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Abstract 

Motivation. The chemistry of secondary metabolites is a peculiar field of study due to its complexity and the 
interest it raises in other fields of pharmacology. The plants of the Asteraceae, one of the largest families of 
plants, have been intensely studied for this reason and have been resulted in the identification of around 28000 
occurrences of substances in the species of the family. The chemistry of the Asteraceae is extremely complex 
and the great problem with databases compiled from the literature is the lack of knowledge about the precision of 
the data. Thus, the imprecision of the data leads us to use specific techniques to work with this kind of 
incomplete data. So, the use of artificial neural networks is very adequate. In the present study we focus attention 
at the genus Artemisia and work at the infra genus level in order to try to predict the occurrence of chemical 
substances present in the genus. 
Method. The methodology applied starts by taking all the information on the genus Artemisia from the database. 
An entry matrix was assembled with the occurrences of the six most representative chemical classes in the 
genus: flavonoids, monoterpenes, sesquiterpenes, sesquiterpene lactones, polyacetylenes and coumarins. The 
training of the network was performed with the statistical package Statsoft using the backpropagation algorithm. 
Results. The secondary metabolites most frequently present in the genus Artemisia are monoterpenes and 
sesquiterpene lactones. Since monoterpenes are present in almost all species, this variable is highly correlated to 
the variable corresponding of the number total of occurrences. Analyzing the variables corresponding to the 
sesquiterpene lactones, flavonoids and coumarins show that the two previous ones have similar test set and range 
errors (c.a. 0.20) while for coumarins, the error is the same, but range falls to half of that. 
Conclusions. The results presented show that the mechanism of the neural networks may be effective to predict 
the occurrence of secondary metabolites in plant genera if an adequate network is used. In this study we show 
too the application of the artificial neural networks in the chemistry of natural products, a field in which the 
numerical precision is very small. 
Keywords. Artemisia; asteraceae; artificial neural networks; secondary metabolites; occurrence prediction. 
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1 INTRODUCTION 

The chemistry of secondary metabolites is a peculiar field of study due to its complexity and the 
interest it raises in other fields of pharmacology. This is because of the continuous search for 
substances with biological activity. On the border between chemistry and biochemistry, the study of 
new plant species is related to the preservation of the planet’s biodiversity, especially in developing 
countries where the destruction of the forest takes place at alarming rates. 

Compiling data on secondary metabolites already isolated from plants, thus “transforming” these 
into a database, is a hard task that our research group has undertaken. We have centered our efforts 
on the Asteraceae, one of the one of the largest families of plants [1,2]. 

The chemistry of the Asteraceae is extremely complex, in accordance with of its biological and 
anatomical complexity, based on morphological criteria [3] and DNA variation [4]. Several research 
groups have dedicated efforts to the study of Asteraceae plants in the laboratory. Among these, the 
group of Bohlmann [5] stands out. At that time, about 7,000 compounds had been isolated from 
plants of this family. Large reviews have been produced on some classes of secondary metabolites 
in the Asteraceae. Sesquiterpene lactones were reviewed by Seaman [6], diterpenes were reviewed 
by Bohlmann et al. [7], flavonoids by Emerenciano [8] and Bohm [9], triterpenes by Macari [10] 
polyacetylenes by Bohlmann [11], benzofuranes and benzopiranes by Proksck [12]. All these data 
were updated and used in an analysis of the subgroups of the family, using PCA techniques [13]. 

The great problem with databases compiled from the literature is the lack of knowledge about the 
precision of the data. This is because these data are subjected to laboratory errors, studies directed 
to the search for a specific chemical class, etc. One has to consider also the implications of 
geographical and ecological factors, as well as the phenotypic pressures all influencing the 
production of secondary metabolites. Thus, the imprecision of the data leads us to use specific 
techniques to work with this kind of incomplete data. 

