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Abstract -- The effect of contact angle hysteresis 
on the relative permeability of gas and condensate is 
studied with a mechanistic pore-level model of 
retrograde condensation in three dimensional pore 
networks under gravitational forces.  We examine 
the effects of changing the wettability of the fluid-
solid system from strongly liquid-wet to intermediate 
gas-wet. 
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I. INTRODUCTION 
 
A better understanding of phase distribution and flow in 
gas-condensate reservoirs is essential for optimum 
exploitation strategies. When pressure, either in the 
wellbore or in the reservoir, drops below the dew point a 
new phase appears, a phenomenon known as retrograde 
condensation. At first, the new condensate phase 
remains immobile blocking few gas paths; the gas 
effective permeability remains high. As the pressure 
decreases, condensate dropout tends to occupy more and 
more gas paths, attaining the so-called critical 
condensate saturation at which the liquid phase becomes 
mobile for the first time, and the gas effective 
permeability decreases. How abruptly it decreases 
depends on the pore structure, fluid properties and 
operating conditions. The critical condensate saturation 
and the relative permeability of gas and condensate are 
essential parameters for the evaluation and development 
of new designs of gas and condensate recovery 
strategies.   

Literature reviews of laboratory studies of critical 
condensate saturation and relative permeability of gas 
and condensate are provided by Wang and Mohanty 
(1999), Blom et al. (2000), Jamiolahmady et al. (2000) 
and Li and Firoozabadi (2000).  

Pore-level models of condensation dealing with the 
various aspects of the process have been developed by 
Mohammadi et al. (1990), Fang et al. (1996), Toledo 
and Firoozabadi (1998), Wang and Mohanty (1999), Li 
and Firoozabadi (2000) and Jamiolahmady et al. (2000). 
Recently we developed a mechanistic model of the 
retrograde condensation process in three-dimensional 
pore networks under gravitational forces (Bustos and 
Toledo, 2002a). In that work we reported new gas and 

condensate relative permeabilities as a function of 
condensate saturation for various system and simulation 
parameters and conditions. In a companion work 
(Bustos and Toledo, 2002b), we used the model to study 
the sensitivity of relative permeability of gas and 
condensate to pore size distribution.  

In this paper we use the condensation model to 
examine the effects of changing the wettability of the 
fluid-solid system on the distribution of gas and 
condensate and thus on their relative permeabilities. 
Wettability is changed from strongly to intermediate 
liquid-wet. Li and Firoozabadi (2000) first studied this 
aspect from a modeling point of view, although 
restricted to two-dimensional networks. 
 
 

II. NETWORK MODEL 
 
A summary of the model is presented emphasizing key 
aspects for the work here. A three-dimensional cubic 
network of pore segments represents porous media. 
Nodes at which the pore segments are connected act 
only as volumeless junctions with infinite conductance. 
Pore segments are rectilinear with polygonal cross 
sections circumscribing circles with distributed radii. 
Pore segment radius rt is randomly assigned according 
to a given probability density function. Condensate 
accumulation in pore corners allows for condensate 
connectivity throughout the network, no matter how 
high the pressure is. We allow for contact angle 
hysteresis, which is characterized by advancing, , 
and receding, , contact angles; the advancing contact 
angle being always greater than the receding contact 
angle. Contact angle hysteresis arises when the liquid-
vapor interface is unable to retrace its original path 
when it recedes on a solid surface. Pore segment length 

 is constant and chosen to accommodate the highest 
stable condensate column in vertical pore segments 
without overflowing. 

Aθ

Rθ

l

The volume of condensate residing in the corners 
of a pore segment of arbitrary polygonal cross section is 
given by the general formula (see Fig. 1), 
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where is the volume of condensate at the corners of a 
pore, n is the number of sides of the polygonal cross 
section of the pore,  is the radius of curvature of the 
longitudinal meniscus, defined as 
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where  is the interfacial tension, is the capillary 

pressure defined as , where  is the pressure in 

the gas phase and  in the condensate phase, is the 
pore length,  is the corner half angle, and 

γ capP

cg PP − gP

cP l
α θ   is the 

contact angle -which we assumed equal to the receding 
contact angle. 
 

 
 

Figure 1. Condensate wedge in a pore corner of 
semiapical angle α. 

