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   Abstract− A model for capillary zone 
electrophoresis (CZE) is presented to carry out the 
method development of practical separations 
involving small charged molecules. The model is 
based on principles and dynamic equations that 
contain true physicochemical properties of 
electrolyte solutions and analytes. The basic 
variables considered in the model are: injection and 
detection lengths of analytes, electrical field strength, 
hydration radius and diffusion coefficient of 
analytes, pK of analyte terminal groups, pH and 
ionic strength of electrolyte solution, capillary 
diameter and length, capillary zeta potential, test 
temperature and relative mass fractions of analytes. 
The model is solved numerically to predict the 
separation of analytes through the resulting 
electropherogram, which is then compared with 
experimental data. 
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I. INTRODUCTION 
Although different techniques of capillary 
electrophoresis (CE) for analytic purposes have been 
known from many years ago, their uses have increased 
and developed substantially during mainly the last 
decade. At the present time, one can find modern and 
full automatic apparatuses available commercially 
allowing separations of analytes in a few minutes. We 
are concerned in this work with the most commonly 
used mode of CE designated free-solution capillary 
electrophoresis and also referred to as capillary zone 
electrophoresis (CZE). 

The basic apparatus of CE (Figure 1) analyzed here 
is composed of two reservoirs (vials) filled with the 
background electrolyte (BGE) that are connected 
through a capillary tube made of fused silica (quartz) 
the diameter of which is typically in the range of 10 to 
100 µm. The sample, which is a mixture of analytes to 
be separated, is introduced at the inlet of the capillary in 
a small amount (around 1 to 40 nL) by applying a 
pressure difference (typically 0.5 psig) during a few 
seconds (1 to 8 s) after replacing the sample vial for the 

BGE vial. Although there are other methods for the 
purposes of introducing the sample, hydrodynamic 
injection is the most frequently used. 

 

Fig. 1. Basic components of a CE apparatus. 
 

Since the separation principle in CZE is based on the 
analyte electrophoretic mobilities associated mainly to 
the effective charge and size of each analyte, electrodes 
are inserted in the BGE vials to apply a high voltage 
difference in the range of 5 to 30 kV. Typically the 
positive electrode or anode is located at the inlet vial 
and the negative electrode or cathode is at the outlet 
vial. At a distance from the capillary inlet (detection 
length) an UV detector is placed to register absorbance 
(proportional to analyte concentrations in the range of 
linear response) as function of time. Concentrations of 
the order of 10-5 to 10-8 M can be detected. Analytes can 
move along the tube due to both the electroosmotic flow 
(EOF) and the electrophoretic migration (EM). One 
should observe that the EOF is the bulk movement of 
the fluid through the capillary as a consequence of the 
interaction between the electrical double layer generated 
by the BGE on the tube wall and the applied electrical 
field, while the EM is the result of the electrical force on 
an analyte, considered as a suspended spherical particle. 
It is then clear that in the context of the experimental 
framework of CZE, one must choose carefully several 
operational variables, minimize undesired phenomena 
like Joule heating and dispersion effects and in general 
obtain the best experimental conditions for optimal 
separation (high efficiency and resolution).  

In this context of analysis, the interpretation of the 
electropherogram through electrokinetic theories 
available in the literature is a practical requirement. In 
this sense, Reijenga and Kenndler (1994) described the 
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framework of several types of models with different 
degrees of complexities that can provide these needs. 
Thus a model of CZE can serve different purposes and 
depending on them, one may consider a wide variety of 
phenomena. In relation to this last aspect, Poppe (1998) 
discussed the concepts of ideal and linear models in 
CZE, which might be the reference frameworks where 
the mathematical treatment becomes amenable to 
analysis without entering in complex numerical 
calculations (Saville and Palusinski, 1986). Having 
these aspects in mind, a model can be also useful for 
performing additional calculations that are necessary in 
order to arrive at quantitative conclusions.  
 Therefore, the purpose of this work is to present a 
non-ideal and linear model of CZE to help one in the 
method development and optimization of practical 
separations of small charged molecules (see, for 
example, Jandik and Bonn, 1993; Khun and Hoffstetter-
Khun, 1993; Grossman and Colburn, 1992). Although 
this model is based on fundamental principles and 
dynamic equations, it has to be relatively simple to 
compute and use in the laboratory. The basic variables 
considered in the model are: injection and detection 
lengths of analytes, electrical field strength, hydration 
radius and diffusion coefficient of analytes, pK of 
analyte terminal groups, pH and ionic strength of 
electrolyte solution, capillary diameter and length, 
capillary zeta potential, test temperature and relative 
mass fractions of analytes.  

