an arbitrarily small
e-neighborhood of 4 for any initial condition inside a
b-neighborhood, and that the distance between x(t)
and the set v tends to zero as ¢ tends to infinity.

There are many possibilities for specifying invariant
sets and dynamical behavior. One way is through the
explicit temporal parameterization of the solution. Al-
though this approach facilitates the specification of the
desired orbit, it is not adequate for design purposes.
For this reason, a different approach will be adopted
here. Following Berns et al. (2001) it is possible to
eliminate the variable ¢ from a polynomial set deter-
mined by z4(¢) and Z4(¢) to obtain another polynomial
set with certain properties, known as Groebner basis.
Therefore, the desired invariant set and its dynamics
are replaced by a specification more akin to design:
a Groebner basis. This mathematical tool has been
used previously for the study of the dynamical sys-
tems by Alwash (1996) in order to determine multiple
limit cycles in polynomial systems and, more recently,
by the authors for the synthesis of oscillators (Berns
et al., 2001), but without analyzing the stability of the
solutions.

IIT. DYNAMICAL SYSTEMS WITH
POLYNOMIAL IDEALS

Let us consider the autonomous system represented by
the classical state-space description

fi'l - fl(mls“'amn)s
: 1)

fi'fn = fn(mla'“smn)a
where f1, ..., fn € k[z1, .., %) are polynomials
in the variables z1, ..., 2,, with coefficients in the

field k, being k either R, Q, or the field of rational
functions of parameters of the system. This repre-
sentation comprises a large class of systems includ-
ing many nonlinearities, like trigonometric functions,
that although are not polynomial functions can be ex-
pressed as solutions of algebraic-differential equations
(Fliess, 1990). Therefore in the following, it will be
assumed that polynomials fi, ..., fn in (1) not only
represents the classical state-space description, but
also the algebraic-differential equations necessary to
include non-polynomial terms of the class described
above.

From an algebraic perspective, dynamical systems
can be studied as algebraic relationships between the
state variables and their first derivatives. We will as-
sume that the set of state variables is algebraically
independent, i.e. that no polynomial p € k[z1, ...,
2] vanishes when the variables take values over any
trajectory or solution of the system. However, the in-
clusion of an additional variable, for example the first
time derivative x; of the state variable x;, renders this
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new set algebraically dependent, 7.e. there is at least
a polynomial p € k[#;, 21, ..., @] such that p(#:(t),
21(t), «s Zn(t)) = O for any solution of the system.
Therefore, from an algebraic viewpoint, a system can
be defined as the set of every polynomial p belonging
to the ring k[Z1, ..., £, X1, ..., ) that identically van-
ishes when the variables take values over every solution
trajectory of the system under consideration. This in-
finite polynomial set is an ideal, and Hilbert’s theorem
on basis assures that it can be characterized with a fi-
nite generating set. Although this viewpoint embraces
a large class of algebraic systems, we will only consider
those equivalent to the classical state-space represen-
tation.

The set {#1 — fi(z),...,&n — fn(x)} vanishes over
every solution of (1), and the same happens with every
polynomial of the ideal generated by this set.

Definition. Given an algebraic-differential description
(1) of a system, the ideal of the system associated to
this description is the ideal > generated by the set
S ={&1— fi(2), .., n — fn(2)}, noted as & = (S).

In other words, the polynomials of the algebraic-
differential equations (1) constitute a generating set
of the ideal of the system. After fixing a monomial
ordering!, every ideal has a unique reduced Groebner
basis (Cox et al., 1992). Furthermore, if G is a Groeb-
ner basis of an ideal, a polynomial f belongs to the
ideal if and only if the remainder of the division of f
by G is zero. This means that a Groebner basis is a
very appropriate generating set to identify an ideal be-
cause (1) it is unique and (%) it suffices to compute a
division remainder to ascertain if a polynomial belongs
or not to the ideal.

