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Abstract 

Motivation. Structure–activity relationships (SAR) can be efficiently used to predict the carcinogenic hazard of 
new chemicals, before producing them on a large scale or even before synthesizing them. SAR models that 
detect potential carcinogens can also supplement short–term tests of genotoxicity, long–term tests of 
carcinogenicity in rodents, or epidemiological evidence in humans. 
Method. Support vector machine (SVM) is an efficient classification algorithm that can provide highly 
predictive SAR models for the carcinogenic hazard. We have applied the SVM model to identify the 
carcinogenic activity of 46 methylated and 32 non–methylated polycyclic aromatic hydrocarbons (PAH). The 
PAH chemical structure was encoded by four theoretical descriptors computed with PM3, namely the energy of 
the highest occupied molecular orbital EHOMO, the energy of the lowest unoccupied molecular orbital ELUMO, the 
hardness HD, and the difference between EHOMO and EHOMO–1.
Results. A wide range of SVM experiments were performed using the dot, polynomial, radial basis function, 
neural, and anova kernels. The results obtained for the classification of PAH carcinogenicity demonstrate that the 
performances of SVM depend strongly on the kernel type and various parameters that control the kernel shape. 
The best prediction results were obtained with the radial basis function kernel with  = 0.5, the anova kernel with 
 = 0.5 and d = 1, and the anova kernel with  = 0.5 and d = 2. In the first case, from 34 carcinogenic compounds, 

28 were correctly classified, while from 44 non–carcinogenic compounds, 40 were correctly classified. 
Conclusions. SAR models for predicting the carcinogenic hazard can benefit from the use of support vector 
machines, which determine a maximum separating hyperplane between carcinogenic and non–carcinogenic 
compounds. The solution of the SVM model is a unique hyperplane which can be computed very fast, but the 
classification results heavily depend on the kernel type and structural descriptors. Extensive cross–validation 
tests should be made to find the kernel with the optimum predictive power. 
Keywords. Polycyclic aromatic hydrocarbons; structure–activity relationships; carcinogenicity; support vector 
machines; machine learning; kernel algorithm. 

Abbreviations and notations 
PAH, polycyclic aromatic hydrocarbons ELUMO, energy of the lowest unoccupied molecular orbital 
SVM, support vector machines HD, hardness, HD = (ELUMO – EHOMO)/2
EHOMO, energy of the highest occupied molecular orbital H, difference between EHOMO and EHOMO–1
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1 INTRODUCTION 

Extensive experimental tests and epidemiological studies demonstrated the causal relationship 
between cancer incidence and exposure to chemical compounds. The first report to link cancer and 
chemical exposure was a study on chimney sweeps by Pott [1], revealing soot as a carcinogenic 
agent. Effective cancer prevention can be obtained by stopping cigarette smoking, changing dietary 
habits, by restricting the number of carcinogens and exposure levels [2]. Due to the increasing 
exposure to industrial chemicals, food additives, drugs, cosmetics, pesticides, herbicides, and 
pollution agents, preventive measures must be taken in order to minimize the exposure to 
carcinogenic compounds. An effective prevention of cancer can be obtained by restricting the 
production and environmental emission of carcinogens, resulting in lower levels of exposure and 
fewer carcinogens produced by the chemical industry. This approach depends on reliable methods 
for the identification of carcinogenic compounds. 

Structure–activity relationships (SAR) and quantitative structure–activity relationships (QSAR) 
are valuable statistical models for predicting the carcinogenic potential of new chemicals, not yet 
tested, and sometimes not yet synthesized [3]. Also, the interpretation of the short–term tests of 
genotoxicity, long–term tests of carcinogenicity in rodents, and epidemiological data can benefit 
from the use of sound statistical SAR models. The reach literature on SAR and QSAR models for 
the carcinogenic activity demonstrates the importance of this approach [3–28] in the molecular 
design of safer chemical compounds. A wide variety of structural descriptors were investigated as 
reliable indicators of the carcinogenic activity, from simple groups of atoms to topological indices 
and quantum indices. The relationship between these structural descriptors and the chemical 
carcinogenicity is explored with various statistical models, such as machine learning algorithms, 
clustering methods, discriminant analysis, linear regression, and artificial neural networks. 

Support vector machines (SVM) represent a new class of machine learning algorithms for 
classification and regression with numerous applications in medicine and bioinformatics. In this 
study we present an application of SVM for the identification of the carcinogenic activity for a 
group of methylated and non–methylated polycyclic aromatic hydrocarbons (PAH) previously 
investigated in Refs. [23–28]. 