The numerical code elaborated with the model is 
able to predict the effect on the electropherogram 
resolution that yields a change carried out on any 
fundamental variable listed above. Examples of the 
prediction capability are presented for different 
analytes. Experimental data obtained from a commercial 
equipment of CE are used for comparison with 
theoretical predictions. In particular we present specific 
studies involving EOF tracers like dimethyl sulfoxide 
(DMSO) and caffeine and small charged molecules 
(theophylline, salicylic acid and benzoic acid). 

Before ending this section, it is relevant to indicate 
that the model proposed here allows one the 
determination of diffusivity, hydrodynamic radius and 
zeta potential of analytes, when analyte migration times 
are available from electropherograms. This aspect has 
not been fully considered in previous works. 

II. MODEL DEVELOPMENT 
In this section we present the balance equations of the 
relevant physicochemical properties that are required to 
model the electropherogram of CZE. These equations 
are specialized here in the description of the EOF and 
EM in the capillary tube characterized by a total length 
L and radius R. Here the detection length is designated 

 and of course . Throughout this work, 
variables have SI units unless it is stated specifically. 

dL LLd <

A. Electroomostic Flow in the Capillary 
The electroomostic flow is analyzed through the balance 
equations describing electrokinetic phenomena of 

charged particles suspended in a fluid (Probstein, 1989; 
Russell et al., 1991). Thus, mass conservation and 
balances of momentum, energy and ions are required for 
the BGE. By considering the electroosmotic flow in the 
axial direction of the capillary of radius R, the following 
equations are valid for the steady state flow regime in 
the cylindrical coordinate system: 
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In Eqs (1) to (3) g  is the gravity acceleration,  is the 
applied electrical field strength in the tube axial 
direction z and the divergence of the velocity vector 

E

v  
is considered null. Also,  is the mixture density 
evaluated at the wall temperature, µ is the viscosity, k is 
the thermal conductivity and 

wρ

ε  is the electrical 
permittivity; all these properties belong to the BGE. 
Throughout this work  is used for the unit charge. 

Therefore,  is the distribution of electrical 

charge per unit volume in the electrolyte solution, which 
depends on ion valence  and ion number 

concentration . The condition of neutral charge 

imposes  and  far away from the tube 
wall. We define the electrical field 
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φ∇−=E , where φ  
is the electrical potential in the electrolyte solution. 
Since electrostatic laws are valid within the framework 
of CZE, the electrical field shall be irrotational. The 
temperature T can vary within the fluid due to Joule 
effect associated to the term φφσσ ∇⋅∇=⋅ EE  where 

 is the electrical conductivity and  is 

the electrophoretic mobility of ion i. Viscous dissipation 
is of the order of the water viscosity value and is 
neglected. In addition, Eq. (3) has associated the 
balance of ions expressed through . In this context of 

analysis the total diffusion flux 
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i involves two driving forces, one is generated by the 
Brownian movement and the other is a consequence of 
the electrical potential. Thus, the ion velocity 

#
i

e
ii uvvv ++=  includes the mixture velocity v  of N 

species, the electrophoretic velocity e
iv  and the 

diffusion velocity #
iu . Therefore, the appropriate 

diffusion constitutive equation is 
( ) φωω ∇−∇−=−= iiiiiBii

#
i neznTkvvnJ  (see, Russel 

et al., 1989 and Probstein, 1989, for further details).  
Another relevant parameter is the ion hydrodynamic 
mobility ii aπµω 61=  expressed as the inverse of the 
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Stokes friction coefficient associated to a spherical 
particle with hydration radius  suspended in a flow 
field.  

ia

 The following hypothesis are typically found in the 
description of the electroosmotic flow described by Eqs. 
(1) to (3): (a) thermal and electrical conductivities, 
viscosity and electrical permittivity are nearly constant, 
(b) Boussinesq approximation concerning body forces is 
valid in relation to the temperature field, and the 
mixture density is described through 