The use of neural networks has become a routine in chemistry. A review by Zupan and Gasteiger 
[14] describes some of the applications of neural networks in chemistry and later the examples 
presented in this review were developed in a book [15]. Virtually all areas of chemistry have 
scientific studies published using neural networks. It is interesting to note the applications on 13C
and 1H NMR [16,17], in IR and mass spectra [18,19]. Applications of neural networks in natural 
products chemistry are somewhat less frequent. The study of oxidized triterpenes or limonoids by 
Fraser et al. [20] provides an example. In chemical taxonomy our groups is working with a large 
database for the prediction of the occurrence of substances in genus of Asteraceae [21]. In the study 
mentioned we were able to predict the presence of chemical classes in ca. 500 genera of Asteraceae. 

In the present study we focus attention at the genus Artemisia. We work at the infra genus level 
in order to try to predict the occurrence of chemical substances present in the genus. 
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2 METHODS 

The methodology applied starts by taking all the information on the genus Artemisia from the 
database. According to Ling [22,23] there are ca. 400 described species of Artemisia in the world 
and our database contains chemical data on about half of these, which is fundamental for the 
training of the network. 

An entry matrix was assembled with the occurrences of the six most representative chemical 
classes in the genus: monoterpenes, sesquiterpenes, sesquiterpene lactones, flavonoids, 
polyacetylenes and coumarins. Figure 1 describes a typical substance from each class of compounds 
analyzed in this study [24–27]. We define occurrences as the number of times a substance of a 
certain class was present in a taxon. For example, if the database contains for two different species 
of the same tribe i n1 compounds belonging to the chemical class j for the first species and n2

compounds of the same chemical class for the second species, the number of occurrences Oi,j in the
tribe i is the sum corresponding to n1 + n2. If a unique compound is isolated from two different 
species of the same tribe, it is counted twice. 
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Figure 1. Typical compounds from each class of secondary metabolites analyzed in this study. 

As the number of occurrences may depend on the factors mentioned above, we introduced other 
variables in the matrix to describe the presence or absence of the chemical classes in each case 
analyzed. These variables, referred to as heuristic, describe the probability of a certain species to 
present or not a certain chemical class. We defined arbitrarily the presence of a chemical class in a 
species as positive (1.0) if the value of the continuous variable of that species is greater than or 
equal to the average of all cases. Otherwise the heuristic variable equals zero. The twelve variables 
used as inputs for the network are described in Table 1. 
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The neural networks training for each variable was done using the “Neural Networks – Custom” 

option from the Statsoft for Windows. All variables were trained with the same parameters below 

described. Using a “custom” option, all nets were elaborated with one hidden layer. The multilayer 

perceptron (MLP) model was chosen with epochs number = 10000, learning rate = 0.01, momentum 

= 0.3 and the backprogation algorithm with a linear regression output function. 

Table 1. Variables Used as Inputs for the Network 
Mono =  Monoterpenes 
Sesq =  Sesquiterpenes 
Lact =  Sesquiterpene lactones 
Cuma =  Coumarins 
Poli =  Polyacetylenes 
Flav =  Flavonoids 
CLM =  Presence or absence of Monoterpenes 
CLS =  Presence or absence of Sesquiterpenes 
CLL =  Presence or absence of Sesquiterpene lactones
CLC =  Presence or absence of Coumarins 
CLP =  Presence or absence of Polyacetylenes 
CLF =  Presence or absence of Flavonoids 
Total =  Sum of occurrences in the taxon 
NCLA =  Sum of the number of classes in the taxon 

The results of the network were compared with the descriptive statistics and a correlation matrix 

for the variables (Table 2). When ST Neural Networks reports statistics on training or network 

performance, separate statistics are calculated for the training, verification and test sets. Without 

cross verification, a network with a large number of weights can overfit the training data – learning 

as it were the noise present in the data rather than the underlying structure. The ability of a network 

not only to learn the training data, but also to perform well on previously–unseen data, is known as 

generalization. We can check that a network is generalizing properly in ST Neural Networks by 

observing whether the verification error is reasonably low. In some circumstances, we might run an 

iterative training algorithm and find that, although the training error decreases almost to zero, the 

verification error first decreases and then begins to rise again. This is a sure sign that over–learning 

is occurring, and one should stop training once deterioration in the verification error is observed. 

