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Abstract  -  Transient natural convection in a
horizontal fluid layer, with a blackbody bottom,
heated from above by radiation was studied
experimentally and numerically. The heat flux which
reaches to the bottom is absorbed by the black
surface and reheats the fluid layer from the bottom,
creating an adverse temperature gradient at the
bottom of the fluid layer similar to the one observed
in the classical Rayleigh-Bénard problem.
A mathematical model was developed and governing
differential equations were numerically solved. The
predictions of the model were found to be in an
acceptable agreement with the experimental
temperature distributions obtained in a laboratory
scale pool by holographic interferometer techniques.
Experimentally and numerically calculated heat
convection coefficients were correlated in terms of
Nusselt and Rayleigh numbers and compared with a
literature correlation. It is concluded that this
problem is very similar to the classical Rayleigh-
Bénard problem of a horizontal fluid layer heated
from below.

Keywords - Transient natural convection, Rayleigh-
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I. INTRODUCTION

Natural convection heat transfer in horizontal
fluid layers has been widely investigated by number of
researchers. In most of the cases the layer is heated from
the bottom and cooled from the top. The first
experimental studies were carried out in the beginning
of the twentieth century (Bénard, 1901) and the
theoretical ones were realized few years later (Rayleigh,
1916). Extended summaries of various studies, under
different boundary conditions, by various researchers
are presented by Gershuni and Zhukhovitskil (1972) as
well as Chandrasekkar (1961).

In general, a horizontal fluid layer heated from
the bottom is inherently unstable. Heat is transferred
through conduction up to some certain temperature
difference and in this regime the fluid is stable. After a
critical value of temperature difference the fluid
particles show a tendency to move vertically. At this
point onset of convection is established. In convection
regime some hexagonal cells, called Bénard cells, are
formed (Bénard, 1901). After this point the movements

of particles depend on two forces competing each other;
buoyancy forces and viscous forces. Practical
applications of this problem are seen in cooling of
electronic equipments and thermal storage tanks.

Enhancement in Rayleigh-Bénard convection
was studied by Domaradzki (1989), showing that with
proper forcing, it is possible to control the size of
convection cells. Hernández (1995), studied numerically
the influence of heat transfer rate over the flow
transition. Cerisier et al. (1998) analyzed the onset of
convection in a horizontal fluid layer between two
plates, with different thicknesses and thermal
conductivities, and found a good agreement between his
model and experiments. Thermal instability of fluids
with high Prandtl numbers was experimentally studied
by Wakitani (1994). Prakash and Koster (1996) studied
the Rayleigh-Bénard problem in a system of two
immiscible fluids. They observed that the convection in
the two-layer system is characterized by two distinct
coupling modes between the layers. They are thermal
coupling and mechanical coupling.

On the other hand, in case of heating from
above, if the bottom of the fluid layer is a blackbody,
the heat flux which reaches to the bottom is absorbed by
the blackbody bottom and reheats the fluid layer from
the bottom, creating an adverse temperature gradient as
the one encountered in the classical Rayleigh-Bénard
problem of thermal instability. This is the phenomenon
seen in solar ponds. Kozanoglu (1993) observed that, in
case of heating from above, the instability phenomenon
occurring at the bottom of the fluid layer with a
blackbody bottom is very similar to the one in classical
Rayleigh-Bénard problem and the experimental critical
Rayleigh number is found to be very close to the
theoretical critical Rayleigh number given in the
literature.

II. EXPERIMENTS

Transient natural convection in a horizontal
fluid layer with a blackbody bottom, heated from above
was first studied experimentally. The holographic
interferometry set-up shown in Fig. 1 was used to find
time dependent temperature profiles through the fluid
layer.

The experiments were carried out in a
laboratory scale pool, with dimensions of 200mm x
70mm x 180mm. The bottom of the pool was made of
10 mm. thick aluminum, which  is  painted  black, while
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Figure 1. Experimental Equipment.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.  Photographs  taken  by  holographic  interferometer  techniques  at various instants during the
heating process.   a) heating starts   b) t=15s., RaL=14   c) t=45s., RaL=503   d) t=66s., RaL=890   e)
t=72s., RaL=Racrit, transition starts   f) t=87s., RaL=1215   g) t=136s., RaL=11225   h) t=150s.,
RaL=17281.
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the sidewalls of the pool were constructed of glass. The
bottom of the pool was insulated by 30mm thick
polyurethane layer to avoid heat losses. Purified water
was used in the majority of experiments. Before the
experiments, the fluid was boiled approximately one
hour and then cooled to eliminate small air bubbles in it.