. In this expression ([ ww TT −−= βρρ 1 )] β  is the 
thermal expansion coefficient and sub index w indicates 
evaluation at the tube wall temperature.  
 The boundary conditions for the mathematical 
problem described by Eqs. (1) to (3) consider the non-
slip velocity, the capillary zeta potential  and the 
temperature , all evaluated at the tube wall. 
Conditions of symmetry at the tube centerline are also 
imposed. Since the thickness of the electrical double 
layer near the tube wall is small in relation to the radius 
of the capillary tube and the electrical potential changes 
within this region only, the ion number concentration 

 can be expressed (Russel et al., 1989) 

. 
Having into account these boundary conditions, one 
obtains for a z-z electrolyte, 
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where 
R
r

=ξ  and  is the Boltzmann constant. We 

define 

Bk

( ) DBA l/Tk/NIe 1102 32 == εκ , which gives 
an estimation of the electrical double layer thickness  
near the tube wall also designated the Debye length. 
Here,  is the Avogadro number and the ionic 

strength  is expressed in units of 

M≡mol/L. Since in the CE apparatus, the capillary inlet 
and outlet enter the BGE and sample vials in the vertical 
position, the sign (-) stands in Eq. (5) for the case in 
which the fluid is moving upward in the capillary tube; 
sign (+) is for the inverse situation. In Eq. (5), 

 is the Grashof number 
that measures the distortion of the electroosmotic flow 
due to thermal and electrical effects. This equation 
shows one that the radius of the fused silica capillary, 

which is raised to the fourth power, shall be chosen with 
the criterion of minimizing thermal effects (Piaggio and 
Deiber, 2000). Therefore, high thermal conductivity and 
permittivity of BGE and low electrical field strength and 
ionic strength manifested through the BGE electrical 
conductivity are also desired to achieve a well shaped 
electropherogram. 
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Equation (5) indicates that significant distortions of 
the electroosmotic flow when the tube diameter D=2R 
is high can be obtained due to the enhancement of 
thermal and electrical effects. In fact, since for 
fused silica capillary, it is observed that the upward 
EOF for high  can be different from the desired 
near plug flow. The direct consequence of the radial 
varying flow is the increment of the undesired axial 
Taylor - Aris dispersion phenomenon with the loss of 
resolution in the separation of analytes. In regards to the 
downward EOF for high  this situation becomes 
even more critical in the sense that the velocity profile 
can be directionally inverted near the tube centerline 
generating recirculating zones within the capillary. This 
phenomenon is responsible for the catastrophic failure 
frequently found in the CZE experiments. Calculations 
show in general that the capillary diameter shall not 
exceed a value of around 150 µm when the applied 
voltage difference is around 30 kV.  

0<tς
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The theory presented in this section should then be 
used to guarantee that the electroosmotic velocity v is 
consistent with the following expression when  is 
small (see Eq. (5) and Russel et al., 1989, for further 
details): 
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where the variation of the electrical potential is also 
neglected within the small region  
because  is very small in practice. Eq. (7) will be 
used throughout this work having into account that CZE 
variables are chosen so that the Grashof number is 
appropriately minimized according to the suggestions 
provided in this section. 
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B. Injection of Analytes 
 In this model the injection driven by pressure is 
considered. For the inception of flow under a sudden 
applied pressure gradient L/p∆ , the volume V of 
sample injected during a time t in the tube of length L 
satisfies the following expression, which is obtained 
from the balance of momentum of the fluid within the 
capillary: 
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In Eq. (8),  is the effective time of injection 
accounting for the transient effects associated to the fact 
that the sample starts from rest before moving into the 
capillary tube. In most of the practical circumstances 

≈ t and the evaluation of Eq. (8) to obtain V is 
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)
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carried out directly with the injection time t. In the 
modeling of CZE the amount of sample introduced in 
the capillary inlet is considered ideally as a near plug 
with a length h defined through the volume of sample 
given by Eq. (8), which satisfies . ( )2/ RVh π=
 
