Internet ${ }^{2} \mathrm{ectron}$ Ie Journal of Molecular $\mathfrak{D e s i g n ~}$

May 2004, Volume 3, Number 5, Pages 271-286
Editor: Ovidiu Ivanciuc

Special issue dedicated to Professor Nenad Trinajstić on the occasion of the $65^{\text {th }}$ birthday Part 11

Guest Editor: Douglas J. Klein

A New Perturbation-Theoretic Approach to the Rovibronic Transition Matrix Elements of Diatomics

Mahmoud Korek ${ }^{1}$ and Bassam Hamdoun ${ }^{2}$
${ }^{1}$ Faculty of Science, Beirut Arab University, P.O. Box 11-5020, Beirut, Lebanon
${ }^{2}$ Faculty of Engineering, University of Lebanon, P.O. Box 30014, Choueifat, Lebanon

Received: August 280, 2003; Revised: October 24, 2003; Accepted: December 15, 2003; Published: May 31, 2004

Citation of the article:

M. Korek and B. Hamdoun, A New Perturbation-Theoretic Approach to the Rovibronic

Transition Matrix Elements of Diatomics, Internet Electron. J. Mol. Des. 2004, 3, 271-286, http://www.biochempress.com.

A New Perturbation-Theoretic Approach to the Rovibronic Transition Matrix Elements of Diatomics ${ }^{\#}$

Mahmoud Korek ${ }^{1, *}$ and Bassam Hamdoun ${ }^{2}$
${ }^{1}$ Faculty of Science, Beirut Arab University, P.O. Box 11-5020, Beirut, Lebanon
${ }^{2}$ Faculty of Engineering, University of Lebanon, P.O. Box 30014, Choueifat, Lebanon

Received: August 280, 2003; Revised: October 24, 2003; Accepted: December 15, 2003; Published: May 31, 2004

Internet Electron. J. Mol. Des. 2004, 3 (5), 271-286

Abstract

The line intensities of the transitions $v J \leftrightarrow v^{\prime} J^{\prime}$ where $\left|J^{\prime}-J\right| \geq 1$ are proportional to the matrix elements $R_{V}^{v^{\prime} J^{\prime}}=$ $<\Psi_{\mathrm{VJ}}|\mathrm{f}(\mathrm{r})| \Psi_{\mathrm{V}^{\prime} \mathrm{J}^{\prime}}>$. In the conventional Rayleigh-Schrödinger perturbation theory these matrix elements are expressed in terms of the transition number $\mathrm{m}=\left(\lambda^{\prime}-\lambda\right) / 2$ where $\lambda=\mathrm{J}(\mathrm{J}+1)$ and $\lambda^{\prime}=\mathrm{J}^{\prime}\left(\mathrm{J}^{\prime}+1\right)$. In order to reduce the complexity in the calculation of these matrix elements for the high order corrections in the perturbation theory (because of the transition from λ and λ^{\prime} - representations of $\Psi_{V J}$ and $\Psi_{V^{\prime} J^{\prime}}$ to the m -representation of $R_{V}^{V^{\prime} J} J^{\prime}$) the eigenvalue and the eigenfunction of the two states ($\mathrm{v} J$) and ($\mathrm{v}^{\prime} \mathrm{J}^{\prime}$) are expanded in terms of one variable m as $E_{v m}=\sum_{i=0} E_{v}^{(i)} m^{i}, \Psi_{v m}=\sum_{i=0} \phi_{v}^{(i)} m^{i}, \quad E_{v^{\prime} m}=\sum_{i=0} \underset{v^{\prime}}{E} \mathrm{~m}^{(i)}$ and $\quad \Psi_{v^{\prime} m}=\sum_{i=0} \phi_{v^{\prime}}^{(i)} m^{i}$ where the coefficients $\mathrm{E}_{\mathrm{V}}^{(\mathrm{i})}, \phi_{\mathrm{V}}^{(\mathrm{i})}, \mathrm{E}_{\mathrm{v}^{\prime}}^{(\mathrm{i})}$ and $\phi_{\mathrm{v}^{\prime}}^{(\mathrm{i})}$ are given by analytical expressions by using the canonical functions method. This new approach in the perturbation theory is valid for any transition (infrared, Raman, ...), any operator $\mathrm{f}(\mathrm{r})$ and any potential function either empirical or of the RKR-type. The numerical application, in Raman transitions, to the ground state of the molecule CO shows that the values of E_{vm} and Ψ_{vm} calculated by using the present formulation (up to sixth order) are in good agreement with those computed by a numerical direct method.