2 MATERIALS AND METHODS 

2.1 Chemical Data 
We have applied the SVM model to identify the carcinogenic activity of 32 PAH (presented in 

Figure 1) and 46 methylated PAH (presented in Figure 2) taken from literature [23–27]. From this 
set of 78 PAH, 34 are carcinogenic and 44 are non–carcinogenic. In Table 1 we present the 
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carcinogenic activity for all 78 PAH, together with their four theoretical descriptors computed with 
the PM3 semiempirical method [27], namely the energy of the highest occupied molecular orbital 
EHOMO, energy of the lowest unoccupied molecular orbital ELUMO, hardness HD, HD = (ELUMO – 
EHOMO)/2, and difference between EHOMO and EHOMO–1 denoted H.

2.2 Support Vector Machines 
Support vector machines were developed by Vapnik [29–31] as an effective algorithm for 

determining an optimal hyperplane to separate two classes of patterns [32–40]. In the first step, 
using various kernels that perform a nonlinear mapping, the input space is transformed into a higher 
dimensional feature space. Then, a maximal margin hyperplane (MMH) is computed in the feature 
space by maximizing the distance to the hyperplane of the closest patterns from the two classes. 

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20 21

22 23 24 25 26

27 28 29 30 31 32
Figure 1. Molecular structure of the 32 benzenoid PAH [27]. 
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Figure 2. Molecular structure of the 46 methylated PAH [27]. 
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Table 1. Structural Descriptors and Carcinogenic Activity for the 78 Polycyclic Aromatic Hydrocarbons [27] 
PAH Compound EHOMO

a ELUMO
b HDc Hd CAe

1 dibenzo[3,4;9,10]pyrene 7.987 1.288 3.350 0.699 A 
2 benzo[3,4]pyrene 8.042 1.221 3.411 0.860 A 
3 dibenzo[3,4;8,9]pyrene 7.808 1.461 3.174 1.072 A 
4 dibenzo[3,4;6,7]pyrene 8.140 1.163 3.489 0.676 A 
5 dibenzo[1,2;3,4]pyrene 8.087 1.214 3.437 0.609 A 
6 naphto[2,3;3,4]pyrene 7.848 1.421 3.214 0.913 A 
7 dibenz[1,2;5,6]anthracene 8.377 0.918 3.730 0.326 A 
8 tribenzo[3,4;6,7;8,9]pyrene 7.888 1.421 3.234 0.842 A 
9 dibenzo[1,2;3,4]phenantrene 8.458 0.885 3.787 0.325 A 

10 tribenzo[3,4;6,7;9,10]pyrene 8.087 1.228 3.430 0.607 A 
11 dibenzo[1,2;5,6]phenantrene 8.519 0.782 3.869 0.098 I 
12 benz[1,2]anthracene 8.328 0.934 3.697 0.563 I 
13 chrysene 8.496 0.783 3.857 0.420 I 
14 benzo[3,4]phenantrene 8.567 0.752 3.908 0.216 I 
15 dibenz[1,2;7,8]anthracene 8.400 0.902 3.749 0.254 I 
16 dibenz[1,2;3,4]anthracene 8.400 0.907 3.747 0.402 I 
17 benzo[1,2]pyrene 8.335 0.967 3.684 0.489 I 
18 phenantrene 8.740 0.535 4.103 0.236 I 
19 triphenylene 8.773 0.556 4.109 0.000 I 
20 benzo[1,2]naphthacene 7.962 1.297 3.333 0.918 I 
21 dibenzo[3,4;5,6]phenantrene 8.481 0.813 3.834 0.246 I 
22 picene 8.477 0.824 3.827 0.210 I 
23 tribenz[1,2;3,4;5,6]anthracene 8.448 0.889 3.780 0.154 I 
24 dibenzo[1,2;5,6]pyrene 8.409 0.930 3.740 0.304 I 
25 phenanthra[2,3;1,2]anthracene 8.274 1.026 3.624 0.248 I 
26 benzo[1,2]pentacene 7.693 1.573 3.060 1.088 I 
27 anthanthrene 7.762 1.508 3.127 1.170 I 
28 benzene 9.751 0.396 4.678 0.000 I 
29 naphthalene 8.836 0.408 4.214 0.600 I 
30 pyrene 8.249 1.010 3.619 0.793 I 
31 benzo[ghi]perylene 8.139 1.167 3.486 0.569 I 
32 coronene 8.290 1.063 3.614 0.000 I 
33 7,12–dimethylbenz[a]anthracene 8.125 0.921 3.602 0.733 A 
34 6,12–dimethylbenz[a]anthracene 8.158 0.911 3.624 0.673 A 
35 6,8,12–trimethylbenz[a]anthracene 8.109 0.898 3.605 0.718 A 
36 2–methylbenzo[a]pyrene 8.018 1.199 3.410 0.787 A 
37 4–methylbenzo[a]pyrene 7.983 1.205 3.389 0.882 A 
38 11–methylbenzo[a]pyrene 7.985 1.208 3.389 0.873 A 
39 12–methylbenzo[a]pyrene 7.972 1.205 3.383 0.907 A 
40 1–methylbenzo[a]pyrene 7.971 1.209 3.381 0.913 A 
41 4,5–dimethylbenzo[a]pyrene 7.936 1.182 3.377 0.909 A 
42 3–methylbenzo[a]pyrene 7.973 1.194 3.390 0.862 A 
43 1,2–dimethylbenzo[a]pyrene 7.951 1.182 3.385 0.836 A 
44 2,3–dimethylbenzo[a]pyrene 7.948 1.178 3.385 0.789 A 
45 3,12–dimethylbenzo[a]pyrene 7.908 1.179 3.365 0.904 A 
46 1,3–dimethylbenzo[a]pyrene 7.906 1.183 3.362 0.913 A 
47 1,4–dimethylbenzo[a]pyrene 7.915 1.194 3.361 0.932 A 
48 5–methylbenzo[c]phenanthrene 8.487 0.744 3.872 0.254 A 
49 5–methylchrysene 8.410 0.787 3.812 0.436 A 
50 6,8–dimethylbenz[a]anthracene 8.198 0.912 3.643 0.638 A 
51 7–methylbenz[a]anthracene 8.218 0.931 3.644 0.647 A 
52 5–methylbenzo[a]pyrene 7.986 1.207 3.390 0.897 A 