 
 

The capillary pressure that produces the bridge of 
condensate corresponds to the pressure at which the 
contact between the gas phase and the pore walls is lost. 
This configuration is highly unstable; an infinitesimal 
addition of condensate produces the snap-off of the gas-
condensate interface and the formation of a bridge. The 
snap-off pressure Ps is given by (Lenormand, 1983) 
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Again,  is the receding contact angle. The critical 

height of the condensate column for which the 
condensate begins to flow to the lower end of the pore 
segment can be calculated from (Fang et al., 1996) 
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where is the condensate height and  is the 
condensate density (see Fig. 2). Condensate saturation is 
easily calculated from and the shape of the pore 
segment. 
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Figure 2. Condensate bridge at the center and 
bottom of a pore segment. 

 
The critical condensate height inside a pore that 

produces dripping of condensate from the bottom can be 
calculated from (Fang et al., 1996) 
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 condensate where  is the critical condensate height. In this case a 
flat meniscus is assumed at the bottom end of the pore 
segment. 
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From a simulation point of view, condensate 
dropout in a given vertical pore occurs by a cycling 
process, comprising: a) condensation until a capillary 
bridge is formed, b) additional condensation until the 
condensate column becomes unstable and dripping 
begins, c) brief reopening of the pore to the flow of gas, 
and d) formation of a new condensate bridge at the 
prevailing capillary pressure. This process repeats itself 
endlessly.  

2α θ 

For horizontal pore segments, once the snap-off 
pressure is reached, further condensate dropout forms a 
bridge. The condensation process continues until the 
condensate fills the pore segment completely. Further 
condensate dropout drips from the ends of the pore 
segment. Condensate configurations in horizontal pore 
segments are not affected significantly by gravity. 

From a simulation viewpoint, condensate dropout 
in horizontal pore segments occurs in two steps: 
condensation until the capillary bridge is formed, and 
further condensation until the condensate saturates the 
pore completely and condensate dripping begins. This 
last configuration is stable. 

The continuous condensation process is discretized 
in steps, an idea first introduced by Fang et al. (1996). A 
small amount of condensate is added to each pore 
segment per step. Capillary equilibrium throughout the 
network is forced at the end of each step. As a 
consequence of adding condensate a pore may either 
increase its condensate inventory as wedges in pore 
corners if  or form a bridge of condensate, or 
increase the length of a bridge if already exists, if 
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Once the condensate phase reaches the percolation 
threshold of sample-spanning paths of condensate-filled 



pore-segments, in the absence of a significant external 
pressure gradient, the gas flow stops. Then the gas 
effective permeability becomes zero. 

A complex flow mechanism may arise for the gas 
phase. A gas island may be reconnected to the gas flow-
carrying backbone if two or more pores holding 
condensate and acting as barriers to the gas flow get free 
of condensate in a given cycle. Then the gas island 
reconnects to the main gas flow contributing to its 
overall conductance, although just for an instant. This 
mechanism is also included in our simulation of the 
condensation process. 

The last mechanism we consider occurs during the 
downflow of an unstable condensate bridge. For the gas 
phase this implies advancement of a gas column above 
the condensate and displacement of a gas column below 
the condensate. This event contributes to the overall gas 
permeability if the gas phase connects with the sample-
spanning paths of gas-filled pore segments. 

A modified form of the Poiseuille’s law defines the 
fluid, gas or condensate, conductance g of each pore 
segment, i.e., 
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where q is the volumetric flow of fluid through the pore 
and ∆p is the pressure drop across the pore. g  depends 
on the configuration adopted by the fluid phases. For 
instance, when gas occupies the center of a pore and 
condensate its corners, the pore-level gas conductance is 
approximated here by Poiseuille’s law for an effective 
gas cylinder, i.e.,  
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where  is the fluid viscosity and  is given by 
(Blunt, 1997) , where  is the radius 
of the circle circumscribed by the sides of the polygonal 
pore and  is an equivalent volume radius given by 

 with  corresponding to the volume of gas 
in the pore segment. For stable circular cylinders of gas 
of radius , . Conductances for various other 
configurations are provided by Bustos and Toledo 
(2002a). 
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For any given gas-condensate capillary pressure 
each phase develops its own flow network to which 
conductance can be assigned in much the same way as 
for monophasic flow.  