The ST Neural Networks software can also perform this error checking, and stop training 

automatically. When one trains a network with verification cases defined, ST Neural Networks 

plots two error lines on the graph: one for the training set and one for the verification set. The 

network is trained using the training set, but is also tested after each epoch using the verification set 

[28]. This graph was traced for the MONO variable (Figure 2). By analysing this graph, one can 

verify that the verification set curve (in red colour) is constant until the curve is abruptly interrupted 

indicating that the learning was not better. The ideal number of epochs is 100000. 
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Table 2. Results Obtained from the Best Neural Network 
Variable Range Mean Standard Deviation Variance Train Error Test Error Train Perform. Test Perform.
Mono 171 10.105 21.756 473.312 0.10800 0.12900 0.999 0.999 
Sesq 13 0.405 1.693 2.877 0.05000 0.16000 0.945 0.980 
Lact 44 3.642 7.180 51.564 0.00100 0.17600 0.969 0.940 
Cuma 10 0.819 1.893 3.583 0.06000 0.16900 0.999 0.949 
Flav 37 1.374 4.533 20.553 0.02200 0.20100 0.999 0.948 
Poli 13 0.879 2.187 4.784 0.07400 0.14900 0.976 0.964 
CLM 1 0.368 0.484 0.234 0.00027 0.18373 0.929 0.920 
CLS 1 0.084 0.278 0.077 0.00007 0.02418 0.939 0.917 
CLL 1 0.310 0.464 0.215 0.00016 0.00080 0.836 0.786 
CLC 1 0.242 0.429 0.185 0.00001 0.00002 0.919 0.840 
CLF 1 0.126 0.333 0.111 0.00769 0.00702 0.895 0.855 
CLP 1 0.226 0.419 0.176 0.00205 0.01992 0.956 0.807 
NCLA 5 1.798 1.022 1.022 0.17100 0.23300 0.809 0.862 
TOTAL 227 17.216 29.028 29.028 0.37400 0.47600 0.999 0.999 

Figure 2. Training and verification sets for the MONO variable. 

3 RESULTS AND DISCUSSION 

It is adequate to inspect the data obtained both from the chemical and the computational points 
of view. The secondary metabolites most frequently present in the genus Artemisia are 
monoterpenes and sesquiterpene lactones featuring 171 and 35 occurrences, and flavonoids 
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(range = 37). The data in Table 3 show a great variance for these data when compared with the 
other variables. These are also the variables where the errors of the network were the smallest both 
in the test set and in the training set if we take them as percentages. Obviously, the total number of 
substances in a certain species may also be large, if there are more studies on it in the literature. 
Since monoterpenes are present in almost all species, this variable (MONO) is highly correlated to 
the variable TOTAL. 

