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Abstract— This paper introduces a new
method for the digital implementation of con-
trollers designed in continuous time. Through
the quantization of its state and input variables
the original continuous controller is mapped
into a discrete event model within the DEVS
formalism framework that can be implemented
in a digital device. Under certain conditions on
the original continuous control system (CCS),
this implementation guarantees regional con-
vergence in finite time of system trajectories
to arbitrarily small regions around the equilib-
rium points even in the presence of A/D and
D/A quantization effects. The convergence of
the new scheme to the CCS is demonstrated
when the quantization width goes to zero. Fur-
ther, a design algorithm for the digital con-
troller is given, which fulfills specifications of
admissible final error and convergence speed.
Also discussed is the computational efficiency
of the scheme, along practical implementation
issues. Two numerical examples are provided
illustrating some benefits of the new method.

Keywords— Digital Control, Discrete Event
Systems, Quantized Systems, Nonlinear Sys-
tems.

I. INTRODUCTION

Practical implementations of most control systems re-
quire the use of digital devices. Due to the different
nature of the signals present at the inputs and out-
puts of the digital controller and the continuous-time
plant, the interconnection between them must be made
through A/D and D/A converters. Since the number
of bits used by these converters is finite, a quantization
effect takes place over the related variables causing
undesired consequences on the stability, steady state
error and the general performance of the system.
Because of quantization problems, attracting sets

must be considered instead of equilibrium points, and
ultimate boundedness of solutions instead of asymp-
totic stability. As shown in (Miller et al., 1988) a
SISO linear continuous-time plant with a linear dig-
ital controller designed so that the closed loop sys-

tem is uniformly asymptotically stable, a quantiza-
tion size exists that transforms the asymptotic sta-
bility into ultimate boundedness with arbitrary small
bounds. Similar studies were performed in (Farrel and
Michel, 1989) with conclusions about the error intro-
duced by the quantization in finite time. These re-
sults were extended to nonlinear plants (but with lin-
ear controllers) in (Hou et al., 1997) and then, in (Hu
and Michel, 1999) a similar analysis is applied to the
multirate case. In both cases only local results are ob-
tained since Lyapunov’s first method is used to analyze
stability properties. Nevertheless, the unattainability
of global results is not only due to the quantization,
but also to the use of fixed time-discretization. In-
deed, a fixed sampling time which is adequate when
the state is weakly perturbed away from an equilib-
rium point could provoke instability for larger state
perturbations.
Instead of studying the effects of the quantization

after the controller is designed, some works attempt
to deal with the quantization at the design stage. In
(Delchamps, 1990) the problem of stabilizing a discrete
time linear system taking into account the quantiza-
tion in the state measurement is studied. In (Brock-
ett and Liberzon, 2000; Liberzon, 2000) there is also
an study over CCS and the problem of the imposibil-
ity of convergence to the equilibrium points is solved
by allowing the quantizers to change the size of the
quantization intervals. Although the scheme and the
problem are completely different, the study on nonlin-
ear systems made there is quite similar to the stability
analysis showed in this work.
Since recently, quantization of variables is being ap-

plied for simulation purposes. In (Zeigler and Lee,
1998) the authors proposed that continuous time sys-
tems can be simulated through the quantization of
state and input variables instead of the discretization
of time. They also showed that the resulting system
can be described by a discrete event model within the
DEVS formalism (Zeigler et al., 2000).
This idea was taken in (Kofman and Junco, 2001),

where the authors introduce the concept of Quantized
State System (QSS), that are continuous time systems
where the state variables are quantized through quan-



tization functions with hysteresis1. It has been shown
that QSS with piecewise constant input trajectories
can be exactly represented by DEVS models. Thus,
the addition of the mentioned quantization functions
to a continuous model transforms it into a QSS that
can be simulated in a digital device.
In this paper, based on the idea of QSS, we de-

velop a new digital control scheme called Quantized
State Control (QSC). Here the controller is a discrete
event system that can be obtained from a continu-
ous (and possibly nonlinear) previously designed con-
troller. The mentioned discrete event model is the
representation of a QSS obtained through the quan-
tization with hysteresis of the state variables of the
continuous controller. The A/D converters, work-
ing in an asynchronous way –which results in an im-
portant reduction of the computational costs of the
implementation– perform the necessary quantization
of the input without introducing time discretization.
Based on Lyapunov’s second method, a stability