To find the distribution of nodal pressures in each 
flow network once an external pressure gradient is 
imposed we use an iterative solution of the system of 
equations. With the nodal pressures of a given flow 
network in hand, the flow rate everywhere is calculated 
and the network conductance computed from  

 

( )outin

j
j PP

Q
g

−
=    (8) 

 
where jg  is the network fluid conductance of the j 

phase,  is the total flow of phase j throughout the 

network and  is the pressure difference across 
the network. 
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The slow flow of a viscous fluid j in the presence 
of a second fluid in a porous medium is commonly 
assumed to be described also by Darcy’s law, 
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where jµ  is the viscosity of fluid j,  is the 
pressure gradient on fluid j in the direction of the main 
flow, and  is the effective permeability of fluid j. The 

relative permeability of phase j is thus 
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where Q and g  are respectively the volumetric flow rate 
and the effective conductance when the phase flows 
through the pore network alone.  
 

 
III. RESULTS AND DISCUSIONS 

 
The results here are based on the following data. 
Condensate density is 800 kg/m3 and gas-condensate 
interfacial tension is 0.001 dynes/cm. We use three-
dimensional networks of 20×20×20 nodes, with 24,000 
pore segments. Bustos and Toledo (2002a) found that 
this size is enough to minimize network size effects. 
Pore segments are rectilinear with square cross-sections, 

, circumscribing circles of given radii. To 
decorate the networks, pore sizes are drawn from the 
truncated log-normal distributions, depicted in Fig. 3; 
mean pore radius is constant and equal to 55 µm, 
standard deviation varies from 8 to 50 µm (see Table 1). 
The higher the standard deviation the higher the 
skewness, towards the smaller pores, of the distribution. 
Pore length is constant and equal to 300 µm. Condensate 
is added in increments of 2,000 µm

4/πα =

3 per step until the 
flow of gas is stopped. 

Relative permeability and saturation of both gas 
and condensate are evaluated at each step. Different 
receding contact angles are studied, 0, 10, and 
20°, and 30°. The fluid-solid system is 
strongly liquid-wet when 0°, and increasingly 
intermediate liquid-wet as increases from zero. 
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Figures 4-7 show calculated gas and condensate 
relative permeabilities. Results correspond to 95% 
confidence intervals around the mean of 3 realizations of 
each pore size distribution. Previously, we showed 
(Bustos and Toledo, 2002a and 2002b) that the relative 
permeability of the gas phase has the typical inverted s-
shaped form and shows two distinct regimes. The same 
pattern is observed for the gas relative permeability in 
Figs. 4-7 for narrow and broad pore-size distributions 
and for varying contact angle hysteresis. In the first 
regime, for a condensate saturation less than 20%, the 
gas relative permeability decreases slowly and linearly 
with saturation; condensate exists mainly as liquid 
wedges in pore corners. In the second regime, for 
condensate saturations higher than 20%, as pore 
segments become saturated with condensate, the gas 
relative permeability decreases faster, abruptly in cases. 
Near the percolation threshold of sample-spanning paths 
of condensate-filled pore-segments, the gas relative 
permeability recovers its low decreasing pace, until its 
flow is stopped and its effective permeability becomes 
zero. The gas relative permeability near the percolation 
threshold for the gas phase is knee-shaped. How 
abruptly the gas relative permeability decreases during 
the second regime clearly depends on pore size 
distribution and contact angle hysteresis, for all other 
parameters fixed as Figs. 4-7 show.  The skewer the 
pore-size distribution the narrower the condensate 
saturation range for the second regime. 

According to Figs. 4-7, the first regime is very 
similar for all the pore-size distributions and contact 
angle hysteresis tested except that the skewer the 
distribution the faster the gas relative permeability 
decreases with condensate saturation. During this 
regime, contact angle hysteresis has no appreciable 
effect on the gas relative permeability, because at low 
saturations of the condensate phase most pore segments 
hold condensate wedges in corners, but remain open to 
the gas flow. Varying the contact angle modifies the 
shape of the gas-condensate menisci (see Fig. 1), but of 
course this is not enough to modify significantly the gas 

paths. The same argument serves to explain why the 
condensate relative permability curves shown in Figs. 4-
7 are quantitatively very similar. Figures 4-7 shows that 
during the first regime, the gas and condensate relative 
permeabilities display no significant sensitivity to 
changes in contact angle hysteresis. 

