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Abstract 

Motivation. Starting from a problem of the density of states of carbon atoms, the extension of Sachs theorem to 
tight–binding methods, containing atoms of several atomic orbitals, is presented. The concept of topologically 
determined electronic energy levels will be reviewed. Necessary and sufficient conditions for non–existence of 
Sachs graphs is given and connection between Sachs graphs and matching problems will be studied. 
Method. The methods of graph theory and linear algebra are used. 
Results. It was demonstrated that the topological arrangement of atoms can guarantee the existence of stable 
electronic energy levels. These levels are stable in the presence of off–diagonal disorder of the Hamiltonian 
matrix. 
Conclusions. Graph theoretical methods can be extended beyond the Hückel theory to more sophisticated tight–
binding methods. 
Keywords. Chemical graph theory; Hückel theory; tight–binding methods; matching theory. 

1 INTRODUCTION 

The first time I have ever heard about chemical graph theory was a lecture presented by Nenad 
Trinajsti  at a quadrangle conference in Hungary in 1976. This was a conference of quantum 
chemists from Austria, Czechoslovakia, Hungary and Yugoslavia. I have just graduated the year 
before in physics at the Eötvös Loránd University. My supervisor in quantum chemistry was Ede 
Kapuy and Gábor Náray–Szabó and I’ve attended graph theory courses delivered by Vera T. Sós, 
but I could not understand chemical graph theory. I had the same problems with the other lectures 
presented by Ante Graovac, Ivan Gutman and Tomislav Živkovi . I liked this theory very much but 
unfortunately I could not use it in my calculations. It was more than 10 years later when Sándor 
Kugler suggested that we could try our three–dimensional PPP method [1] in the study of 
amorphous carbon. We developed this method for the study of 60C  UV spectrum. 
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Amorphous carbon contains fourfold–coordinated diamond–like and threefold–coordinated 
graphite–like carbon atoms. Each threefold–coordinated atom gives one electron to the –electron

network. As the density of electronic states at the Fermi level is determined by the threefold–
coordinated carbon atoms we tried to apply our PPP method for graphite–like carbon clusters. In 
one cases we obtained peaks and in other cases we obtained gaps at the Fermi level. In many cases, 
however, the geometrical structures were very similar. We simplified the method and we could 
produce the same behavior by Hückel Theory as well. The question was, which way could we 
describe the structures having or not having peaks at the Fermi level. It seemed to be a veritable 
problem of chemical graph theory. Fortunately I had a reprint of the “Workshop on Quantum 
Chemistry, May 6–9, 1974, Mátrafüred, Hungary”. It was dedicated to me by Gábor Náray–Szabó 
and it contained an article from N. Trinajsti  and T. Živkovi  with the title: A gráfelmélet az 
elméleti kémiában (The graph theory in the theoretical chemistry) [2]. This article was written in 
Hungarian, and it was a very good introduction to the chemical graph theory. It contained the Sachs 
theorem [3] that became the basic tool in the solution of our problem. 

2 SACHS THEOREM AND THE DENSITY OF STATES 

IN AMORPHOUS CARBON 

In the study of the –electron network first we applied the Hückel theory. For the Hückel 
Hamiltonian H we have: 

otherwise,0
iofneighborfirst theisjif,

jiif,

ijH (1)

where  and  are the interaction parameters. A given carbon cluster of threefold–coordinated 
atoms can be represented by the graph G = (V, E) where each atom is a vertex and each bond 
represents an edge of the graph. In this notation V is the set of vertices and E is the set of edges. By 
introducing the I unit matrix and the A adjacency matrix of G with: 

othervise,0
adjacentarejandi vertices theif,1

ijA (2)

the relation H = I + A changes the secular equation det |H – I| = 0 into det |xI – A| = 0, where 
 =  + x . The PG(x) characteristic polynomial of matrix A is: 

N

0n
nG aA-xIdet)(P nNxx (3)

where N = |V| is the umber of vertices in graph G = (V, E).
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According to Sachs theorem [3,4,5] the an coefficients are: 

0.nif,1
0SandNn0if,0
0SandNn0if,2)1(

a n

n
)()(

n

nSs
scsp

(4)

where s is a Sachs graph, Sn is the set of all Sachs graphs with n vertices, while sp  and sc

denote, respectively, the total number of components and the total number of cycles in s. A Sachs 
graph s is defined as such a sub graph of G whose components are the complete graphs K2 and/or 
cycles mC nm ,...,4,3 .