C. Capillary Zeta Potential 
An important conclusion in the literature concerning the 
modeling of CZE is that a z-z electrolyte solution is 
neutral at the centerline of the capillary tube when the 
Debye length  satisfies  (Gross and Osterle, 
1968). In CZE this relation is fully achieved and for the 
purposes of calculating the capillary zeta potential, the 
hypothesis of flat surface is valid. Thus, curvature of the 
tube can be neglected. Since Eq. (6) is deduced under 
these considerations, the specific charge of the capillary 
surface is readily obtained from this equation as 

Dl 10≥Dl/R
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ςε ∞= )) . Therefore, to 

evaluate tς  the specific charge  should be modeled 
(see, for example, Healy and White, 1978) from basic 
information concerning: a) the pK of silanol groups 
attached to the external layer of the fused silica wall 
and, b) the total number of acid groups per unit area. 
This subject is under research at the present time and 

there is not a unique value of the effective pK of silanol 
groups available in the literature (Jandik and Bonn, 
1993). This context of analysis indicates that further 
research is required to elucidate better the interaction 
between electrolyte solution and effective charge at the 
tube wall for different pH and I. 

tq

Therefore, we decided to evaluate  experimentally 
by using two neutral markers: dimethyl sulfoxide 
(DMSO) and caffeine. Injection times of one and three 
seconds were used, respectively, to introduce these 
markers into the capillary with a diameter of 50 µm and 
the migration times t

tς

m of markers were measured at 
different pH and I for = 15 kV. Since markers are 
neutral, they move along the capillary tube only due to 
the EOF. Thus from Eq. (7) one readily obtains, 
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where the electroosmotic velocity is considered a near 
plug flow, as one should expect when the independent 
variables have been chosen for a Grashof number 
minimized, as explained in a previous section above. 
The capillary zeta potential can be evaluated with Eq. 
(9) when data of tm are available as shown in Table 1. 
 

 
Table 1. Capillary zeta potential obtained from Eq. (9) for different pH and ionic strength I. 

 pH 8.0 8.5 9.0 9.5 10.0 
I (M) 0.0087 0.0213 0.0439 0.0698 0.0882 

tς  (V) -0.087 -0.080 -0.073 -0.068 -0.065 
 
D. Electrophoretic Migration  
The modeling of a charged particle migration in an 
electrolyte solution can be carried out with the same 
basic equations used to describe the electroosmotic 
flow. Here, the electrolyte solution develops a velocity 
profile around the particle and specific boundary 
conditions are satisfied on the particle-fluid interface. 
Thus the fluid velocity v , the electrical potential φ and 

the diffusion flux #
iJ  fulfill, e

ivv = , ( ) 0=⋅− nvnJ e
ii

#
i  

and ( ) iqn =⋅∇φε  on the surface of the particle i with a 
specific charge . Here, iq n  is the unit vector 
perpendicular to the particle surface. Also, 0→v , 

 and ∞→ ii nn E→∇− φ  far away from this particle. 
The problem thus generated is rather complex to solve. 
Nevertheless, several conditions proper to CZE 
facilitate the analysis of the electrophoretic particle 
migration superposed to the electroosmotic flow in the 
tube. Fortunately the particle Reynolds number is of the 
order of 10-4 and inertial effects in the flow field can be 
neglected. On the other hand, charge convection cannot 
be discarded in general, because the Peclet number is 
around 1/2 (Russel et al., 1989). Although the most 
relevant expressions that allow one to estimate the 
asymptotic electrophoretic velocities are known, in a 
more general context, the consideration of numerical 

solutions reported in the literature (O´Brien and White, 
1978) suggests to one that the relation between 
electrophoretic velocity e

iv  and particle zeta potential 

 may present complex responses for high iς iς  , like the 
saturation of the migration velocity (evolution toward a 
constant value for increasing particle zeta potentials) as 
well as the presence of a maximum in the relation 
between particle mobility and particle zeta potential. In 
particular, for the small charged molecules ( ) 
studied in this work, Henry ´s solution is valid and can 
be expressed (see, for instance, Probstein, 1989 and 
Russel et al.,1989), 
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where the effective charge  is 

proportional to the charge fraction  calculated from 
the dissociation constants of base and acid groups of 
analytes as indicated below. For practical reasons, in our 
calculations Henry ´s function is represented through 
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fits well the corresponding numerical data. Therefore, 
for  Eq. (10) can be directly considered in the 
CZE model formulated here. 
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E. Axial Detection of Analytes 
The theory involving the axial detection of analytes is a 
crucial theoretical problem defining the quality of the 
CZE model. As it will become evident in this section, in 
the detection of analytes one has to estimate first the 
effective charge of particle  required in 