a EHOMO, energy of the highest occupied molecular orbital 
b ELUMO, energy of the lowest unoccupied molecular orbital 
c HD, hardness 
d H, difference between EHOMO and EHOMO–1
e CA, carcinogenic activity (A, active; I, inactive) 
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Table 1. (Continued) 
PAH Compound EHOMO ELUMO HD H CA
53 7–methylbenzo[a]pyrene 7.993 1.206 3.394 0.875 A 
54 6–methylbenzo[a]pyrene 7.942 1.215 3.364 0.933 A 
55 1,6–dimethylbenzo[a]pyrene 7.876 1.204 3.336 0.983 A 
56 3,6–dimethylbenzo[a]pyrene 7.878 1.189 3.345 0.929 A 
57 4–methylbenzo[c]phenanthrene 8.510 0.740 3.885 0.237 I 
58 3–methylbenzo[c]phenanthrene 8.505 0.728 3.889 0.242 I 
59 6–methylbenzo[c]phenanthrene 8.527 0.733 3.897 0.140 I 
60 6–methylbenz[a]anthracene 8.261 0.924 3.669 0.595 I 
61 12–methylbenz[a]anthracene 8.219 0.920 3.650 0.650 I 
62 6–methylanthanthrene 7.683 1.495 3.094 1.220 I 
63 6,12–dimethylanthanthrene 7.606 1.483 3.062 1.280 I 
64 1–methylbenzo[c]phenanthrene 8.460 0.722 3.869 0.284 I 
65 2–methylbenzo[c]phenanthrene 8.528 0.731 3.899 0.175 I 
66 10–methylbenzo[a]pyrene 7.985 1.206 3.390 0.881 I 
67 6–methylchrysene 8.403 0.775 3.814 0.494 I 
68 3–methylbenz[a]anthracene 8.291 0.915 3.688 0.522 I 
69 1–methylbenz[a]anthracene 8.301 0.901 3.700 0.491 I 
70 11–methylbenz[a]anthracene 8.277 0.923 3.677 0.593 I 
71 9–methylbenz[a]anthracene 8.287 0.904 3.692 0.525 I 
72 2–methylbenz[a]anthracene 8.278 0.915 3.682 0.579 I 
73 5–methylbenz[a]anthracene 8.258 0.918 3.670 0.559 I 
74 8–methylbenz[a]anthracene 8.256 0.922 3.667 0.617 I 
75 2–methylpyrene 8.230 0.982 3.624 0.666 I 
76 4–methylpyrene 8.178 0.994 3.592 0.830 I 
77 1–methylpyrene 8.151 0.990 3.581 0.847 I 
78 7,10–dimethylbenzo[a]pyrene 7.928 1.193 3.368 0.898 I 

This powerful classification technique was applied with success in medicine, computational 
biology, bioinformatics, and structure–activity relationships, for the classification of: microarray 
gene expression data [41], translation initiation sites [42], genes [43], cancer type [44–47], 
pigmented skin lesions [48], HIV protease cleavage sites [49], GPCR type [50], protein class [51], 
membrane protein type [52], protein–protein interactions [53], protein subcellular localization [54–
56], protein fold [57], protein secondary structure [58], specificity of GalNAc–transferase [59], 
DNA hairpins [60], organisms [61], aquatic toxicity mechanism of action [62]. 

Ha

Hb

H1

H2H

Figure 3. Two possible hyperplanes Ha and Hb that 
discriminate between patterns from the class +1 (black 
circles) and –1 (white circles).