Notice that, depending of the realization, sometimes
it is convenient to consider that the ideal of the system
is generated either m the ring k[Z1, ..., %50, T1, -, Tn)]
(i.e., the ring of polynomials in the variables
D1y weey By 1,5 -y n, a0d coefficients in the field k) or
in the ring k(21, .., Zn)[£1, ey In) (.., the ring of the
polynomials in 4+, ..., &, and coefficients in the field of
rational functions in 21, ..., z, With coefficients in k).
Now let us consider the first case and the ordering of
the variables ©1 > «+« > &, > 21 > -+ > x,, and the
lexicographical monomial ordering (Lex). The polyno-
mials of S are linear in #;, 2 = 1, ..., n, and according to
the chosen ordering, the terms containing these vari-
ables are also the leading monomials. Therefore they
generate every leading monomial of the polynomials of
Y.. Then, S is a Groebner basis of 33, and due to the
linearity of the leading monomials, the polynomials of
S are irreducible, implying that the ideal ¥ is prime.
In consequence, it is also radical meaning that it con-
tains all the polynomials of the ring vanishing at the
same solutions than the set S.

1For the reader not familiarized with algebraic concepts, a
brief review is given in the Appendix.
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On the other hand, the independence of the state
variables implies that X N k[z1, ...,2,] = @ and thus
S is also the Groebner basis of ¥/ = (S}, the ideal
generated by .S in the ring k(@1 .., T )[E1, eury L), COL-
responding to the Lex ordering with 21 > «+« > @y,
where the coefficients are rational functions in the
state variables.

A. Invariant sets

To specify invariant sets, we make use of affine vari-
eties defined on the state-space: the set of every solu-
tions of a system of polynomial equations p; = pg =
«oo = ps = 0, with p; € k[z1,...,25). In other words,
there exists an algebraic dependence between the state
variables given by these polynomials. The set defined
by the affine variety in the state-space will be noted as
V(I), where I is the polynomial set described by the
system of equations I = {p1,p2,...,ps}. A set V(I)
is invariant with respect to a system X if it verifies
dp;/dt = 0 for all ¢ > 0. In other words, the polyno-

mials
. =0 . .
plzza—m‘jm‘” 221,...,3,
J=1
must belong to the ideal of the system Y restricted to
V().

Let V(I) be an invariant set with respect to the
system ¥ = (S). The restriction of the dynamics to the
invariant set can be studied from the ideal generated
by I US. This dynamics can be characterized by a
Groebner basis Sy for (I U.S), that has a particular
structure when using the ordering 7 > -« > &, >
1 > <+« > In, and can be written as S; = G, U
Gq. The set of polynomials G, = S5 N E[21,.e, Zn)]
is an implicit expression of the invariant set defined
by the affine variety V(I). The set of polynomials
Gy, also containing polynomials depending linearly on
the first derivative of the state variables, defines the
dynamics over the invariant set V(I) (the restriction
of the dynamics ¥ over the invariant set V(I)).

B. Stability of invariant sets

Lyapunov stability theory and LaSalle’s theorem in
particular (Khalil, 1996), can be used to address the
stability of invariant sets.

Theorem (LaSalle): Let Q C D be a compact set, pos-
itively invariant with respect to (1). Let V: D — R
be a continuously differentiable function such that
V(z) < 0.in Q. Let E be the set of every point in
Q where V(z) = 0. Let M be the largest invariant
set contained in F. Then every solution starting in )
approaches M as t — oo.

This theorem does not require the positive definite-
ness of function V(z). Furthermore, the set ! needs
not to be related to V(z). However, V(z) can be con-
structed to guarantee the existence of the set Q. In
particular if Q, = {z € R" | V(z) < ¢} is a bounded

region and V(z) < 0 for all z € €, then it can be
chosen 2 = €)..

IV. SYNTHESIS PROCEDURE

The starting point for the synthesis procedure is a
given invariant set (i.e. the desired trajectory rep-
resented by a polynomial set G,) and the desired dy-
namic behavior of the solutions over it given in implicit
form by a polynomial set G4. The union of these two
sets forms a Groebner basis S = G U G4. Let

Gm - {pla---aps}a
Gd = {il_qla---ai'n_qn}a

where p;,¢q; € k[21,002nl, J=1,00,8, t =1, .,
This basis generates an ideal of polynomials Xr; the
polynomials in this ideal are expressions of several
dynamical relationships among the variables, corre-
sponding to different state equations that have the de-
sired orbit as one of their many possible solutions.
The objective of this paper is to design a system
with this orbit as a solution, having the property of
being a stable limit set of the system: all the trajec-
tories beginning in a neighborhood of the orbit will
approach it as time ¢ tends to infinity. Therefore, the
polynomials defining the system with the proposed or-
bit are in the ideal ¥j, i.e. they are combinations
of the polynomials of S;. To be more specific, let us
consider the following n combinations of polynomials

n 3
A= Zaij(:i:j —qj) + Zbijpj, 1<i<ny,
j=1 j=1
where a;; and b;; are polynomials in the ring
k[21y ces ).