study is made over the QSC scheme giving sufficient
conditions to assure regional convergence of the trajec-
tories to small regions around the equilibrium points.
When the CCS satisfies some additional conditions,
semiglobal convergence can be also achieved. It is
important to mention that these stability properties
are deduced for the general case of a nonlinear MIMO
plant with a nonlinear controller. The absence of time
discretization in the scheme is the main key in the
proof of the mentioned properties.
The paper is organized as follows. In Section II the

concept of Quantized State Systems is introduced and
some properties of this class of systems are mentioned.
In Section III the QSC scheme is formally defined. The
study of stability and convergence is made in Section
IV, and based on the stability theorem deduced there,
an algorithm that allows the design of the quantized
state controller achieving stability and steady state er-
ror goals is developed and then illustrated with an ex-
ample.
Finally, in Section V the reduction of the compu-

tational costs is treated through the analysis over a
simple system.

II. QUANTIZED STATE SYSTEMS

Quantized State Systems (QSS) are continuous time
systems where each state variable is affected by a quan-
tization function equipped with hysteresis.
Before giving a formal definition of QSS, the con-

cept of quantization function with hysteresis will be
introduced.

1The presence of hysteresis in the quantization is necessary to
assure that the resulting DEVS models are legitimate (Kofman
and Junco, 2001). A DEVS model is said to be legitimate when
it cannot produce an infinite number of events in a finite interval
of time (Zeigler et al., 2000)

A. Quantization Functions

Let D = {d0, d1, ..., dr} be a set of real numbers where
di−1 < di with 1 ≤ i ≤ r and let x ∈ Ω be a continuous
trajectory, where x : R → R. Let b : Ω × t0 → Ω be
a mapping and let q = b(x, t0) where the trajectory q
for t ≥ t0 satisfies

q(t) =




dm if t = t0
di+1 if x(t) = di+1 ∧ q(t−) = di ∧ i < r
di−1 if x(t) = di − ε ∧ q(t−) = di ∧ i > 0
q(t−) otherwise

(1)
and

m =




0 if x(t0) < d0

r if x(t0) ≥ dr

j if dj ≤ x(t0) < dj+1

Then, the map b is a Quantization Function with Hys-
teresis. The width of the hysteresis window is ε. The
values d0 and dr are the lower and upper saturation
values. Figure 1 shows a typical quantization function
with uniform quantization intervals. A fundamental

dr

dr

d0

d0

ε

q(t)

x(t)

Figure 1: Quantization Function with hysteresis

property of a Quantization Function with hysteresis
when t ≥ t0 is given by the following inequality:

d0 ≤ x ≤ dr ⇒ |q(t)− x(t)| ≤ max
1≤i≤r

(di − di−1, ε) (2)

B. QSS related to a State Equation System

Consider the State Equation System given by:
{

ẋ(t) = f(x(t), u(t))
y(t) = g(x(t), u(t)) (3)

Related to this system, an associated QSS is defined
as follows:

{
ẋ(t) = f(q(t), u(t))
y(t) = g(q(t), u(t)) (4)

where q(t) and x(t) are related (componentwise) by
quantization functions with hysteresis. The compo-
nents of the vector q(t) are called quantized variables.
Figure 2 shows a block diagram of a QSS.
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Figure 2: Block Diagram of the QSS

C. Some properties of QSS

The most significant properties of the QSS are related
to the form of the trajectories. Provided that the in-
puts have piecewise constant trajectories and the func-
tion f is continuous and bounded in any bounded do-
main, it can be assured that the quantized variables
and the state variable derivatives have piecewise con-
stant trajectories while the state variables have con-
tinuous piecewise linear trajectories. Figure 3 shows
typical trajectories in a QSS.
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Figure 3: Typical trajectories in a QSS

Because of these properties, representing the piece-
wise constant trajectories by events allows the exact
simulation of QSS by discrete event models within the
DEVS formalism framework. The DEVS model re-
lated to a generic QSS and the proof of the mentioned
properties can be found in (Kofman and Junco, 2001).
The possibility of representing a QSS by a DEVS

model and the fact that DEVS models can be simu-
lated in real time by a digital device2 (Zeigler and Kim,
1993) suggest the use of QSS as digital controllers.