Keywords. Rovibronic transition matrix elements of diatomics.

1 INTRODUCTION

The Rayleigh-Schrödinger perturbation theory [1] (RSPT) applied to the diatomic vibrationrotation problem allows one to write the eigenfunction and the eigenvalue of a state (vJ) respectively by:

[^0]\[

$$
\begin{align*}
& \Psi_{V J}=\sum_{i=0} \Psi_{V}^{(i)} \lambda^{i} \tag{1a}\\
& E_{v J}=\sum_{i=0} e_{V}^{(i)} \lambda^{i} \tag{1b}
\end{align*}
$$
\]

where $\Psi_{\mathrm{V}}^{(0)}$ is the pure vibration wavefunction and $\Psi_{\mathrm{V}}^{(\mathrm{i})}$ are the rotational corrections, $\mathrm{E}_{\mathrm{v} 0}$ is the pure vibrational energy, $\mathrm{e}_{\mathrm{v}}^{(1)}=\mathrm{B}_{\mathrm{v}}$ is the rotational constant, $\mathrm{e}_{\mathrm{V}}^{(2)}=-\mathrm{D}_{\mathrm{V}}, \mathrm{e}_{\mathrm{v}}^{(3)}=\mathrm{H}_{\mathrm{v}}, \ldots$ are the centrifugal distortions constants (CDC) and $\lambda=J(J+1)$. In the transitions $v J \leftrightarrow v^{\prime} J^{\prime}\left(J^{\prime}-J=j\right.$ with $|j|>0)$ the eigenfunction and the eigenvalue of the upper state $\left(v^{\prime} J^{\prime}\right)$ are given respectively by

$$
\begin{align*}
& \Psi_{\mathrm{v}^{\prime} J^{\prime}}=\sum_{\mathrm{i}=0} \Psi_{\mathrm{v}^{\prime}}^{(\mathrm{i})} \lambda^{, \mathrm{i}} \tag{2a}\\
& \mathrm{E}_{\mathrm{v}^{\prime} J^{\prime}}=\sum_{\mathrm{i}=0} \mathrm{e}_{\mathrm{v}^{\prime}}^{(\mathrm{i})} \lambda^{, i} \tag{2b}
\end{align*}
$$

where $\lambda^{\prime}=J^{\prime}\left(J^{\prime}+1\right)$.
In the literature, the line intensities $S_{v}^{\mathrm{v}^{\prime}}(\mathrm{m})$ of the vibrational-rotational transitions $\mathrm{v} \mathrm{J} \leftrightarrow \mathrm{v}^{\prime} \mathrm{J}^{\prime}$ at temperature T in infrared transitions are expressed in terms of m as $[2,3]$

$$
\begin{equation*}
\mathrm{S}_{\mathrm{v}}^{\mathrm{v}^{\prime}}=\frac{8 \pi^{3} \omega(\mathrm{~m})}{3 \mathrm{hc}}\left|\mathrm{R}_{\mathrm{v}}^{0}(\mathrm{~m})\right|^{2} \frac{\mathrm{~N}_{0}|\mathrm{~m}|}{\mathrm{Q}} \exp \left[-\mathrm{E}(\mathrm{~m}) / \mathrm{k}_{\mathrm{B}} \mathrm{~T}\right] \tag{3}
\end{equation*}
$$

where the transition number m relates the two rotational quantum numbers J and J^{\prime} of the two considered states as $\mathrm{m}=\left[\mathrm{J}^{\prime}\left(\mathrm{J}^{\prime}+1\right)-\mathrm{J}(\mathrm{J}+1)\right] / 2, \omega(\mathrm{~m})$ is the frequency at the line center, N_{0} is the number of molecules per unit volume, Q is the rotational partition function, $\left|R_{v}^{v^{\prime}}(m)\right|^{2}$ is the square of the transition dipole moment matrix element which is the product of a rotationless factor $\mathrm{R}_{\mathrm{v}}^{\mathrm{v}^{\prime}}(0)$ and a rotational factor (or Herman-Wallis factor) [4-7]

$$
\begin{equation*}
\left|\mathrm{R}_{\mathrm{v}}^{\mathrm{v}^{\prime}}(\mathrm{m})\right|^{2}=\left|\mathrm{R}_{\mathrm{v}}^{\mathrm{v}^{\prime}}(0)\right|^{2}\left(1+\mathrm{C}_{\mathrm{v}} \mathrm{~m}+\mathrm{D}_{\mathrm{v}} \mathrm{~m}^{2}\right) \tag{4}
\end{equation*}
$$

Similarly, the line intensities in the Raman transitions are proportional to the matrix elements $R_{V}^{v_{V}^{\prime} J^{\prime}}$ which are also expressed in terms of the transition number m [8-10].