The set A is included in k(as;, bij, 21, oy Zn)[E1,
«ey &n]. The designed system can be represented by a
Groebner basis S, 3 = (A) = (S} guaranteeing at the
same time the algebraic independence of these combi-
nations.

If the leading coefficients of this basis do not vanish
simultaneously?, the n polynomials of the set S are
algebraically independent. Therefore, polynomials a;;
and b;; must be chosen to fulfill this requirement. A
closer look reveals that another set of requirements on
aij, b;; can be imposed from the specification of the
behavior of the system in the exterior of the orbit.
With this objective in mind, we build up a positive
semidefinite function such that it vanishes on the orbit

2 Although the leading coefficient in the reduced bases is al-
ways 1, when working in the field of rational functions with sym-
bolic mathematical software (e.g, Mathematica, Maple, etc.) it
is sometimes convenient. to multiply the polynomials by a lead-
ing coeflicient being the minimum common multiple of all the
denominators of the rational functions acting as coeflicients of
the polynomials. In this way, the software packages work with
polynomial (and not rational) coeflicients; at present time, this
allows a faster and less intensive computation of the bases.
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and it is positive in the rest of the state-space. One of
such functions is the polynomial

V=pi+p3+-+p2

in the ring k[z1, ..., 2], because it has a minimum on
the orbit, and the minimum value is zero. In order to
apply LaSalle’s theorem, V' has to be negative semi-
definite and thus the dynamics of V' has to be chosen
accordingly. Clearly V = V'V - (i1,...,&n)" will be zero
at those points where any of the following conditions
are verified: (¢) the gradient of V is zero, (71) the gra-
dient is normal to the trajectory, (i) the points are
equilibrium points. For design purposes, cases (#) and
(#2) must be avoided because they reduce the basin of
attraction of the prescribed orbit. With respect to
the case (%), clearly the gradient is zero over the orbit
V = 0; the other points where the gradient vanishes
may be found considering the set of polynomials

P:{BV il zV—l},

8z Oy’

composed by the components of the gradient and an
additional polynomial zV — 1 in the auxiliary vari-
able z. If {¢1,...,0m} is the Groebner basis for
(PyNk[z1, ..., 2], where the monomial ordering is cho-
sen to eliminate the auxiliary variable z, the zero set
of these polynomials comprises only the points where
the gradient vanishes and excludes any point of the
orbit ¥V = 0, because the inclusion of the polynomial
2V —1in P implies V' ¢ (P)Nk[z1, ..., Zn]. Therefore,
the dynamics for V' can be written as

V=—a(f++)V )

where « is a positive polynomial. To simplify the expo-
sition we will consider the case when « is a zero-order
polynomial, i.e. 0 < a € k, a positive design parame-
ter. Then the function V is negative semidefinite, and
takes the zero value in those points where the gradi-
ent is zero. Of course, this election for V is entirely
arbitrary, and other possible options are for example

V = —(1g? + -+ + amg?,) V, where a; are arbitrary
2 2
" : o av v
positive polynomials, or V = — (E) —e— (E) .
The polynomial
LS.
P= dazy VT By,

which captures the dynamics of the system must be-
long to the ideal X C k(ow, aijs bij, 15 ooy Tn) [£15 oo
Z,). Since .S is a Groebner basis for 3, the remainder
of p with respect to S must be zero. The zeroing of
the remainder reveals the algebraic relationships be-
tween the unknown coefficients a;; and b;;. As stated
before, they must be properly chosen such that (4) the
remainder is zero, and (#z) no leading coefficients of S
vanishes. This concludes the design of the system 3,
generated by the Groebner basis S.
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Orbital stability analysis. The analysis of the orbital
stability can be performed by means of LaSalle’s the-
orem. As by design V(z) < 0 in the whole state-
space [see (2)], to fulfill the remaining hypothesis
two sets Q. and E have to be defined, such that (z)
Q. = {z € R" | V() < ¢} is bounded for a certain
value ¢ to be found, and (i) the set E (the set of all
points in Q where V(x) = 0) coincides with the points
of the desired orbit, i.e. =M =~.