III. QUANTIZED STATE CONTROL

Consider the CCS consisting of plant and controller,
Eqs. (5) and (6) respectively, and their (ideal) inter-

2DEVS representation of QSS is exact. However, real time
simulation of DEVS has errors related to the temporal resolution
and the round-off introduced by the digital device

connection, Eq. (7).
{

ẋp(t) = fp(xp(t), up(t))
yp(t) = gp(xp(t))

(5)

{
ẋc(t) = fc(xc(t), uc(t))
yc(t) = gc(xc(t), uc(t))

(6)

up(t) = yc(t), uc(t) = yp(t) (7)

With this representation, general problems of regula-
tion with linear and nonlinear plants and controllers
can be treated.

Definition 1. The QSS associated to a continuous
controller (6) is called Quantized State Controller
(QSC controller).

The connections between the plant outputs and the
controller inputs require the use of A/D and D/A con-
verters. Since QSC controllers avoid time discretiza-
tion, it would be desirable that the converters do the
same. Thus, the A/D conversions will be performed
only when the analog input and the digital output of
the converters differ in a quantity corresponding to a
quantization interval3. Similarly, the D/A conversions
will be only performed when the digital outputs of the
controller change.

Definition 2. A QSC system is defined as a control
scheme composed by a continuous plant and a QSC
controller connected through asynchronous A/D and
D/A converters.

qc
qc
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∫
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Figure 4: Block Diagram of the QSC system

Figure 4 shows a block diagram representation of a
QSC system. Here, according to (5), there is a strictly

3This is an asynchronous sampling technique that is used in
some works to obtain fast A/D conversions with a good tradeoff
between speed and resolution (Sayiner et al., 1993).



proper plant4.
The QSC implementation of the controller trans-

forms (6) into the new set of equations:{
ẋc(t) = fc(qc(t), uc(t))
yc(t) = gc(qc(t), uc(t))

(8)

where the difference between qc and xc is bounded
according to (2).
Taking into account the way they work, the asyn-

chronous A/D converters can be seen as quantiza-
tion functions with hysteresis where the quantization
intervals and the hysteresis windows have the same
size. In a similar way, the D/A converters –which are
also asynchronous but memoryless– can be represented
by quantization functions without hysteresis (ε = 0).
Thus, the presence of the asynchronous A/D and D/A
converters transforms (7) into:

up(t) = ycq
(t), uc(t) = ypq

(t) (9)

where the variables ycq
(t) and ypq

(t) are the quantized
versions of the plant and the controller output vari-
ables, which differ from the continuous yc and yp in a
quantity bounded by (2).
The presence of quantization with hysteresis in the

A/D converters also guarantees that the controller in-
puts have piecewise constant trajectories. Since the
QSC controller is a QSS, it can be exactly represented
by a DEVS model and implemented in a digital device.

IV. STABILITY AND CONVERGENCE

One of the most important properties of QSC is the
conservation of the stability properties of the original
CCS even in presence of A/D and D/A quantization
effects. The substitution of time-discretization by the
quantization of variables is the key element yielding
this property.

A. A stability theorem for QSC

The following theorem shows that, when the CCS has a
regional stable equilibrium point a quantization exists
such that the QSC system also assures regional con-
vergence of the trajectories to arbitrary regions around
that point.

Theorem 1. Consider that the origin of the closed
loop CCS (5)-(7) is a regionally stable equilibrium
point. Suppose that the functions fp, gp, fc and gc

are continuously differentiable. Further assume that
a Lyapunov function V is known, defined in an open
region D containing the origin. Then, a QSC system
associated to the original CCS can be found, such that
all initial conditions lying in an arbitrary interior re-
gion of D are attracted in finite time to another arbi-
trary interior region of the former one. Both interior
regions must be limited by level surfaces of V .