The fluid was heated by an ISING-2700 type
lamp of a maximum power of 1200W. The lamp was
placed 50 cm. above the fluid layer as shown in Fig. 1.
The radiative heat energy reaching to the fluid surface
from the lamp was measured by a Kipp-Zonen-CCI type
pyronometer.

A series of experiments were carried out
employing the holographic equipment by real-time
technique. For various radiative heat fluxes, the
temperature distributions through the fluid layer were
measured and critical Rayleigh numbers were
evaluated. Figure 2 shows a series of photographs taken
by holographic interferometer techniques at different
instants of an experiment. Transient experimental
temperature distributions were obtained by evaluating
these photographs over a photometer by considering
that each interferometric line corresponds to a certain
temperature difference. Experimental temperature
distributions for the photographs shown in the Fig. 2 are
presented in Fig.3. As observed in Fig. 2 (e), the
interferometric lines at the bottom of the fluid layer
show some waving motions at 72 seconds. These
motions indicate beginning of instability and onset of
convection.

The curves before 72 seconds  correspond to
conduction regime, while after this moment the

convection regime is encountered. In all instants, the
adverse temperature gradient created by the blackbody
bottom is observed.
In case of natural convection from a horizontal plate,
the characteristic length is a widely disputed concept
and has been taken in distinct forms by different
authors. In the classical Rayleigh-Bénard problem, the
characteristic dimension, L, is taken as the thickness of
the fluid layer where an adverse temperature gradient
exists, while ∆T is the temperature difference through L
(Rayleigh, 1916; Gershuni and Zhukhovitskil, 1972;
and Chandrasekkar, 1961). This length is the distance
through which particles of the fluid start to move
upward as a result of density difference, when
buoyancy forces overcome viscous forces. In the
thermal instability part of this work the critical
Rayleigh numbers were evaluated based on this
characteristic length and found to be between 1026 and
1051, while the theoretical critical Rayleigh number for
a horizontal layer bounded by one rigid and one free
surface is given as 1100.65 (Chandrasekkar, 1961). The
Rayleigh numbers presented in Figure 2, RaL, are
calculated employing this characteristic length.
On the other hand the authors focused on the heat
convection coefficient, rather than the thermal
instability problem, defined different characteristic
lengths. Fujii and Imura(1972) took the characteristic
length as the width of the plate(smaller dimension),
while McAdams (1954), Lloyd and Moran(1974),
andGoldstein et al.(1973) suggested a characteristic
length of L=A´/P, where A´ and P are the area and the
perimeter of the surface, respectively.
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Figure 3.  Experimental temperature distributions at various instants as a function of vertical distance.
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In lack of a physically meaningful and commonly agreed
characteristic length, in this study the width of the
plate(smaller dimension) was decided to be taken as the
characteristic length for the expressions of the heat
convection coefficient, to be able to have a base to
compare with the correlation proposed by Fujii and
Imura(1972).

III. MATHEMATICAL MODEL

In the following part of the work, a mathematical
model was developed considering energy balance of the
infinitesimal element of  dz shown  in Fig. 4. A fraction
of the radiactive energy, A, is  reflected  from the
surface. Another  fraction, β, is hold

Figure.4  Scheme of the mathemathical model.

on the surface  and  conducted   through  the  fluid
layer. The rest of the radiative energy is partly absorbed
through the layer according to Bourge’s law. Under
these considerations the following partial differential
equation is obtained,
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where,
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The definition of the problem is completed by
the following initial condition,

T(z, 0) = To                     (3)

and boundary conditions,

0zz
TkAAsI

=∂
∂−=β                                          (4)

T(h,t) = To                                          (5)

The part of the radiation that reaches to the
bottom of the layer and is absorbed  by the blackbody
bottom is expressed as,

( ) )bhe(1sIIbottom
−β−=              (6)

In Eqn. 1, Is is replaced by Ibottom and the
equation is solved together with the same initial and
boundary conditions to evaluate the temperature
distribution created by the heating effect from the
bottom. Then, the overall temperature distribution is
obtained by superposing the temperature distributions
from the top and the bottom.