The first issue is addressed noticing that, given a
bounded orbit, it is always possible to find a value ¢
(albeit small) such that €, is bounded because V is a
continuous positive function that takes the zero value
on a compact set (the orbit ). To guarantee that
E =1, it is necessary to prove that if another solution
exists for which V(z) = 0 it has to be isolated of .
In this way, the orbit is the only invariant set in F to
which every solution starting in €. approaches to v as
t tends to infinity.

A. Summary of the synthesis procedure
Step 1. Express the specifications with the polynomial
set St = G, UGy where S; is a Groebner basis
and
Gm = {pla ‘e aps}a
Gd - {1'1 —q1y-. 'ai'n _Qn}a
with Pis @i € k[:l‘]_, a-'l'n}
Step 2. Build up the set

A= {Zaii(ij - 4) +Zbijpj, 1<i< n}

j=1 j=1

and find the Groebner basis .S for (A} in the ring
k(aij, bij,.'l‘l, ...,:l‘n)[:i‘l, ,.’l‘n]

Step 3. Build up the positive semidefinite function
V =pi+ps+-+pi

Step 4. Find the Groebner basis {g1, ..., gm} of the z-
elimination ideal (z > a1 > --- > @) generated
by P o= {8, 8L v -1
E[21, .00y znl, d.e., (P) N E[21,...,2,], and choose
asuitable V (e.9. V=—a (2 +---+g2) V).

}, in the ring

Step 5. Compute the remainder of the polynomial p =
%:&14—. oot it —V with respect to S in the
ring k(Qu, Gijy bijy 1y ey Tn)[E1, ooy Tn)-

Step 6. Choose the coefficients a;; and b;; so that the
remainder is zero.

Step 7. Select the ideal generated by S as the designed
system.

Step 8. If the desired orbit is not bounded, check out
the orbital stability.

430



G. CALANDRINI, E. E. PAOLINI, J. L. MOIOLA

Figure 1: Positive semidefinite function V(», z).

V. EXAMPLES
A. Torus-type orbit

As an example of the technique discussed above, we
propose the design of a system that has a torus-type
orbit. The torus is described in cylindrical coordinates.
The state variables are 7, 8 and 2z, with £ = rcosf and
y = rsind. To simplify the design, it is assumed that
the angle 4 is not involved in the dynamics of the other
two variables, and that the dynamics of the rotation is
fixed (@ = w = constant) restricting the design to the
r-z plane, where the torus describes a circle centered
inr =7y and 2z = 0, with a radius r2, 0 < 72 < 71 and
rotating at a constant angular speed wo.

Step 1. The desired orbit is given by v = {(z,7) €
R2 | (r —71)%2+ 22 — r3 = 0}. Thus the invariant set
and its dynamics are defined by the set of polynomials
Sr=Gr UGy,

Go={(r =i+ 2 =13)
Ga={r—waz, 2+ wa(r—m)} "~

Step 2. Let us define the field & = Q(a, 71,72, w1, wa).

The combination of the polynomials of St in the ring
k(r, 2)[2,7] gives the generating set of the ideal of the
system to be designed

F—woz+a[(r—ry)? + 22 =13+
+b[2 + wa(r — 71)],
Ftwa(r—r)+r—r)2+ 2 =13+ (°
+d(7 — wo2)

where a,b, ¢, d € k[r, z]. The Groebner basis S for {A)
in the ring k(a,b,¢,d, 7, 2)[2,7], corresponding to the
ordering 2 > 7 is given by

(a=bo)[(r —r1)* + 2% — 73]+
+(1 = bd)(7 — wa2),

(c—ad)[(r—r)?>+22—73+ [’
+(1 = bd)[2 + wa(r — 71)]

A=

S =
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Figure 2: Temporal derivative of the function V, with
r1 =1, and ro = 0.5.

where 1 — bd # 0 to guarantee that the chosen combi-
nation of polynomials is algebraically independent.