The conventional approach for the calculation of this rotational factor [11-13] (i.e. the HermanWallis coefficients C_{v} and D_{v}) in the perturbation theory is by the transition from λ and $\lambda^{\prime}-$ representations of $\mathrm{E}_{\mathrm{vJ}}, \Psi_{\mathrm{vJ}^{\prime}}, \mathrm{E}_{\mathrm{v}^{\prime} \mathrm{J}^{\prime}}$ and $\Psi_{\mathrm{v}^{\prime} \mathrm{J}^{\prime}}$ to $\mathrm{m}-$ representation for the rotational factor $R_{\mathrm{v}}^{\mathrm{v}^{\prime}}(\mathrm{m})$ (Eq.(4)). This change in representation from λ and λ^{\prime} to m leads to a mathematical
complexity if high accuracy is required (high order corrections) and to the limitation of this approach to the solution of the radial Schrödinger equation in case of the empirical Dunham potential. In order to avoid these problems, one may find it judicious to express $\mathrm{E}_{\mathrm{vJ}}, \mathrm{E}_{\mathrm{v}^{\prime} \mathrm{J}^{\prime}}, \Psi_{\mathrm{vJ}}$ and $\Psi_{\mathrm{v}^{\prime} \mathrm{J}^{\prime}}$ in terms of one variable m instead of two parameters λ and λ^{\prime} as:

$$
\begin{align*}
& \Psi_{v m}=\sum_{i=0} \phi_{v}^{(i)} m^{i} \tag{5a}\\
& E_{v m}=\sum_{i=0} E_{v}^{(i)} m^{i} \tag{5b}\\
& \Psi_{v^{\prime} m}=\sum_{i=0} \phi_{v^{\prime}}^{(i)} m^{i} \tag{5c}\\
& E_{v^{\prime} m}=\sum_{i=0} E_{v^{\prime}}^{i} m^{i} \tag{5d}
\end{align*}
$$

The aim of this work is to give to the functions $\mathrm{E}_{\mathrm{v}}^{(\mathrm{i})}, \phi_{\mathrm{v}}^{(\mathrm{i})}, \mathrm{E}_{\mathrm{v}^{\prime}}^{(\mathrm{i})}$ and $\phi_{\mathrm{v}^{\prime}}^{(\mathrm{i})}$ simple analytical expressions by using the canonical functions approach [14-16]. Under this form of the perturbation theory, the calculation of the matrix elements (Eq.(4b)) for the considered transitions is greatly simplified and all the calculation can be done by using only one parameter m. The numerical application to the ground state of the molecule CO showed the validity and the high accuracy of the present formulation.

2 THEORETICAL

2.1 Expressions of $E_{\mathbf{v}}^{(\mathbf{i})}$ in terms of $\mathbf{e}_{\mathbf{v}}^{(\mathbf{i})}$

In the $v J \leftrightarrow v^{\prime} J^{\prime}$ transitions the rotational quantum numbers J and J^{\prime} are related as $J^{\prime}=J+j$ where $\mathrm{j}= \pm 1$ in the infrared transitions and $\mathrm{j}=0, \pm 2$ in the Raman transitions. By expressing λ and λ^{\prime} in terms of j and m (for $\mathrm{j}= \pm 1, \pm 2, \ldots$) one obtains [5]:

$$
\begin{align*}
& \lambda=\frac{\mathrm{j}^{2}-1}{4}-m+\frac{\mathrm{m}^{2}}{\mathrm{j}^{2}} \tag{6a}\\
& \lambda^{\prime}=\frac{\mathrm{j}^{2}-1}{4}+m+\frac{\mathrm{m}^{2}}{\mathrm{j}^{2}} \tag{6b}
\end{align*}
$$

or more generally λ or λ^{\prime} can be written as:

$$
\begin{equation*}
\Lambda=\sum_{i=0}^{2} a_{i} m^{i} \tag{6c}
\end{equation*}
$$

where:

$$
\begin{equation*}
a_{0}=\frac{j^{2}-1}{4} \quad a_{1}= \pm 1 \quad \text { and } \quad a_{2}=\frac{1}{j^{2}} \tag{6d}
\end{equation*}
$$