Figure 4. Example of patterns from the class +1 (black 
circles) and –1 (white circles) linearly separable by the 
maximal margin hyperplane H. The support vectors from 
the class +1 define the hyperplane H1 while those from the 
class –1 define the hyperplane H2.
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Let S be a set of l vectors xi Rn, i = 1, 2, …, l, in an n–dimensional space. Each vector xi

belongs to either of two classes identified by the label yi  {–1, +1}. If the two classes are linearly 
separable, then there exists a hyperplane that divides the set S leaving all the vectors of the same 
class on the same side. However, as one can see from Figure 3, this hyperplane is not unique 
because both hyperplanes Ha and Hb discriminate between patterns from class +1 (black circles) and 
–1 (white circles), and between them one can find an infinite number of hyperplanes with the same 
property. This is a well–known problem in chemometrics, and various pattern recognition methods 
were devised to solve it. SVM is a new approach to find a unique hyperplane that maximizes the 
separation between the two classes of patterns, as depicted in Figure 4. The maximal margin 
hyperplane (MMH) H is defined by w·x + b = 0, where w is the normal to the hyperplane, b/||w|| the 
perpendicular distance to the origin and ||w|| the Euclidean norm of w. The +1 class of patterns is 
bordered by the hyperplane H1 defined by w·x + b = +1, while the –1 class of patterns is bordered 
by the hyperplane H2 defined by w·x + b = –1. Hyperplanes H, H1, and H2 are parallel and no 
patterns are situated between H1 and H2. The +1 patterns that are situated on H1 and the –1 patterns 
that are situated on H2 are the support vectors, depicted in Figure 4 within a larger circle. These 
support vectors are used to define the separating hyperplane. Let d+ be the shortest distance from 
the separating hyperplane H to the closest positive pattern, and d– be the shortest distance from the 
separating hyperplane H to the closest negative pattern. The distance between H1 and H2 defines the 
margin, equal to d+ + d–. Because d+ = d– = 1/||w||, the margin is 2/||w||. The MMH cannot be 
determined whenever, due to the partial overlapping of the +1 and –1 classes, a separating 
hypersurface does not exist. For this type of problems, the condition of perfect separation of the +1 
and –1 classes is relaxed and the SVM is extended to deal with imperfect separation cases by 
introducing l non–negative slack variables  = ( 1, 2, …, l). Computing this soft margin separating 
hyperplane (SMSH) is equivalent to solving the following optimization problem: 

0
),,2,1(1)(with

2
1minimize 2

i

iii

i
i

libxwy

Cw
(1)

Instead of solving the above problem directly, it is easier to solve the following Wolfe dual: 

Cy

xxyy

i
i
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i ji
jijijii

0and0with
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2
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where C is a capacity parameter. The above formulation of the separation hypersurface allows for 
the presence of +1 or –1 patterns in the margin of the hyperplane (between hyperplanes H1 and H2

from Figure 4), or for the presence of +1 patterns in the –1 region bordered by H2, or for the 
presence of –1 patterns in the +1 region bordered by H1. All calibration (training) patterns with i > 
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0 in the solution are called support vectors. Patterns with 0< i < C are called unbounded support 
vectors, while those with i = C are called bounded support vectors. SVM can be easily generalized 
to non–linear decision surfaces by replacing the inner product (xi·xj) with a kernel function K(xi,xj).

All SVM models from the present paper for the classification of the PAH carcinogenic activity 
were obtained with mySVM [63], which is freely available for download. Links to Web resources 
related to SVM, namely tutorials, papers and software, can be found in BioChem Links [64] at 
http://www.biochempress.com. Before computing the SVM model, the input vectors were scaled to 
zero mean and unit variance. The prediction power of each SVM model was evaluated with a 
leave–10%–out cross–validation procedure, and the capacity parameter C took the values 10, 100, 
and 1000. We present below the kernels and their parameters used in this study. 

The dot kernel. The inner product of x and y defines the dot kernel: 

yxyxK ),( (3)

The polynomial kernel. The polynomial of degree d (values 2, 3, 4, and 5) in the variables x and 
y defines the polynomial kernel: 

dyxyxK )1(),( (4)

The radial kernel. The following exponential function in the variables x and y defines the radial 
basis function kernel, with the shape controlled by the parameter  (values 0.5, 1.0, and 2.0): 

)||||exp(),( 2yxyxK (5)

The neural kernel. The hyperbolic tangent function in the variables x and y defines the neural 
kernel, with the shape controlled by the parameters a (values 0.5, 1.0, and 2.0) and b (considered 0): 

)tanh(),( byaxyxK (6)

The anova kernel. The sum of exponential functions in x and y defines the anova kernel, with 
the shape controlled by the parameters  (values 0.5, 1.0, and 2.0) and d (values 1, 2, and 3): 

d

i
ii yxyxK ))(exp(),( (7)