Step 8. The function defining the dynamics outside of
the orbit is chosen as V = [(r—r1)%2+ 22 —r2]%. A plot
of this function is shown in Fig. 1 revealing that it is
positive semidefinite on the plane r-2z, and vanishes on
the orbit 4.

Step 4. The gradient of this function vanishes on the
orbit, and also in the variety defined by the set of
polynomials {r — 1, 2}. With these polynomials it is
possible to fix the dynamics in the exterior of the orbit
making V = —a' V [(r—r1)? 4 2%]. Figure2 shows that
V is zero on the orbit and also in the center of the
circle.

Step 5. The remainder of 327+ 3L 2+a V [(r—r1)2+
#%] with respect to S is

14
m{4(a—bc) (r—mr1)+4(c—ad)z+
+a(bd—1) [(r—r)* + 2°]}.
Step 6. This polynomial is in k(a,b, ¢, 7, 2)[2,7], and it

is zero over 4, and also over the rest of the r-z plane
fa=4(r—mr),c=52b=d=0.

Step 7. Replacing these values in S, the Groebner
basis for the designed system is found to be

s [ Fmwnet o —rlr—n)+ 22 =09 |
24 wa(r —ry) + G2[(r —r1)* + 2% — 73]
Step 8. For the stability analysis of the orbit, clearly

the set Q. = {(z,7) € R? | [(r —r )2 + 22— 132 <
¢} is compact, and choosing ¢ < 'rg, the orbit « is
the only invariant contained in €, where V(z) = 0.
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Figure 3: Temporal evolution of the Cartesian vari-
ables in the designed system.

Therefore, according to LaSalle’s theorem, the orbit is
asymptotically stable.

It is worth noting that the dynamics in the r-z plane
corresponds to the normal form of a stable cycle of
radius 2. The description of the system with a torus-
type orbit in cylindrical coordinates is given by

0 = w,
ro= wgz—%(r—rl)[(r—rl)Q—i—zg—T%]
; = —w2(r—rl)—%z[(r—rl)g—&—zQ—r%].

Figure 3 shows the temporal evolution of the Carte-
sian variables x, y, z, for r;1 = 1, ro = 0.5, wy = 1,
wo = 0.5, and a = 0.5, and the initial conditions
r(0) = 1, 2(0) = 0.01 and 6(0) = 0. The torus or-
bit in the state-space is shown in Fig. 4.

B. A limit cycle

In this example the invariant set is a limit cycle defined
by the affine variety p; = 0 in R? where p; = [m% -
8(wa — 3)]2 + 512(z2 — 3). The desired orbit is then
given by v = {(z1.22) € R? | p; =0}.
Step 1. The invariant set and its dynamics are repre-
sented by the set of polynomials S; = G, U G4, where
G = {p1}, Ga = {q1, 2}, with ¢ = 81 —a? +
8(1 4 x2), gp = 32:0 — @ + 81 (z2 — 3).

The invariant set may be checked performing the
quotient between the polynomial ﬂa’cl + ‘9” Lio with
respect to St = {p1, q1 qg} Cleeulv P = (12351 +
%m? — 4z m2)q + (4 — —11 + 4x3)g2, meaning that the
remainder is zero, and thus p; € (S).

Step 2. The combination of the polynomials of St in
the ring Q(z1,x2)[%1, T2] gives the generating set of
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Figure 4: Torus orbit of the designed system.

the ideal of the system to be designed

8551—9:1+8(1+x2)+

+a{[2? —8(x2 — 3)]? + 512 (22 — 3)},
39w2—w1+89€1(x2—3)+

+b{ [ —8(w2— )} +512(z2 — 3)}

A=

where a,b € Q[z1,22]. The Groebner basis S for (4)
in the ring Q(a, b, x1, z2)[#1, T2], corresponding to the
ordering &1 > &2 is given by S = A

Step 3. The function defining the dynamics outside of
the orbit is V = {[z} — 8 (w2 — 3)]2 + 512 (22 — 3)}2.