Table 3. Correlation Matrix of the Variables in Artemisia Genus 
 Mono Sesq Lact Cuma Flav Poli CLM CLS CLL CLC CLF CLP NCLA TOTAL 
Mono 1.00 0.32 0.21 0.34 0.50 0.41 0.53 0.23 0.10 0.11 0.21 0.25 0.49 0.95 
Sesq 0.32 1.00 0.22 0.07 0.33 –0.01 0.31 0.79 0.05 –0.05 0.13 0.09 0.41 0.40 
Lact 0.21 0.22 1.00 –0.13 0.21 0.11 0.13 0.32 0.65 –0.16 0.08 0.11 0.39 0.45 
Cuma 0.34 0.07 –0.13 1.00 0.37 0.17 0.10 0.07 –0.20 0.71 0.10 0.23 0.35 0.36 
Flav 0.50 0.33 0.21 0.37 1.00 0.15 0.17 0.23 0.05 0.19 0.65 0.10 0.42 0.63 
Poli 0.41 –0.01 0.11 0.17 0.15 1.00 0.26 0.02 0.12 0.14 0.18 0.74 0.57 0.44 
CLM 0.53 0.31 0.13 0.10 0.17 0.26 1.00 0.40 –0.04 –0.02 0.04 0.21 0.43 0.50 
CLS 0.23 0.79 0.32 0.07 0.23 0.02 0.40 1.00 0.12 –0.04 0.11 0.06 0.42 0.34 
CLL 0.10 0.05 0.65 –0.20 0.05 0.12 –0.04 0.12 1.00 –0.25 0.02 0.13 0.28 0.24 
CLC 0.11 –0.05 –0.16 0.71 0.19 0.14 –0.02 –0.04 –0.25 1.00 0.04 0.19 0.27 0.13 
CLF 0.21 0.13 –0.08 0.10 0.65 0.18 0.04 0.11 0.02 0.04 1.00 0.02 0.30 0.31 
CLP 0.25 0.09 0.11 0.23 0.10 0.74 0.21 0.06 0.13 0.19 0.02 1.00 0.67 0.31 
NCLA 0.49 0.41 0.39 0.35 0.42 0.57 0.43 0.42 0.28 0.27 0.30 0.67 1.00 0.62 
TOTAL 0.95 0.40 0.45 0.36 0.63 0.44 0.50 0.34 0.24 0.13 0.31 0.31 0.62 1.00 

Obviously, the most frequent secondary metabolites in the database are those most isolated by 
researchers and this number is debatable from several points of view. From the laboratory point of 
view, we can mention the throwing away of extract fractions a priori considered unproductive by 
the researcher. From the analytical point of view there are the difficulties of interpretation of 
spectral data (every time more improbable, since the appearance of 2D NMR techniques). From the 
phenotypic point of view, it is accepted among phytochemists that the production of secondary 
metabolites is connected to the attraction or repulsion due to interactions among plants, among 
plants and insects, the soil, etc, and differences among genotypes. Although we work in a low 
hierarchical level (genus) the taxonomic units not always constitute natural groups of species. These 
are also subjected to erroneous classifications and it is thus impossible to warrant the presence of a 
species in the same genus until studies of molecular biology [29] corroborate the morphological 
data. Lastly, the database is not complete because some isolated compounds may not have been 
published or the collection of data in the literature may not have been precise. Therefore, a small 
database such as the one cited here, with imprecise information becomes adequate to an inspection 
via neural networks. 

The errors observed when one works with large number of occurrences must be regarded 
carefully in function of the factors mentioned. As an example of this, a simple inspection of the 
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variables LACT, FLAV CUMA and TOTAL in Tables 1 and 2 show that the two previous ones 
have similar test set and range errors (c.a. 0.20) while for CUMA, the error is the same, but the 
range decreases to half of that. For the TOTAL variable the error for the test set is 0.13 and it 
includes all other variables. 

The use of heuristic variables (presence/absence) based on the average of every variable was 
adopted here to try to introduce variables that escape the above–mentioned sources of error. 

4 CONCLUSIONS 

The results presented in Table 2 show that the mechanism of the neural networks may be 
effective to predict the occurrence of secondary metabolites in plant genera if an adequate network 
is used. In this study we show the application of the ANN in the Chemistry of Natural Products, a 
field in which the numerical precision is very small. 

It was also demonstrated that the problem of the predictability may be treated through the ANN 
in a vast universe such as phytochemistry. As one works in very low hierarchical levels in the 
botanical point of view, the errors in the data may be even greater. But even so, the mechanism of 
neural networks, and, more precisely, the adequate training with the best cases of the available 
sample were able to produce results that may be considered good. It was also observed that, in spite 
of the strong ability to deal with imprecise data, the skill of the chemist to analyze the first training 
sets was paramount for the performance of the ANN. 

The use of mathematical models in biology is not new, but models that are general and can 
produce good predictions will be useful to direct, or at least orient, laboratory work in search of new 
active principles of plants. 
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