Eq. (10) according to the dissociation constants for acid 
and base groups of analytes (see, for example, Poppe 
1998, for a critical discussion of this specific aspect, and 
also Kenndler, 1998). Thus one can define, for example, 
the negative charge fraction  of an acid group with a 

given pKa through the expression 
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+
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Other expressions can be found for the positive and 
negative charge fractions of basic groups. 

Once the effective charge of analytes, the capillary 
zeta potential and the EOF of the BGE have been 
estimated with the theoretical framework of the 
previous sections for well specified operational 
conditions of the CZE run, the migrations of particles 
(analytes) must be evaluated along the axial coordinate z 
of the capillary tube in order to register at the UV 
detector the absorbance as function of time. Then from 
the absorbance peaks (proportional to concentration 
peaks) the migration times of analytes are obtained as 
far as the electropherogram resolution is of course 
appropriate. By considering the analysis of Poppe 
(1998) concerning the classification of models 
according to the types of phenomena included in the 
balance of species, it is clear that the CZE model 
proposed here may be considered non-ideal and linear in 
the sense that dispersion effects are relevant and analyte 
samples are introduced in the capillary tube under 
diluted conditions.  

With these physical considerations and when the 
adsorption of analytes on the capillary wall is not 
present, the balance involving the ion number 
concentration in cylindrical coordinates to describe the 
movement of charged species along the capillary tube 
toward the UV detector is:  
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where  is the molar concentration of analyte i and 
 is the Stokes-Einstein molecular 

diffusion coefficient. It is important to point out here 
that  has associated an unique value of  for the 
case of strong electrolytes only, while for a weak 
electrolyte one should interpret the hydration radius as 
an average value calculated with the radii of neutral and 
charged fractions (see, for example, Saville and 
Palusinski, 1986). Eq. (11) poses the classical Taylor - 
Aris axial diffusion problem, which allows one to solve 
the radial average concentration  in terms of 
position z, time t and the z-components of analyte 

velocities 
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( )e
ivv + . In this sense, the Taylor-Aris 

effective diffusion coefficient is 
( ) ( )iBieff a/PeTkD µπχ 61 2+= , where χ depends on 

the effective velocity profile placed in Eq. (11). Here 
the Peclet number ( ) ii

e
ii D/avvPe +=  shall be less 

than  for the expression giving  to be 
valid; this condition is readily satisfied with the 
characteristic scales of CZE. Although the experimental 
CZE of small charged analytes yields typically 

, one should observe that axial dispersion 
might be enhanced mainly for high applied electrical 
field and capillary radius; i.e., for high Grashof number. 
Otherwise, for the case of near plug flow it is well 
known that 

RL /4.0 ieffD

100≤iPe

0≈χ . 
Although Taylor-Aris axial diffusion may be 

negligible because a near plug flow is generally 
achieved for small orders of  (see Eq. (7)), one 
must account also several other dispersion phenomena 
in the total effective dispersion coefficient 
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T
ieff DD ϑ+≈ 1  , which includes all the dispersion 

effects present in CZE through the analyte dispersion 
parameter iϑ . This parameter can be interpreted as the 
sum of ratios of each dispersion effect to the molecular 
diffusion coefficient . Therefore, one can define iD
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imidji DtLH 2/ϑ  where  is the migration time 

of analyte i and the most relevant theoretical plate 
heights are (Kenndler, 1998):  for 
hydrodynamic analyte injection at the average velocity 
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dispersion already discussed above,  for 
concentration overload (neglected due to sample 
dilution) where  is an empirical parameter, 
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adsorption where  is the rate constant of desorption 
and K is the distribution coefficient of wall adsorption, 
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( )22 4 cd r/LR  for the capillary coiling with radius  
associated to the conexion between upward and 
downward capillary branches. Table 2 reports estimated 
values of  by using the above equations. 
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average of Eq. (11), one obtains: 
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III. EXPERIMENTAL TECHNIQUE Eq. (12) requires appropriate initial and boundary 
conditions to obtain relievable concentration profiles as 
function of detection time. In general one must consider 
that the injection time of sample affects the solution 
obtained for  through the length h of the sample 
volume assumed as a near plug. Therefore, since the 
initial condition for Eq. (12) requires that the amount of 
sample introduced initially at the tube inlet be confined 
in a finite length, one imposes, 