In the second regime, Figs. 4-7 show that at any 
given saturation, the narrower the pore size distribution 
the higher the relative permeability of the gas phase, an 
effect already discussed in Bustos and Toledo (2002b). 
Pore networks decorated with wider and skewer pore-
size distributions attain condensate saturations with a 
higher fraction of small pore segments saturated with 
condensate as compared to narrower distributions. Thus, 
for a given condensate saturation the gas relative 
permeability is lower for the network with wider and 
skewer distributions of pore sizes. 
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Figure 3. Truncated log-normal pore size 
distributions. Parameters are listed in Table 1. 

 
 

Table 1. Parent pore size distributions and parameters. Figure 3 shows graphical representations. A and B 
are adjustable constants. 
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Figure 4. Gas and condensate relative permeabilities. 
Log-Normal distribution; µ = 55 µm; σ = 8 µm. 
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Figure 6. Gas and condensate relative permeabilities. 
Log-Normal distribution; µ = 55 µm; σ = 30 µm. 
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Figure 5. Gas and condensate relative permeabilities. 
Log-Normal distribution; µ = 55 µm; σ = 15 µm. 
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Figure 7. Gas and condensate relative permeabilities. 
Log-Normal distribution; µ = 55 µm; σ = 50 µm. 

  
Figures 4-7 also show that in the second regime the 

relative permeability of the condensate phase barely 
increases as the pore size distribution becomes 
narrower. In all cases of size skewness, the smaller pore 
segments, available in large numbers, control the 
conductance of the condensate network. Large pore 
segments saturated with condensate, if exist, act merely 
as connectors of condensate but do not control the 
overall condensate conductance. 

On a different ground, the effect of contact angle 
hysteresis is significant on both the gas and condensate 

relative permeabilities in the second regime. Figures 4-
7, for a given pore size distribution, show that the 
relative permeabilities of gas and condensate increase 
when the contact angle hysteresis decreases. Actually, 
both permeabilities increase when the receding contact 
angle increases, i.e., when the solid surface becomes less 
liquid-wet.  

We found that the relative permeabilities of gas 
and condensate are not affected by the magnitude of the 
advancing contact angle.  Li and Firoozabadi (2000) 
presented similar results regarding the effect of contact 



angle hysteresis, except that they found a more 
pronounced effect than the one observed here. The 
explanation may well be the lower dimensionality of the 
networks used by these authors. According to the gas 
relative permeability obtained here for the second 
regime, we argue, as Li and Firoozabadi (2000) did, that 
gas well deliverability may increase significantly if the 
wetta

ity. 
At th

aturated. In this case, 
cond sate relative permeability increases notably as the 

ceding contact angle increases. 
 

densate phases. Condensate wedges 
contr

ts become fully saturated with condensate, the 
gas 

ndensate relative 
perm

as-
wet than liquid-wet, a con sion already advanced in 
the literature f orks. 
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bility of the near-well formation is kept more gas-
wet than liquid-wet. 

Near the percolation threshold for the gas phase, 
few remaining gas paths become blocked by condensate; 
the result is a slowly decaying gas relative permeabil

e end of the second regime, the flow of gas is 
stopped and its relative permeability becomes zero.  

It should be noticed in Figs. 4-7 that for any given 
pore size distribution and after the flow of gas is 
stopped, condensate dropout continues until every 
horizontal pore segment becomes s

en
re

 
IV. CONCLUSIONS 

 
A mechanistic model of the retrograde condensation 
process in three-dimensional pore networks under 
gravitational forces is used to determine the effect of 
contact angle hysteresis on the relative permeability of 
gas and con

ibute to both condensate saturation and overall 
conductance.  

The relative permeability of the gas phase shows 
two distinct regimes. In the first regime, the gas relative 
permeability decreases slowly at low saturations of 
condensate, while condensate exists mainly as liquid 
wedges in pore corners. In the second regime, as pore 
segmen

relative permeability decreases faster, abruptly in 
cases.  

Regarding the effect of contact angle hysteresis 
during the first regime, the gas and co

eabilities display no significant sensitivity to 
changes in contact angle hysteresis. 

Results for the second regime show that the 
relative permeabilities of gas and condensate increase 
significantly when the contact angle hysteresis 
decreases. Actually, both permeabilities increase when 
the receding contact angle increases, i.e., when the solid 
surface becomes less liquid-wet. We found that the 
relative permeabilities of gas and condensate are not 
affected by the magnitude of the advancing contact 
angle. According to the gas relative permeability 
obtained here for the second regime, we argue that gas 
well deliverability may increase significantly if the 
wettability of the near-well formation is kept more g

clu
or two-dimensional pore netw
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