If 0a...aaa 1N2N1NN , then x = 0 is a –fold degenerated eigenvalue of A and  = 

is the –fold degenerated eigenvalue of H. As in amorphous carbon structures usually the Fermi 
level is around the value  we can characterize the clusters of threefold–coordinated carbon atoms 
according to their topological graphs. Thus if a given graph of N vertices does not have Sachs graph 
with N, N – 1, …, N – 1 +  vertices, the corresponding carbon cluster has a peak at the Fermi level 
corresponding to the –fold degeneracy of the eigenvalue  = . We published our results in 
Physical Review B [6] and further ab initio calculations confirmed these results [7,8]. I am grateful 
to Lajos Jakab who organized me a three day visit in 1989 to the Ru er Boškovi  Institute and I 
could have very useful discussions with Nenad Trinajsti .

3 TOPOLOGICALLY DETERMINED ELECTRONIC ENERGY LEVELS 

When we tested our theory we found very interesting results. Although Sachs theorem is based 
on Hückel theory or on the adjacency matrices of graphs, we obtained in some cases degenerated 
 = x eigenvalues even if the first neighbor off–diagonal matrix element Hij had any non–zero 

values. That is these electronic energy levels were stable in the presence of vibration and off–
diagonal disorder. Thus we have found that the  = x eigenvalue was –fold degenerated if the 
graph G of the Hamiltonian matrix H – I did not have Sachs graph with N, N – 1, …, N – 1 + 
vertices. Let the Hamiltonian H is represented by an N×N matrix. The graph G of H – I is then a 
loop free graph of N  vertices and the vertices i  and j  are joined by an edge if and only if 0ijH .
In the followings we define the graph G of an n×n symmetrical square matrix ][ ijMM  by a graph 
of n vertices where the vertices i and j are connected by an edge if and only if 0jiij MM .

Let us see the eigenvalue problem of symmetrical square matrix ][ ijHH  of size N×N. The 

corresponding Hamiltonian has the form: 

jH ij

N

1ji,
iH (5)

For this Hamiltonian matrix the characteristic polynomial D( ) is the following[9,10]: 
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nN
N

n
D

0
na-det)( HI (6)

Here the coefficients an are given by 

)...()1(a 21n n
n iiiH (7)

where the summation runs over all 
n
N

 principal minors of H of order n. The determinants 

niiiH ...21  are calculated as, 

nn ji
p

jiji
pt

n HHHiiiH ...)1()...(
2211

)(
21 (8)

and t(p) is the parity of the p permutation njjj ...21  of numbers niii ...21 .

If 0...
2211 nn jijiji HHH  than the graph of the matrix elements of this product is a Sachs graph 

with n vertices. Namely every permutation can be described by a product of disjoint cycles. Thus if 
a graph G of a symmetrical NN  matrix does not have Sachs graph with N, N – 1, …, N – 1 + 
vertices then the  = 0 eigenvalue is a –fold degenerated eigenvalue of H. Or if the graph of the 
matrix H- kkIH  does not have Sachs graph with N, N – 1, …, N – 1 +  vertices then 
the kkH eigenvalue is a –fold degenerated eigenvalue of H.

If Es and Ep are the s– and p–orbital tight–binding diagonal matrix elements, then Sachs graphs 
can be used for study of the  = Es and/or  = Ep eigenvalue multiplicities. Thus application of Sachs 
graphs is not restricted to the Hückel theory. We published these results as a Rapid Communication 
in Physical Reviews [11] and applications were presented for fullerenes [12] and Bethe lattices 
(trees) [13]. 

Thus there are Hamiltonian matrices which have such kind of eigenvalues that do not depend on 
the actual values of the off–diagonal non–zero matrix elements. They are called topologically 
determined electronic energy levels as they are determined only by the appropriate distribution of 
the off diagonal zero matrix elements and their actual value is equal to some diagonal matrix 
element. 