>< iC

A P-ACE 5010 Beckman Instrument with UV detector 
was used for the electropherograms involving EOF 
markers and analytes (DSMO, caffeine, theophylline, 
benzoic acid, salicylic acid). Standard solutions of 
analytes were prepared with deionized water at a 
concentration of 250 µg/ml. The detector was placed at 
0.20 m from the inlet of the fussed silica capillary (L= 
0.27 m and D=50 µm). The applied voltage was 15 kV 
and the temperature was fixed at 25 °C. Hydrodynamic 
injection of analytes was performed at a pressure 
difference of 0.5 psig with an injection time of 3 s for 
standard runs. The buffer was borate at different pH and 
I (see Table 1). Solutions were prepared by dissolving 
the appropriate mass of boric acid in distilled water at a 
concentration of 0.1 M. Then, the pH was adjusted with 
NaOH 10 M before a small dilution to obtain the final 
volume. The values if ionic strength obtained were in 
the range from 10 to 90 mM. 

220 /hz/h,t,CC oii ≤≤−=>>=<<     (13) 
when the origin of the coordinate system is placed at the 
center of the idealized sample plug.  is the 
analyte concentration in the sample vial. During the 
CZE run, the boundary conditions to be satisfied are: 

oiC ><

∞<<∞−>>=< z,t,Ci 00        (14) 
Solutions of Eq. (12) for finite and  can be 
found in the literature (Crank, 1976). 

h 0→h

It is then clear that Eqs. (1) to (14) define fully the 
non-ideal and linear model of CZE proposed here to 
determine the appropriate conditions for CZE separation 
of a mixture of analytes. Therefore, the superposition of 
solutions obtained for  as function of time t, and 
hence migration times t

>< iC

mi, gives one the 
electropherogram of N analytes. For this purpose a 
simple numerical code was elaborated with these 
equations  to   predict  the   electropherogram   of   small 

 
IV. PREDICTION OF ELECTROPHEROGRAMS 

AND DISCUSSION 
To validate the model of CZE, numerical predictions are 
fitted to experimental data of each analyte migration 
time, for different pH and I. These data are obtained 
from the available commercial equipment.  

charged molecules. Examples of the prediction 
capability of the model are presented for three analytes: 
benzoic and salicylic acids and theophylline. 
 

Table 2. Experimental migration time  of analytes for different pH and mit
 ionic strength I, and numerical estimation of physicochemical properties. 

 

Benzoic Acid (pKa=4.19, PM=122.1 g/mol) 
pH 

 
I 

(M) 
mit  

(s) 
ia  1010

(m) 
iς  

(V) 
iD 1010

(m2/s) 
iϑ  κ 10-8 

(m-1) 

8.0 0.0087 87.0 3.19 0.0528 7.80 29 3.0 
8.5 0.0213 101.4 2.97 0.0531 8.16 23 4.8 
9.0 0.0439 124.2 2.77 0.0547 8.75 16 6.8 
9.5 0.0698 146.4 2.64 0.0555 9.18 12 8.6 

10.0 0.0882 175.8 2.49 0.0586 9.74 9 9.7 
Salicylic Acid (pKa=3 , PM=138.12 g/mol) 

pH 
 

I 
(M) 

mit  
(s) 

ia  1010

(m) 
iς  

(V) 
iD 1010

(m2/s) 
iϑ  κ 10-8 

(m-1) 

8.0 0.0087 85.8 3.21 0.0513 7.55 31 3.0 
8.5 0.0213 99.0 3.07 0.0514 7.88 25 4.8 
9.0 0.0439 122.4 2.80 0.0540 8.66 17 6.8 
9.5 0.0698 148.8 2.62 0.0562 9.25 12 8.6 