4It is also possible to use QSC with plants having relative
degree equal to 0. However, in this case, the relative degree
of the continuous controller must be at least one to avoid an
infinite number of conversions in a finite interval of time

Proof. From equations (5) and (7) the following closed
loop equations of the continuous system can be ob-
tained: {

ẋp = fp(xp, gc(xc, gp(xp)))
ẋc = fc(xc, gp(xp))

(10)

The implementation of the corresponding QSC system
–Eqs. (8) and (7)– transforms (10) into:
{

ẋp = fp(xp, gc(xc +∆xc, gp(xp) + ∆yp) + ∆yc)
ẋc = fc(xc +∆xc, gp(xp) + ∆yp)

(11)
where ∆xc = qc−xc, ∆yp = uc−yp and ∆yc = up−yc.
Define:

α(x,∆xc,∆yp,∆yc) = (12)
∂V

∂xp
(x) · fp(xp, gc(xc +∆xc, gp(xp) + ∆yp) + ∆yc) +

∂V

∂xc
(x) · fc(xc +∆xc, gp(xp) + ∆yp)

with:

∂V

∂xp
(x) =

[
∂V

∂xp1

· · · ∂V

∂xpn

]
(x)

∂V

∂xc
(x) =

[
∂V

∂xc1

· · · ∂V

∂xck

]
(x)

with n and k being the order of the plant and the
controller respectively and V (x) = V (xp, xc) is the
Lyapunov function of the closed loop system defined
in (10). From equation (12) it can be easily seen that:

α(x, 0, 0, 0) = V̇ (x)
∣∣∣
(10)

(13)

Let D1 be an interior region of D (D ⊂ R
n+k) limited

by some level surface of V . Let D2 be an interior region
of D1 also limited by a level surface of V . Let D3 be
the region defined by D3 = D1 − D2.
Since V̇ (x) is negative definite, it is possible to find

a positive number s so that:

V̇ (x) < −s,∀x ∈ D3 (14)

Let αM be the function defined by:

αM (∆xc,∆yp,∆yc) = sup
x∈D3

(α(x,∆xc,∆yp,∆yc))

(15)
From (13) and (14), it follows that:

αM (0, 0, 0) < −s (16)

Since the function α is continuous, the function αM is
also continuous. From this property and (16), given
an arbitrary number s1 (s > s1 > 0), it is possible to
find a positive number ρ so that the condition:

‖(∆xc,∆yp,∆yc)‖ < ρ (17)



implies that:

αM (∆xc,∆yp,∆yc) < −s1 (18)

Taking into account (2), the condition given in (17)
can be satisfied with the choice of an adequate quan-
tization.5 Observe that saturation must be outside of
region D1.
Let x(t) be a solution of equation (11) for the initial

condition x(t = 0) = x0 ∈ D3. Consider that the
quantization was done in order to satisfy the condition
given by (17). From (11) and (12) it follows that:

α(x,∆xc,∆yp,∆yc) =
∂V

∂xp
(x) · ẋp +

∂V

∂xc
(x) · ẋc =

=
∂V

∂x
(x) · ẋ

Using (15) and (18) in the equation above, we have:

∂V

∂x
(x) · ẋ < −s1 (19)

This condition will be satisfied at least during certain
time while x(t) remains inside D3 (this is guaranteed
by the continuity of x(t)). After integrating both sides
of the inequality (19), we have:

∫ t

0

∂V

∂x
(x) · ẋ · dt <

∫ t

0

−s1 · dt

V (x(t))− V (x(0)) < −s1 · t
V (x(t)) < V (x0)− s1 · t

This implies that V evaluated along the solution is
bounded by a strictly decreasing function while that
solution remains inside D3. Since the value V (x0) is
smaller than the value that V takes in the bound of
D1, it is clear that the trajectory will never leave D1.
Let V1 be the value that V takes in the bound of

region D2. Then, it can be easily seen that the trajec-
tory will reach the region D2 in a finite time t1 with:

t1 <
V (x0)− V1

s1

which completes the proof.

Corollary 1. When the Lyapunov function derivative
is negative definite in all the state space, the QSC im-
plementation can assure semiglobal ultimately bound-
edness.