3 RESULTS AND DISCUSSION 

The quality of the SVM models depends on the kernel type, various parameters that control the 
kernel shape, and the set of theoretical descriptors that describe the molecular structure. Using a 
quadratic programming algorithm, SVM offers a unique maximal separation hyperplane. However, 
similarly with over multivariate statistical models used in chemometrics and structure–activity 
studies, for a given set of molecules, there are no clear guidelines on selecting the optimum set of 
theoretical descriptors and decision function (kernel type and associated parameters). Therefore, the 
only practical way of finding an optimally predictive SVM model is through extensive experiments. 
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Table 2. Results for SVM Modeling of the PAH Carcinogenic Activity Using EHOMO, ELUMO, HD, and H.a
Exp C K   SV BSV A/A A/I I/I I/A CAa CAp ASV ABSV TRa TRp TEa TEp

1 10 D   48 44 28 6 36 8 0.82 0.78 43.3 39.3 0.80 0.76 0.76 0.69
2 100    49 43 28 6 36 8 0.82 0.78 42.6 38.6 0.80 0.76 0.74 0.68
3 1000    47 43 28 6 36 8 0.82 0.78 42.5 38.4 0.80 0.76 0.74 0.68

d                
4 10 P 2  37 29 29 5 40 4 0.88 0.88 34.2 25.7 0.88 0.87 0.82 0.81
5 100  2  35 26 29 5 40 4 0.88 0.88 31.6 22.5 0.88 0.87 0.83 0.81
6 1000  2  36 26 29 5 40 4 0.88 0.88 31.9 21.2 0.88 0.88 0.83 0.80
7 10  3  33 19 28 6 40 4 0.87 0.88 31.2 16.5 0.88 0.88 0.82 0.81
8 100  3  34 16 29 5 40 4 0.88 0.88 31.2 13.6 0.88 0.88 0.78 0.73
9 1000  3  48 11 29 5 34 10 0.81 0.74 35.4 11.0 0.85 0.82 0.79 0.70

10 10  4  39 13 29 5 40 4 0.88 0.88 33.0 12.1 0.89 0.90 0.79 0.76
11 100  4  36 14 30 4 41 3 0.91 0.91 31.1 9.5 0.91 0.90 0.72 0.66
12 1000  4  37 9 32 2 40 4 0.92 0.89 32.1 4.0 0.87 0.84 0.69 0.58
13 10  5  35 11 31 3 41 3 0.92 0.91 30.5 7.7 0.93 0.91 0.68 0.60
14 100  5  36 4 28 6 38 6 0.85 0.82 30.7 2.9 0.96 0.94 0.68 0.62
15 1000  5  33 2 33 1 40 4 0.94 0.89 27.3 1.5 0.96 0.93 0.66 0.62

               
16 10 R 0.5  36 19 28 6 40 4 0.87 0.88 34.2 17.3 0.87 0.88 0.86 0.88
17 100  0.5  31 14 29 5 42 2 0.91 0.94 29.7 11.9 0.91 0.93 0.83 0.77
18 1000  0.5  33 7 32 2 42 2 0.95 0.94 29.9 5.3 0.95 0.94 0.78 0.69
19 10  1.0  37 13 29 5 41 3 0.90 0.91 35.5 12.3 0.90 0.90 0.84 0.85
20 100  1.0  32 11 31 3 42 2 0.94 0.94 30.2 7.4 0.94 0.93 0.76 0.68
21 1000  1.0  29 5 32 2 42 2 0.95 0.94 27.1 3.8 0.96 0.94 0.79 0.74
22 10  2.0  41 10 29 5 41 3 0.90 0.91 37.1 9.2 0.91 0.92 0.81 0.79
23 100  2.0  34 6 32 2 42 2 0.95 0.94 31.4 4.5 0.95 0.94 0.74 0.69
24 1000  2.0  27 2 34 0 43 1 0.99 0.97 27.2 1.5 0.99 0.97 0.77 0.73

a                
25 10 N 0.5  38 36 19 15 27 17 0.59 0.53 34.2 31.6 0.61 0.55 0.56 0.48
26 100  0.5  36 34 18 16 27 17 0.58 0.51 33.3 30.5 0.58 0.51 0.53 0.46
27 1000  0.5  36 34 17 17 27 17 0.56 0.50 33.0 30.1 0.57 0.51 0.53 0.46
28 10  1.0  32 30 20 14 29 15 0.63 0.57 28.0 26.4 0.64 0.58 0.59 0.51
29 100  1.0  30 30 26 8 23 21 0.63 0.55 27.9 26.0 0.64 0.58 0.58 0.52
30 1000  1.0  30 30 26 8 23 21 0.63 0.55 27.8 26.1 0.63 0.57 0.61 0.52
31 10  2.0  26 24 23 11 34 10 0.73 0.70 25.6 23.3 0.68 0.63 0.66 0.56
32 100  2.0  25 23 23 11 32 12 0.71 0.66 25.3 23.1 0.67 0.62 0.66 0.56
33 1000  2.0  24 22 23 11 33 11 0.72 0.68 25.2 23.0 0.67 0.62 0.66 0.56