IV. RESULTS

In the conduction regime, the only unknown is
β, the fraction of the radiation hold on the surface, since
w , average convection velocity, is null. A non-linear
regression code was developed to evaluate the values of
β. The code combines some IMSL libraries with a
differential system solver, DSS/2 (Pirkle and Schiesser,
1987). The system of partial differential equations was
numerically solved using the method of Runge-Kutta,
combined with the numerical method of lines, for a
given value of parameter. Then, the regression model,
by comparing the solutions of the model equations with
experimental data, optimizes the parameter. β is a
measure of the longwave fraction in the spectrum of the
radiation that is incident over the fluid surface.
Therefore, it does not vary in the convection regime.
Using the value of β obtained in analysis of conduction
regime, w  appears as the only unknown in Eqn 1.
Namely, there is only one fit parameter in each regime.

The simulations in the conduction regime
resulted an average value of β=0.71 with a standard
deviation of 3%. A very close value of β=0.70 was
suggested by Dake and Harleman (1969). In case of
convection regime the simulations provided an average
value of the convection velocity in the range of 10-4 a
10-5 m/s. Figure 5 shows a comparison of the model
predictions with experimental results at 15 seconds in
conduction regime. Similar comparisons are presented
in Fig. 6 and Fig. 7 for transition and convection
regimes, respectively. As observed in these figures, a
reasonable degree of agreement has been achieved
between the experimental results and model predictions
in all regimes. For a wide variety of operating
conditions, a similar agreement has been obtained.
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A parametric equation in terms of Rayleigh and Nusselt
numbers was developed using experimentally
calculated heat convection coefficients between the
bottom surface of the pool and the fluid,
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Figure 5.  Comparison of the model predictions with
experimental temperature distribution at 15 seconds, in
conduction regime.

0.000

0.010

0.020

0.030

0.040
0 1 2 3 4 5

T-To [°C]

Z 
[m

]

Experimental
Model

t=72 sec.
Io=745W/m2

Transition Regime
Racrit=1035

Figure 6.  Comparison of the model predictions with
experimental temperature distribution at 72 seconds, in
transition regime.

Nu=1.25 Ra 0.18                            (7)

In this work, values of Rayleigh number never
exceeded 1.1x107. Then, the flow was always laminar.
On the other hand, the model predictions for the same
heat convection coefficient were correlated in a similar
manner,

Nu=0.12 Ra0.31                            (8)

In Fig. 8, Eqns (7) and (8) are compared with a
literature correlation, Fujii and Imura (1972),

Nu=0.13 Ra0.33                           (9)

As seen in this figure all the equations provide
values of the same order of magnitude, while the model
predicts  lower  values  than Fujii and  Imura (1972)
and
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Figure. 8  Comparison of Nusselt numbers.

the experiments. This tendency can be attributed to the
characteristics of the model that assumes a constant
value of the fluid velocity. A further study, including
the variation of velocity, is on the way to improve the
model predictions.

V. CONCLUSIONS

The proposed mathematical model predicts
well temperature distributions in a horizontal fluid
layer, with a blackbody bottom, heated from above by
radiation, in regime of conduction as well as
convection. The studied problem was found to be very
similar to the classical Rayleigh-Bénard problem of a
direct heating from below. The heat convection
coefficients calculated experimentally and numerically
were found to be in a reasonable agreement with each
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Figure 7.   Comparison of the model predictions with
experimental temperature distribution at 150 seconds, in
convection regime.
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other as well as with the values provided in the
technical literature.

NOMENCLATURE

A             fraction of radiation reflected from the surface
[-]

A´ area of the surface [m2]
b absorption coefficient [1/ m]
cp specific heat [kJ/kg°C]
d width of the plate [m]
g gravitational acceleration [m/s2]
h depth of fluid layer [m]
h´ convection coefficient [W/ m2°C]
Ibottom intensity of radiation reaching to the bottom

of the fluid layer[W/m2]
Io intensity of radiation [W/m2]
Is intensity of radiation arriving to the surface

of the fluid layer [W/m2]
k thermal conductivity [W/m°C]
L characteristic dimension [m]
P perimeter of the plate [m]
T temperature [°C]
To initial temperature [°C]
t time [s]
w average fluid velocity [m/s]
z vertical distance [m]

GREEK LETTERS

α thermal diffusivity [m2/s]
β fraction of radiation hold on the surface [-]
β´ thermal expansion coefficient [1/°C]
ν kinematic viscosity [m2/s]
ρ density of water [kg/m3]

NONDIMENSIONAL GROUPS

Nu Nusselt number [h´L/ k]
Ra Rayleigh number [gβ´∆T d3/να]
RaL Rayleigh number in thermal instability

[gβ´∆T L3/να]
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