5For instance, considering the same uniform quantization
for all the quantized variables the mentioned condition can be
achieved by taking:

max(∆q, ε) <
ρ√

k + m + p

where ∆q and ε are the quantization interval and the hysteresis
window size respectively, k is the controller order (i.e. is the size
of ∆xc), p is the number of output variables of the plant (size of
∆yp) and m is the number of input variables of the plant (size
of ∆yc).

The proof of this corollary is straightforward.
Achieving semiglobal stability requires enlarging the
region D1. Unfortunately, it also implies enlarging the
saturation region and then, global stabilization cannot
be assured in general cases.

B. Convergence of the QSC scheme

It was shown that the QSC implementation can ap-
proximate the stability properties of the original con-
troller designed in continuous time. The following the-
orem shows that the trajectories of the QSC system go
to the trajectories of the CCS system when the quan-
tization goes to zero. Thus, any performance mea-
sure achieved by the original continuous controller can
be approximately accomplished by the QSC controller
with the choice of sufficiently small quantization inter-
vals.

Theorem 2. Consider the CCS (10) and the associ-
ated QSC implementation (11). Let Dxc

, Dyc
and Dyp

be the non-saturation regions of the QSC controller,
the D/A converters and the A/D converters respec-
tively. Dxc

is defined as Dxc
= {x = (x1, ..., xk)/d0i

<
xi < dri

}, while Dyc
and Dyp

are defined in a similar
way. Let Dxp

be a bounded region in Rn and let D be
a non-saturation region of the QSC system defined by

D = {(xp, xc)|xp ∈ Dxp
, xc ∈ Dxc

,

gp(xp) ∈ Dyp
, gc(xc, gp(xp)) ∈ Dyc

}
Assume that the functions fc and gc are Lipschitz on
Dxc

× Dyp
, the function fp is Lipschitz on Dxp

× Dyc

and the function gp is Lipschitz on Dxp
. Let φ(t) be the

solution of (10) from the initial condition x(0) = x0

and let φ1(t) be a solution of (11) starting in the same
initial condition x0. Assume that φ(t) ∈ D1 ∀t being
D1 a closed interior region of D. Then, φ1(t) → φ(t)
when the quantization intervals go to 0.

The proof can be found in (Kofman, 2001).

C. A QSC implementation procedure

Based on Theorem 1 the following procedure can be
given in order to design QSC controllers satisfying
some conditions on convergence.

1. Design a continuous controller that allows find-
ing an appropriate Lyapunov function for the
closed loop system.

2. Identify the region D where the derivative of the
Lyapunov function is negative.

3. Define the region D1 ⊂ D from which the tra-
jectories should converge.

4. Choose D2 ⊂ D1 according to the desired steady
state error (D1 and D2 must be limited by level
surfaces of the Lapunov function).

5. Calculate the function α using Eq. (12).
6. Obtain the function αM with Eq. (16).
7. Find the maximum s satisfying (14) and choose

the lower bound of convergence speed s1 so that
0 < s1 < s.



8. Estimate the maximum value of ρ so that (17)
implies (18).

9. Choose the quantization intervals in order to sat-
isfy (17).

10. Choose the saturation bounds of the quantiza-
tion functions outside the region D1

It can be seen that this procedure for the choice of
the quantization intervals guarantees the convergence
of the system trajectories to the region D2.

D. An example of QSC design

The following example illustrates the use of the proce-
dure developed in the previous section.
Consider the plant:

{
ẋp(t) = x2

p + up

yp(t) = xp(t)
(20)

We will suppose that the goal is stabilizing the plant
around the origin. The first step in the algorithm is
the design of a continuous controller. For instance, the
following controller can achieve the mentioned goal.

{
ẋc(t) = −xc − uc

yc(t) = xc(t)− uc(t)− u2
c(t)

(21)

The resulting closed loop equations are:
{

ẋp(t) = −xp + xc

ẋc(t) = −xp − xc

It can be easily verified that the origin is the equi-
librium point, and it is asymptotically and globally
stable. By taking the Lyapunov function

V (x) =
1
2
x2

p +
1
2
x2

c (22)

it follows that:

V̇ (x) = −x2
p − x2

c

Since the stability is global (D = R
2) the definition

of the region D1 will be only neccessary for the choice
of the saturation bounds. Suposse also that the goal is
assuring the convergence of the trajectories to the re-
gion D2 = {x/‖x‖ < 1}. (‖ · ‖ stands for the euclidean
norm).
It follows from (12), (20), (21) and (22) that:

α(x,∆xc,∆yp,∆yc) = (23)
−x2

p − x2
c + xp(∆xc −∆yp −∆y2

p − 2xp∆yp +
+∆yc) + xc(−∆xc −∆yp)

The calculation of αM according to the definition
in (15) is quite difficult. However, a bound of this
function can be easily obtained. It follows from (23)
that:

α(x,∆xc,∆yp,∆yc) ≤ −‖x‖2 + ‖x‖(|∆xc|+ |∆yp|) +
+‖x‖(|∆xc|+ |∆yp|+ |∆y2

p|+ 2‖x‖ |∆yp|+ |∆yc|)

Then, it results from (15) and the inequality above
that:

αM (∆xc,∆yp,∆yc) ≤ sup
‖x‖≥1

[−‖x‖2+

+‖x‖(2|∆xc|+ 2(‖x‖+ 1)|∆yp|+ |∆y2
p|+ |∆yc|)]

Since outside the region D2 the condition V̇ (x) <
−1 is satisfied, the convergence speed s1 (seventh step)
can be chosen to be bounded between 0 and 1. Sup-
pose that the choice is s1 = 0.5. Then, the quantiza-
tion must be chosen in order to satisfy αM < −0.5,
condition that is verified using quantization intervals
∆q = ε = 0.07 for all the variables.
If the restriction about the convergence speed is not

taken into account and the goal is just assuring sta-
bility, that quantization interval of ∆q = 0.07 is suf-
ficiently small to guarantee convergence to the region
given by ‖x‖ < 0.4127.
The simulation was done for an initial condition

xp = 10 and the results are shown in Figs. 5 to 7.
The number of conversions performed by the A/D con-
verter were 178 for 40 seconds of simulation time. The
minimun time between two successive conversions was
5.6 milliseconds (at the begining of the simulation)
while the maximum was greater than 2 seconds.

0
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Figure 5: Plot of xp for the plant with QSC
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Figure 6: Final oscillations in xp

The trajectory of Fig.5 seems to be quite similar to
the one obtained with the continuous controller except
for the final oscillations in Fig. 6. However, in Fig.7
the difference with the CCS behaviour is more evident.
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Figure 7: Final oscillations in the phase portrait

There, the phenomena of ultimately boundedness due
to quantization and trajectory crossing due to hystere-
sis can be observed.

V. FURTHER ADVANTAGES OF QSC

While traditional discrete time controllers perform cal-
culations at regular intervals, QSC controllers only do
it when a variable becomes greater (or less) than some
threshold. For instance, in the example of Section IV,
when the trajectory arrives near the origin the con-
troller performs about one calculation per second. Any
discrete time controller using that sampling rate (and
even a rate 10 times faster) will diverge for the same
initial condition of xp = 10 due to problems of finite
escape time6.
The following example illustrates better the reduc-

tion of the computational costs in the QSC scheme.
Consider the first order system

ẋ = sgn(x) + u (24)

Suppose that the controller can measure the variable
x, but the A/D converter only produces even numbers
(-2, 0, 2, 4, ...) giving the nearest to its analog input.
When x is in the shaded region of Fig. 8 (between -1
and 1) the control system sees the value 0.

12345678901234567890123
12345678901234567890123
12345678901234567890123
12345678901234567890123
12345678901234567890123
12345678901234567890123
12345678901234567890123
12345678901234567890123
12345678901234567890123
12345678901234567890123 x

1−1−2 20

Figure 8: Invisible zone due to the quantization

Consider that the goal is keeping the value of x be-
tween -2 and 2. The time to go from 1 to 2 (or from
-1 to -2) with u = 0 is t1 = 1. This implies that it is
impossible to find a discrete time controller achieving
the proposed goal with a sampling period greater than
t1. The reason of this is that the controller cannot dis-
tinguish if the value of x is positive or negative when