d               
34 10 A 0.5 1 32 23 27 7 40 4 0.86 0.87 29.5 20.1 0.86 0.87 0.84 0.88
35 100  0.5 1 32 16 27 7 41 3 0.87 0.90 28.6 15.0 0.88 0.90 0.84 0.85
36 1000  0.5 1 31 14 29 5 40 4 0.88 0.88 28.3 11.7 0.89 0.89 0.78 0.73
37 10  1.0 1 33 20 29 5 40 4 0.88 0.88 29.9 17.8 0.88 0.89 0.84 0.85
38 100  1.0 1 33 13 30 4 39 5 0.88 0.86 29.7 11.8 0.89 0.88 0.82 0.76
39 1000  1.0 1 27 5 33 1 41 3 0.95 0.92 25.2 5.0 0.94 0.92 0.81 0.73
40 10  2.0 1 32 14 29 5 40 4 0.88 0.88 29.1 12.7 0.89 0.89 0.85 0.81
41 100  2.0 1 30 7 32 2 41 3 0.94 0.91 26.7 6.2 0.94 0.92 0.81 0.74
42 1000  2.0 1 24 6 33 1 41 3 0.95 0.92 25.4 4.7 0.95 0.93 0.76 0.68
43 10  0.5 2 33 15 29 5 40 4 0.88 0.88 29.9 13.2 0.89 0.89 0.84 0.84
44 100  0.5 2 32 8 32 2 42 2 0.95 0.94 28.9 7.1 0.95 0.94 0.80 0.73
45 1000  0.5 2 27 5 32 2 42 2 0.95 0.94 26.9 4.3 0.95 0.94 0.76 0.68

a The table reports the experiment number Exp, capacity parameter C, kernel type K (dot D; polynomial P; radial basis 
function R; neural N; anova A) and corresponding parameters, calibration results (SV, number of support vectors; BSV, 
number of bounded support vectors; A/A, number of active PAH (carcinogenic) classified as active; A/I, number of 
active PAH classified as inactive (non–carcinogenic); I/I, number of inactive PAH classified as inactive; I/A, number of 
inactive PAH classified as active; CAa, accuracy; CAp, precision), and cross–validation results (ASV, average number 
of support vectors; ABSV, average number of bounded support vectors; TRa, training accuracy; TRp, training 
precision; TEa, test accuracy; TEp, test precision). 
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Table 2. (Continued) 
Exp C K d SV BSV A/A A/I I/I I/A CAa CAp ASV ABSV TRa TRp TEa TEp
46 10 A 1.0 2 34 10 31 3 41 3 0.92 0.91 29.9 8.3 0.93 0.92 0.80 0.74
47 100  1.0 2 26 6 32 2 42 2 0.95 0.94 27.9 4.8 0.95 0.94 0.76 0.68
48 1000  1.0 2 27 3 34 0 43 1 0.99 0.97 24.9 1.8 0.99 0.97 0.73 0.68
49 10  2.0 2 32 6 33 1 41 3 0.95 0.92 29.3 5.4 0.95 0.92 0.80 0.74
50 100  2.0 2 26 4 34 0 42 2 0.97 0.94 26.2 3.2 0.98 0.96 0.76 0.71
51 1000  2.0 2 26 1 34 0 43 1 0.99 0.97 25.7 1.0 0.99 0.97 0.72 0.69
52 10  0.5 3 31 8 32 2 42 2 0.95 0.94 28.7 7.2 0.95 0.94 0.78 0.71
53 100  0.5 3 27 5 32 2 42 2 0.95 0.94 26.9 3.9 0.96 0.94 0.76 0.68
54 1000  0.5 3 25 1 34 0 43 1 0.99 0.97 22.9 0.9 0.99 0.97 0.78 0.74
55 10  1.0 3 30 6 32 2 42 2 0.95 0.94 29.0 4.9 0.95 0.94 0.77 0.69
56 100  1.0 3 27 2 34 0 43 1 0.99 0.97 25.6 1.3 0.99 0.97 0.74 0.71
57 1000  1.0 3 26 1 34 0 43 1 0.99 0.97 24.8 1.0 0.99 0.97 0.76 0.71
58 10  2.0 3 29 4 34 0 42 2 0.97 0.94 27.3 3.2 0.98 0.95 0.78 0.73
59 100  2.0 3 26 1 34 0 43 1 0.99 0.97 26.2 1.0 0.99 0.97 0.72 0.70
60 1000  2.0 3 26 1 34 0 43 1 0.99 0.97 28.0 0.9 0.99 0.97 0.72 0.69

The prediction performance of SVM models in structure–activity relationships strongly depends 
on the theoretical descriptors that numerically encode the molecular structure of all chemical 
compounds in the calibration (training) set. Although identifying the optimum set of structural 
descriptors is an important part of any SAR or QSAR study, procedures for descriptor selection are 
not currently available for SVM applications in SAR or QSAR. Therefore, in this study we have 
used the four quantum indices recently tested in a neural network model for the PAH 
carcinogenicity [27]: EHOMO, the energy of the highest occupied molecular orbital; ELUMO, energy of 
the lowest unoccupied molecular orbital; HD, hardness computed as HD = (ELUMO – EHOMO)/2; H,
difference between EHOMO and EHOMO–1.