10.0 0.0882 186.0 2.38 0.0613 10.20 8 9.7 
Theophylline (pKa=8.77, PM=180.17 g/mol) 

pH 
 

I 
(M) 

mit  
(s) 

ia  1010

(m) 
iς  

(V) 
iD 1010

(m2/s) 
iϑ  −α  

(C) 
8.0 0.0087 60 1.45 0.0173 16.72 10 0.14 
8.5 0.0213 69 2.60 0.0215 9.33 26 0.35 
9.0 0.0439 90 2.80 0.0339 8.66 23 0.63 
9.5 0.0698 130.8 2.50 0.0499 9.67 13 0.84 
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10.0 0.0882 141.6 2.73 0.0493 8.88 14 0.94 
 

Therefore, with this strategy involving the interplay 
between theory and experiments, the estimation of 
hydration radius, diffusion coefficient and zeta potential 
of each analytes are obtained and reported in Table 2. 
The values of these properties have the expected order 
of magnitude (see also Jandik and Bonn, 1993) 
indicating that the model is providing a good prediction 
of each analyte electropherogram involving the 
relatively small molecules considered here.  

By increasing pH and I, one observes in Table 2 that 
 decreases and  increases consistently with the 

migration times of analytes. In fact, for higher negative 
values of particle zeta potentials the effective velocities 
of particles become lower since, in our experimental 
setup, the detection of analytes is placed near the 
negative electrode, while the injection of sample is 
carried out on the side of the positive electrode (Figure 
1). Consequently the electrophoretic migration is 
against the electroosmotic flow for negatively charged 
particles. While benzoic and salicylic acids are fully 
ionized in the pH range worked here, one should 
observe that theophylline is changing the effective 
charge fraction  (Table 2) from near zero at pH ≈ 8 
to -0.94 at pH ≈ 10 as a consequence of the dissociation 
constant with pK = 8.77. In this sense a transition of the 
hydration radius at around pH ≈ 9 is consistently 
observed in Table 2. 

ia iς−

−
iα

On the base of Table 2, Figure 2 illustrates how 
different values of pH and I can affect the resolution of 
electropherograms involving the separation of 
theophylline and salicylic and benzoic acids, which is 
the main target of this work. Thus, by using the data of 
Table 2 concerning each analyte, we find that a good 
resolution is obtained for pH ≈ 10 and I ≈ 0.0882. This 
theoretical prediction was also validated by the 
experimental electropherogram indicating that the 
condition of linear model is fully satisfied for the cases 
studied here. Furthermore, at pH ≈ 9 and I ≈ 0.0439 the 
peaks of benzoic and salicylic acids are fully superposed 
and the separation is not possible for these values of the 
BGE. Thus, we have a clear indication of the optimal 
physicochemical conditions for analytes separation from 
the proposed model as illustrated in Figure 2. In 
addition, it is observed that at pH ≈ 8.5 the peaks of the 
salicylic and benzoic acids captured by the UV detector 
are inverted.  
 

V. CONCLUSIONS 
Apart from being a widely used analytical tool, this 
work suggests that CZE has a high potential for 
estimating physicochemical properties like hydration 
radius, diffusion coefficient and zeta potential of 
analytes, when the electropherogram is modeled and 
interpreted through the balance equations of transport 
phenomena coupled to electrokinetic effects. More 
specifically: 1) A model of capillary zone 

electrophoresis (non-ideal and linear) involving small 
charged molecules is validated with experimental data. 
2) This model provides quantitative predictions of 
practical interest for the electropherogram interpretation 
of a mixture of analytes.  
 

 

 

 
Fig. 2. Model prediction of electropherograms 
(dimensionless concentrations versus time) for the 
separation of theophylline (T), benzoic (BA) and 
salicylic (SA) acids for different pH and ionic strength I 
(Table 2) of the BGE. 
 

VI. ASPECTS FOR FURTHER RESEARCHES 
In the framework of the model proposed here, further 
research is still required to elucidate better the 
interaction between the BGE and the effective charge of 
tube wall. One also requires to investigate particular 
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situations involving the non-ideal and non-linear model 
of CZE for practical applications. This type of model 
has been studied numerically in the literature by 
introducing a perturbation in the basic mathematical 
problem through the small parameter 

( ∞
iiB nzehTk 224/ε )  (see, for example, Saville and 

Palusinski, 1986). 
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