6The phrase “finite escape time” is used to describe the phe-
nomenon that a trajectory escapes to infinity at a finite time
(Khalil, 1996)

it is in the shaded region and then, the sign of u could
be the same as the sign of x and the trajectory will
abandon the desired region before the time t1.
However, using QSC, the time between samplings

can be done arbitrarily big. For instance, consider the
following static control law

yc = −uc(1 + a) (25)

where a is a positive constant. When x goes away of
the shaded region the controller immediately detects
the change and it inverts the sign of the derivative.
The new speed on x is a. Then, x enters again the
shaded region and the time to reach the origin is 1/a.
After that, x goes to the other bound of the shaded re-
gion, but with a new speed of 2+a. When x leaves the
shaded region again the controller inverts the sign of
the derivative and we obtain a cyclic behaviour where
x oscillates between 1 and -1. The time between suc-
cessive A/D conversions is

t2 =
1
a
+

1
2 + a

(26)

It is clear that taking small values for the parameter a,
t2 can be done arbitrarily big. Then, with this imple-
mentation the number of calculations in the controller
and the size of the oscillation can be considerably re-
duced.
Unfortunately, the QSC implementation is not ex-

act. In fact, there are delays related to the presence
of converters and the digital processor. In this last
example, these delays must be smaller than the min-
imum sampling period t1 = 1 in order to obtain the
proposed goal of keeping x between 2 and -2.
One could think that if it is possible to implement a

QSC achieving such minimum delay, then it would be
possible to implement a discrete time controller using
that sampling period. However, the delay in the QSC
system is only the time required to detect the error
and to perform the D/A conversion because the calcu-
lations can be done before the error is detected. This
is possible because the QSC controller knows that its
next input value can only adopt two different values7.
A classic discrete time controller during each sam-

pling period must perform the A/D conversion, calcu-
late the next state and output of the controller and
then perform the D/A conversion. The time required
to finish all these tasks is much greater than the delay
in the QSC scheme.
In (Kofman, 2001), further remarks about practical

implementation of the converters and the delays in the
QSC scheme can be found.

7In the example, if the last detected value of x was 0, then
2 and -2 are the only two values that the new input can adopt.
Thus, the controller has two possible output values that could
be calculated before the detection of the new input value. For
a dynamic controller similar ideas can be applied.



VI. CONCLUSIONS

QSC constitutes a new class of digital controllers that
can be designed taking into account the effects of D/A
and A/D converters obtaining regional convergence of
the trajectories to small regions around the equilib-
rium points and reducing the computational costs of
the implementation.

A/D conversions are performed in a way that allows
the controller having as much information as possible
but without taking useless data. Similarly, D/A con-
versions are performed only when the corresponding
variables change. In applications in which the opti-
mization of conversions could be important (for in-
stance in distributed control systems in which each
conversion implies some transmission over a channel)
the use of QSC might be highly convenient.

Although the principles of QSC implementation
seems to be quite difficult (at least for people who is
not familiar with the DEVS formalism) its program-
ming is rather simple. Another advantage is the fact
that for QSC design, classic design techniques for con-
tinuous controllers can be applied (for instance, in the
example of Section IV, the original continuous con-
troller was designed via exact linearization (Khalil,
1996)). Then, according to the design algorithm, an
standard Lyapunov analysis to determine the regions
of attraction and the ultimately bounds is performed.
This kind of analysis is very common in nonlinear con-
trol systems design.

Future research in the line opened by this paper is
pointed to the particularization of the methodology of
QSC implementation for linear systems and for some
classic control methods. Dealing with particular cases
we expect to obtain closed formulas to calculate the
quantization intervals. It is also important to obtain
results related to closed loop performance measures
and it would be interesting arriving to less conservative
design conditions.

Some work must be also done in order to optimize
the methods for real time simulation of DEVS taking
into account the properties of QSC, since the mini-
mization of the delays in the implementation is ex-
tremely important. The remarks of Section V about
the fact that the controllers have some information
about the next input event and the possibilities of pre-
calculating the next output consitute a starting point
in this direction.

Finally we should mention that the QSS represent
just a small class of the systems that can be rep-
resented within the DEVS framework. In fact, any
discrete time system (as standard discrete time con-
trollers) can be also represented by a DEVS model.
The possibility of finding new classes of DEVS mod-
els having nice properties for the control of continuous
system seems to be more than promising.
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