Step 4. The gradient of this function vanishes on the
orbit, and also in the variety defined by the set of
polynomials {xq1,z2 + 1}. However, we fix the dy-
namics in the exterior of the orbit choosing vV =

—a (3V? + g;/)Q)

Az

Step 5. The remainder of —1‘1 —+ —wg — V with
respect to S is

V{b(ai -
+a64[16(z2 —

8w —8) —awx; (24 + 27 — 8xa)+
8wy — 8)2 + 22 (24 + 2 — 829)?]}.

Step 6. This polynomial is in Q(a, b, x1, z2)[#1, 2] and
is zero over -y, and also over the rest of the z1-z2 plane
ifa=64ax (24+22—8x9), b= —1024a (23 —8xy—
8).

Step 7. Replacing these values in S, a Groebner ba-
sis for the designed system is obtained. This can be
written as the following state-space equations

i = 2(x? —8— 82y —apy),

Ty = %(1‘1 8z1x0+ 243 —bpy).

0

Step 8. To determine the stability of the orbit, clearly

the set Q. = {(z1,72) € R? | V < ¢} is compact, for
a small ¢ value, due to the continuity of V' and the
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Figure 5: Limit cycle of the designed system.

boundness of the orbit. Furthermore, the orbit « is
the only invariant contained in ., where V(z) = 0.
According to LaSalle’s theorem, the orbit is asymp-
totically stable. Figure 5 shows simulation results that
confirm this fact, even for small values of parameter
a (e = 5 x 1077) that sets how fast the trajectories
approach to the desired orbit.

VI. CONCLUSIONS

In this paper, a constructive procedure for designing
systems with prescribed orbits has been presented. An
algebraic viewpoint seems appropriate for this pur-
pose, and the main tool is an algorithm to compute
Groebner basis of polynomial ideals. This algorithm
is already available in software performing symbolic
calculus, like Mathematica, Maple, etc. or more spe-
cific environments such as Macaulay and CoCoA. The
application of the method is shown with the design of
a system with a torus-type orbit and a specified limit
cycle. The procedure presented here is the first step
toward the synthesis of normal forms of systems con-
taining certain specified dynamics.

VII. APPENDIX

‘We resume in this appendix some basic algebraic con-
cepts. In the following, R = k[x1,...,%y) is the ring of
polynomials in 1, ..., z, with coefficients in a field .
The interested reader should consult (Cox et al, 1992)
or (Kreuzer and Robbiano, 2000) for more details.

1. Asubset I C kfzq,...,2y] s an ideal if it satisfies
(H0el; (m) I f,ge I then f+ge€l; (i) If
fe€Tland h€Ek[z1,...,2,), then h f € 1.

2. A natural way of defining ideals is using a finite
polynomial set. Let fq,...,fs € R. The set
<f1, .. .,f5> = {Zle hl_ﬁ | h; € R} is an ideal,
and it is called the ideal generated by fi,..., fs-
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3.

10.

A polynomial f € R is irreducible over k if f
is nonconstant and it is not the product of two
nonconstant polynomials in R.

. An ideal T C R is said to be prime if whenever

the product f - g belongs to I, either f € I, or
g €I (or both).

. Let I C R be an ideal. An ideal I is said to be

radical if g™ € I, for any integer m > 1 implies
that g € I.

. The solutions of polynomial equations can be

curves, surfaces, or objects of greater dimension,
denominated affine varieties. The affine vari-
ety V defined by the polynomials fi,...,fs is
the set V(f1,....fs) = {(w1,....wp) € k" |
filwi,.oywy) = 0,1 < 4 < s}y e the set
of all the solutions of the system of equations
fi=...=fs=0.

. Let V C k™ be an affine variety. Then, the set

I(V) = {f €R | fi(wla RERE] wn) = Oa V(wla LRES
wy,) € V1, the set of all the polynomials vanish-
ing on the given variety is an ideal and it is rad-
ical. The strong Nulstellensatz’s theorem proves
that if % is an algebraically closed field, and T a
radical ideal in k[21,...,2y), then I(V(])) = I,
7.e. it exists a one-to-one correspondence be-
tween affine varieties and radical ideals.