A total of 60 SVM experiments were performed with the above four descriptors, with three 
values for the capacity parameter C, namely 10, 100, and 1000, and five kernels, namely dot, 
polynomial, radial basis function, neural, and anova. Each experiment consisted of a calibration 
phase that considered all 78 PAH, and a leave–10%–out cross–validation phase. As implemented in 
mySVM, C is scaled by 1/number of training examples. The calibration results reported in Table 2 
are: SV, number of support vectors; BSV, number of bounded support vectors; A/A, number active 
PAH (carcinogenic) classified as active; A/I, number of active PAH classified as inactive (non–
carcinogenic); I/I, number of inactive PAH classified as inactive; I/A, number of inactive PAH 
classified as active; CAa, accuracy; CAp, precision. For each SVM model we present in Table 2 the 
following leave–10%–out cross–validation statistics: ASV, average number of support vectors; 
ABSV, average number of bounded support vectors; TRa, training accuracy; TRp, training 
precision; TEa, test accuracy; TEp, test precision.  

The first set of SVM experiments were obtained with the dot kernel (Table 2, experiments 1–3), 
but this simple kernel is not able to discriminate the carcinogenic and non–carcinogenic PAH. The 
number of support vectors is too large (almost 50), the prediction statistics are low, and the results 
in calibration are not very good, with classification errors for 6 active PAH and 8 inactive PAH. 
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The results obtained with the polynomial kernel, presented in Table 2 experiments 4–15, show an 
interesting trend: while calibration results improve when the polynomial degree increases from 2 to 
5, the L10%O cross–validation prediction decreases with the increase of the polynomial degree. 
This is a clear demonstration of the fact that SVM models can be overfitted when too complex 
kernels are used. The L10%O cross–validation test is a reliable method for locating the SVM model 
with the best prediction power, although other cross–validation partitioning of the PAH set can 
offer equally good guiding. 

The next group of models, presented in Table 2 experiments 16–24, was obtained with the radial 
basis function kernel, with  = 0.5, 1.0, and 2.0. The same inverse relationship is identified between 
calibration statistics and L10%O cross–validation prediction: for example, the experiment 16 has 
the best prediction statistics (with CAa = 0.87, CAp = 0.88, TEa = 0.86, and TEp = 0.88) while the 
experiment 24 has the best calibration statistics (with CAa = 0.99, CAp = 0.97, TEa = 0.77, and 
TEp = 0.73). It is interesting to mention that the SVM from the experiment 24 has only one error in 
calibration, with one inactive compound classified as active; however, the prediction statistics are 
low compared with those from experiment 16. 

The results obtained with the neural kernel, presented in Table 2 experiments 25–33, have the 
worst prediction statistics, with TEa between 0.53 and 0.61, and TEp between 0.46 and 0.56. While 
for the polynomial and radial kernels low prediction results are associated with high calibration 
performances, the neural kernel offers also low calibration statistics, with CAa between 0.56 and 
0.72, CAp between 0.50 and 0.70. Our results show that the neural kernel is not suitable to separate 
the carcinogenic and non–carcinogenic PAH, but this finding should not be generalized. Additional 
SAR models must be investigated before a definite conclusion can be obtained regarding the utility 
of the hyperbolic tangent as a decision surface in SVM. 

The last group of SVM models was obtained with the anova kernel (see Table 2, experiments 
34–60), with overall good calibration (CAa between 0.86 and 0.99, CAp between 0.86 and 0.97) 
and L10%O prediction (TEa between 0.72 and 0.84, and TEp between 0.68 and 0.88) statistics. The 
experiments 48, 51, 54, 56, 57, 59, and 60 give the best calibration results, with only one inactive 
compound classified as active and all active compounds correctly classified. On the other hand, 
these seven SVM models have low prediction statistics, compared with those from experiments 34 
and 43, both giving the best cross–validation results for anova kernels. 