4 NECESSARY AND SUFFICIENT CONDITIONS FOR NON–EXISTENCE 
OF SACHS GRAPHS 

The existence of topologically determined energy level is guaranteed by the non–existence of 
certain Sachs graphs. In practical applications, however, the demonstration of the existence of 
special graph structure is much easier than the demonstration of non–existence of Sachs graphs. 
Thus we turned to the study of necessary and sufficient conditions for non–existence of Sachs 
graphs.
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It is trivial that the 2–star graph )})3,1(),2,1{(},3,2,1({),( 111 EVG does not have Sachs graph 

with n = 3 vertices. Namely if we suppose that such a Sachs graph exists, the edge (1,2) must 
belong to it, and the vertex 3 is an isolated vertex. This is contradicting to the supposition that G1

has a Sachs graph with n = 3 vertices. Using this indirect proof one can see very easily, that also the 
1N –star graph )}),1(),...,,1(),...,,1(),...,3,1(),2,1{(},,...,,...,,...,2,1({),( 222 NjiNjiEVG  with 

N  vertices and 1N  edges does not have Sachs graph with n=3,…,N vertices. Now let us see the 
case of N  identical atoms arranged at the vertices of an 1N –star graph and we suppose further 
that each atom has one s orbital and three p orbitals. Now the diagonal matrix elements of the 
corresponding first neighbor tight–binding Hamiltonian H equal to Es or Ep and we can obtain non–
zero off–diagonal matrix elements only between orbitals that are centered on different neighboring 
atoms. 

Namely in tight binding approximations it is supposed usually that the off–diagonal matrix 
elements between orbitals belonging to the same atom are equals to zero. The graph 3G  of the 

IH pE-  shifted Hamiltonian has the following properties. The vertices corresponding to the p

orbitals on the atoms 2, 3, …, N  are loop–free vertices and they are connected only to the s  and p

orbitals of the first atom. We call a set of vertices independent if no two elements of it are adjacent 
Let the set of vertices of the p  orbitals on the atoms 2, 3, … N be V1 and the set of s and p orbitals 
of the first atom be V2. If |V| is the number of vertices in the set V and )(V  marks the neighboring 
vertices of V, than 3)1(1 NV  , 42V  and 21 )( VV . It can be proved that 3G  does not 

have Sachs graph with N, N – 1, …, N – 1 +  vertices if 021 VV  [14,15]. 

It turned out that by the graph 3G  we found the special graph structure we were looking for in 

our search for sufficient and necessary conditions for the non–existence of Sachs graphs. In Ref. 
[14] we proved that if the N vertices of a graph 4G can be partitioned in sets V1, V2 and V3 in such a 
way that the vertices in V1 are loop–free independent vertices, and )( 12 VV  with 

021 VV  then the graph 4G  does not have Sachs graph with N, N – 1, …, N – 1 +  vertices. 

The necessity of this vertex partitioning for non–existence of Sachs graphs was proved in ref. [15]. 

Our results concerning the topologically determined energy levels can be summarized in the 
following Theorem. 

Theorem [14,15]. Suppose that the N  basis functions of the symmetrical Hamiltonian 

jH ij

N

1ji,
iH (9)

can be partitioned into three disjoint sets V1, V2 and V3 with the following properties: 

1. Set V1: If 1Vi  and 1Vj  then 0jiij HH  and jjii HH , where  is the same 

value for each basis functions of set V1. The number of basis functions in set V1 is 0m .



Topological Aspects Beyond the Hückel Theory 
Internet Electronic Journal of Molecular Design 2004, 3, 182–188 

186 
BioChem Press http://www.biochempress.com

2. Set V2: V2 contains all the i  basis functions for which there is at least one 1Vj  with 
0jiij HH . The number of basis functions in set V2 is 0n .

3. Set V3: 3Vi  if 1Vi  and 2Vi

Thus if we can construct the above defined sets V1, V2 and V3 with m > n then the value  =  is 
an eigenvalue of the Hamiltonian matrix H and this eigenvalue is at least 1m –fold degenerated. 

These eigenvalues are called topologically determined levels and the corresponding eigenfunctions 
are localized on the basis functions of set V1.

The relation of this theorem with the Coulson–Rushbrooke theorem is presented in [13]. 