. The Hilbert Basis Theorem (Cox et al., 1992)

proves that every ideal in R has a finite basis.
The Groebner bases constitute a special type of
generating set of polynomial ideals and one of
their properties is to eliminate variables in sys-
tems of polynomial equations. Starting from a
finite generating set, the algorithm devised by
Buchberger (1970) allows to calculate a Groeb-
ner basis for any ideal. In order to apply the al-
gorithm, it is necessary to define the ordering of
the variables and also the ordering of the terms
of the polynomials or monomials; the algorithm
tries to eliminate the higher order variables. If
a= (als---aan) a:ﬂd/@: (ﬁla---sﬁn) eZgOa‘Pe
two vectors of exponents, according to the Lexi-
cographical (Lex) order, o <rer 8 if and only if
3j|aj <,6’j and a; = 3; Vi < j.

. Once a monomial ordering is chosen, the terms

of a polynomial can be ordered without ambi-
guity. The maximum monomial of a polyno-
mial f is denominated leading monomsal LM (f);
its coefficient (not null) is the leading coefficient
LC(f), and the leading term is the product of
both, LT(f) = LC(f) - LM(f).

A finite subset G = {g1,...,9s} of an ideal T
is a Groebner basis if {(LT(¢1),...,LT(gs)) =
{LT(I)). This means that a set {¢1,...,gs} C T
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is a Groebner basis of I if and only if the leading
term of every polynomial in T is divisible for one
of the LT(g;).

11. It is possible to carry out “quotients” in the ring
R with an algorithm. One could divide a poly-
nomial f by a polynomial set {f,...,fs} C R
and express f with the combination f = ayf1 +
<+« 4+ asfs + r, where the quotients a; and the
remainder 7 belong to R. Let G be a Groebner
basis of an ideal I. Then f € T if and only if the
remainder of the division of f by G is zero.

Acknowledgment. J.L.M. acknowledges the sup-
port received by the Alexander von Humboldt Foun-
dation.

REFERENCES

Alwash, M. A. M., “Periodic solutions of a quartic dif-
ferential equation and Groebner bases,” J. Comput.
Appl. Math. 75, (1), 67-76, (1996).

Berns, D. W., G. L. Calandrini, E. E. Paolini and
J. L. Moiola, “Synthesis of nonlinear oscillators us-
ing Groebner bases,” in Proc. Workshop on Nonl.
Dynam. of Electr. Systems (NDES2001), 85-88,
Delft, The Netherlands, (2001).

Buchberger, B. “Ein Algorithmus zum Auffinden der
Basiselemente des Restklassenringes nach einem
nulldimensionalen Polynomideal,” PhD. thesis,
Math. Inst. Univ. of Innsbruck, Austria (1965).

Buchberger, B. “Ein algorithmisches Kriterium fiir die
Lésbarkeiteines algebraischen Gleichungsystems,”
Aequationes Mathematicae 4, 374-383, (1970).

Buchberger, B. “Introduction to Groebner bases,”
Logic of Computation, Marktoberdorf, 35-66,
(1995).

Cox, D., J. Little and D. O’Shea, Ideals, Var:-
eties and Algorithms: An Introduction to Com-
putational Algebraic Geometry and Commutative
Algebra, Undergraduate Texts in Mathematics,
Springer, (1992).

Fliess, M. “Generalized controller canonical forms for
linear and nonlinear dynamics,” IEEE Trans. Aut.
Control 35, 9, 994-1001, (1990).

Forsman, K. “Elementary aspects of constructive com-
mutative Algebra,” PhD. thesis, Depart. of Electr.
Engng. Linképing University, Linkdping, Sweden,
(1995).

Fortell, H. “Algebraic approach to normal forms and
zero dynamics,” Technical Report, Depart. of
Electr. Engng. Link&ping University, Linkoping,
Sweden, (1995).

33:427-434 (2003)

Jirstrand, M. “Algebraic methods for modeling and
design in control,” PhD. thesis, Depart. of Electr.
Engng. Link6ping University, Linkoping, Sweden,
(1996).

Khalil, H. K., Nonlinear Systems, 2nd. Edition, Pren-
tice Hall, (1996).

Kreuzer, M., and L. Robbiano, Computational Com-
mutative Algebra 1, Springer, (2000).

Received: August 20, 2001.
Accepted for publication: July 4, 2002.
Recommended by Guest Editor Dardo Marqués.

434