Experiment 34 (anova kernel,  = 0.5, d = 1, 32 SV, A/I = 7, I/A = 4, CAa = 0.86, CAp = 0.87, 
TEa = 0.84, TEp = 0.88) and experiment 43 (anova kernel,  = 0.5, d = 2, 33 SV, A/I = 5, I/A = 4, 
CAa = 0.88, CAp = 0.88, TEa =0.84, TEp = 0.84) have close statistics with experiment 16 (radial 
kernel,  = 0.5, 36 SV, A/I = 6, I/A = 4, CAa = 0.87, CAp = 0.88, TEa =0.86, TEp = 0.88). These 
three SVM models have the best prediction results from the whole set of 60 experiments. Because 
their statistical indices are very close, all these three SAR models are equivalent from a statistical 
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point of view. Finding several SAR models with similar statistics is common when from a set of 
data one generates several structure–activity models. A comparison of the classification errors in the 
SVM calibration reveals that a group of PAH is responsible for the majority of these errors. In the 
experiment 16 the group A/I is formed by the PAH 7, 9, 48, 49, 50, and 51, while the I/A group is 
formed by the PAH 20, 31, 66, and 78. In the experiment 34 the group A/I is formed by the PAH 4,
7, 9, 48, 49, 50, and 51, while the I/A group is formed by the PAH 20, 31, 66, and 78. In the 
experiment 43 the group A/I is formed by the PAH 7, 9, 48, 49, and 51, while the I/A group is 
formed by the PAH 20, 31, 66, and 78. The consensus for these three SVM models is that six active 
PAH are classified as inactive, namely dibenz[1,2;5,6]anthracene, dibenzo[1,2;3,4]phenantrene, 5–
methylbenzo[c]phenanthrene, 5–methylchrysene, 6,8–dimethylbenz[a]anthracene, and 7–methyl–
benz[a]anthracene, while four inactive PAH are classified as active, namely benzo[1,2]naphthacene, 
benzo[ghi]perylene, 10–methylbenzo[a]pyrene, and 7,10–dimethylbenzo[a]pyrene. These SVM 
classification errors can be obtained due to errors in assigning their experimental carcinogenic 
activity, or because the four structural descriptors used in the SVM model are not appropriate for 
these PAH. Further investigations are needed to improve the classification of these PAH. 

4 CONCLUSIONS 

Support vector machines represent an efficient machine learning algorithm that separate two 
classes of patterns by determining a unique hyperplane that maximizes the separation between the 
two classes. In this study we have investigated the application of SVM for the classification of the 
carcinogenic activity for 32 PAH and 46 methylated PAH taken from literature [23–27]. From this 
set of 78 PAH, 34 are carcinogenic and 44 are non–carcinogenic. All SVM models were obtained 
with four theoretical descriptors computed with the PM3 semiempirical method, previously used to 
classify the same set of PAH with an artificial neural network [27], namely the energy of the highest 
occupied molecular orbital EHOMO, energy of the lowest unoccupied molecular orbital ELUMO,
hardness HD, and difference between EHOMO and EHOMO–1 denoted H. In any SAR model, the 
selection of the best structural descriptors is equally important and difficult. Because there is no 
simple algorithm for descriptor selection in SVM models, we have used the theoretical indices from 
[27].

We have explored the influence of the kernel type on the SVM performances by testing various 
kernels, namely the dot, polynomial, radial basis function, neural, and anova kernels. The prediction 
power of each SVM model was evaluated with a leave–10%–out cross–validation procedure. Our 
experiments with various kernels clearly demonstrate that the performance of the SVM classifier is 
strongly dependent on the kernel shape. Overall, the dot and neural kernels give low quality SAR 
models, with no practical use for the classification of carcinogenic PAH. The polynomial kernel 
gives fairly good results, while the best classification of carcinogenic PAH is obtained with the 
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radial and anova kernels. It is interesting to mention that for the polynomial, radial and anova 
kernels the SVM models with good calibration results have low leave–10%–out cross–validation
results, while SVM models with good prediction results have low calibration results. This result 
clearly demonstrates that too complex kernels give overfitted SVM models, with low prediction 
power. Using complex kernels, SVM can be calibrated to maximize the separation of two classes of 
patterns, but the best calibration models are usually associate with poor predictions and only a 
cross–validation test can demonstrate the potential utility of an SVM model. 

The best prediction results are obtained with the radial kernel (  = 0.5) and anova kernel (  = 0.5, 
d = 1;  = 0.5, d = 2), with close calibration and cross–validation statistics. The general conclusion 
for these three SVM models is that six active PAH are classified as inactive, namely 
dibenz[1,2;5,6]anthracene, dibenzo[1,2;3,4]phenantrene, 5–methylbenzo[c]phenanthrene, 5–
methylchrysene, 6,8–dimethylbenz[a]anthracene, and 7–methylbenz[a]anthracene, while four 
inactive PAH are classified as active, namely benzo[1,2]naphthacene, benzo[ghi]perylene, 10–
methylbenzo[a]pyrene, and 7,10–dimethylbenzo[a]pyrene. These classification errors obtained in 
the SVM models can be explained by errors in assigning their experimental carcinogenic activity, or 
because other structural descriptors should be used for the classification of carcinogenic PAH. 

This study demonstrates that SVM models can be used with success to discriminate between 
carcinogenic and non–carcinogenic PAH, providing reliable predictions. Further studies regarding 
the use of SVM in structure–activity relationships should explore the important problem of 
descriptor selection. Considerable effort should be directed also towards the investigation of various 
kernel functions, with the aim to develop reliable methods for selecting the best kernel for a 
particular classification problem. 

Supplementary Material 
The mySVM model files for experiments 16, 34, and 43 are available as supplementary material. 
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