As an example let us see the graph 

11,10,1,10,10,9,9,8,8,7,7,6,6,5,1,5,5,4,4,3,3,2,2,1,11,10,9,8,7,6,5,4,3,2,15G

In this graph the 5,4,3,2,1  pentagonal and 10,9,8,7,6,5,1  heptagonal cycles are connected by 
the common edge 5,1 , and the vertex 11 is joined to the vertex 10 . The graph 5G  has a Sachs 
graph having the components 5,4,3,2,1 , 7,6 , 9,8  and 11,10 , that is one 5C  cycle and three 
complete graphs 2K .

Now let us see the graph 

11,9,1,10,10,9,9,8,8,7,7,6,6,5,1,5,5,4,4,3,3,2,2,1,11,10,9,8,7,6,5,4,3,2,16G

It is obtained from the graph 5G  by replacing the edge 11,10  with 11,9 . This small changing 
in the structure yields that 6G  does not have Sachs graph. Namely here the set of vertices 

8,6,4,2,10,111V  is a set of independent loop–free vertices and the set 7,5,3,1,921 VV  is 
the set of neighboring vertices for V1. The graph 6G  does not have Sachs graph as 56 21 VV .
Let us construct the matrix ijMM  of graph 6G  with: 

08,86,64,42,210,1011,11 MMMMMM

In that case  = 0 is an eigenvalue of matrix M independent of the actual values of the non zero 
matrix elements and the corresponding eigenvector is localized on the set of vertices 

8,6,4,2,10,111V .

5 SACHS GRAPHS AND MATCHING PROBLEMS 

Now we shall present that the topologically determined electronic energy levels can be described 
with the help of the matching theory [16] as well, where the existence of perfect 2–matching in a 
graph G means that it contains a system of vertex–disjoint cycles and edges, that is a Sachs–graph. 
The other name of perfect 2–matching is q–factor [16]. 

Let G be an undirected simple graph. Multiple edges and loops are not allowed. A set of edges in 
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a graph G is called matching if no two edges have a vertex in common. The size of any largest 
matching in G is called the matching number of G and is denoted by )(G . A 2–matching of a 

graph G is an assignment of weights 0, 1 or 2 to the edges of G such that the sum of weights of 
edges incident with any given vertex is at most 2 [16]. 

The size of a 2–matching is the sum of weights and the maximum size is denoted by )(2 G . A 

2–matching is called perfect if the sum of weights of edges incident with any vertex is exactly 2. It 
can be seen that in a perfect 2–matching the edges of weights 1 and 2 compose a system of vertex–
disjoint cycles and edges which cover all vertices of graph G  [16]. 

A perfect 2–matching of graph G is the same sub graph that that we called previously Sachs–
graph, and it was called q–factor by Tutte [17], who proved the following theorem which is 
presented also by Lovász and Plummer in Corollary 6.1.5 of ref. [16]. 

Theorem (Tutte [17, 16]). A graph G has a perfect 2–matching (i.e. a q–factor) if and only if 
AA)(  for every independent set of A  vertices. 

Tutte’s Theorem is in agreement with our statement about the existence and non–existence of 
Sachs–graphs. We said above namely that a graph G has a Sachs–graph (2–matching) or its vertices 
can be partitioned into the disjoint sets V1, V2 and V3 where for the independent set of loop–free 
vertices V1 we have the relation 121 )( VVV  . The perfect agreement holds only if we do not 

allow loops in G as it is usually supposed in matching theory [16]. There is however, no 
contradiction between the two phrasing even if there are loops in graph G of a Hamiltonian matrix 
H. At this time in the definition of 2–matching the weight of a loop must be taken twice and Tutte’s 
Theorem rest valid if we replace the words “ … independent set A  of vertices” by “…independent 
set A  of loop–free vertices” [18]. 

6 CONCLUSIONS 

The topological aspect of the Hückel theory can be extended to more sophisticated Hamiltonians, 
to the tight binding Hamiltonians, where the applied graphs describe the distribution of the non–
zero matrix elements of the Hamiltonian matrix. Applying only graph theoretical methods, the 
existence of non–trivial electronic energy levels can be found and their localization properties can 
be described without solving the eigenvalue problem. 
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