with $\mathrm{a}_{1}=-1$ and $\mathrm{a}_{1}=+1$ are for the lower and upper state respectively.
By replacing Λ (Eq.(6c)) in (1b) we obtain the "m-representation" of the eigenvalue as:

$$
\begin{equation*}
\mathrm{E}_{\mathrm{vm}}=\sum_{\mathrm{i}=0} \mathrm{E}_{\mathrm{v}}^{(\mathrm{i})} \mathrm{m}^{\mathrm{i}} \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
& E_{V}^{(0)}=\sum_{i=0} a_{0}^{i} e_{V}^{(i)} \tag{8a}\\
& E_{V}^{(1)}=a_{1} \sum_{i=1} i a_{0}^{i-1} e_{v}^{(i)} \tag{8b}\\
& E_{V}^{(2)}=\sum_{i=1} i\left[a_{0} a_{2}+\frac{(i-1)}{2} a_{1}^{2}\right] a_{0}^{i-2} e_{v}^{(i)} \tag{8c}\\
& E_{v}^{(3)}=\sum_{i=2} i(i-1)\left[a_{0} a_{1} a_{2}+\frac{(i-1)}{6} a_{1}^{3}\right] a_{0}^{i-3} e_{v}^{(i)} \tag{8d}\\
& E_{v}^{(4)}=\sum_{i=2} \frac{i(i-1)}{2}\left[a_{0}^{2} a_{2}^{2}+(i-2) a_{0} a_{1}^{2} a_{2}+\frac{(i-2)(i-3)}{12} a_{1}^{4}\right] a_{o}^{i-4} e_{v}^{(i)} \tag{8e}\\
& E_{v}^{(5)}=\sum_{i=3} \frac{i(i-1)(i-2)}{2}\left[a_{0}^{2} a_{1} a_{2}^{2}+\frac{(i-3)}{3} a_{0} a_{1}^{3} a_{2}+\frac{(i-3)(i-4)}{60} a_{1}^{5}\right] a_{0}^{i-5} e_{v}^{(i)} \tag{8f}
\end{align*}
$$

2.2 Expression of $\phi_{\mathbf{v}}^{(\mathbf{i})}$ in terms of $\Psi_{\mathbf{v}}^{(\mathbf{i})}$

By replacing (6c) in (1a) we obtain the " m-representation" of the eigenfunctions in the form

$$
\begin{equation*}
\Psi_{v m}=\sum_{i=0} \phi_{v}^{(i)} \mathrm{m}^{\mathrm{i}} \tag{9}
\end{equation*}
$$

where the functions $\phi_{\mathrm{V}}^{(\mathrm{i})}$ have the same expressions as $\mathrm{E}_{\mathrm{V}}^{(\mathrm{i})}$ (Eqs.(8)) by substituting $\mathrm{e}_{\mathrm{V}}^{(\mathrm{i})}$ by $\Psi_{\mathrm{V}}^{(\mathrm{i})}$. By using Eqs.(8) and (9) the coefficients $\mathrm{E}_{\mathrm{v}}^{(\mathrm{i})}$ and $\phi_{\mathrm{V}}^{(\mathrm{i})}$ can be determined (up to the sixth order) with high precision because the determination of the highly accurate large order coefficients $\mathrm{e}_{\mathrm{v}}^{(\mathrm{i})}$, and $\Psi_{V}^{(i)}$ is a solved problem [17].

2.3 Analytic Expression for $\mathbf{E}_{\mathbf{v}}^{(\mathbf{i})}$

Within the Born-Oppenheimer apparxition [18], a rovibrational state (v,J) of a diatomic molecule is characterized by the eigenvalue E_{VJ} and the eigenfunction Ψ_{VJ} of the radial Schrödinger equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \Psi_{\mathrm{vJ}}}{\mathrm{dr}^{2}}+\left\{\mathrm{k}\left[\mathrm{E}_{\mathrm{v} \lambda}-\mathrm{U}_{0}(\mathrm{r})\right]-\frac{\lambda}{\mathrm{r}^{2}}\right\} \Psi_{\mathrm{vJ}}=0 \tag{10a}
\end{equation*}
$$

where $\mathrm{U}_{0}(\mathrm{r})$ is the rotationless potential, r is the internuclear distance and $\mathrm{k}=\frac{2 \mu}{\hbar^{2}}, \mu$ and \hbar having their usual significations. By replacing Eqs.(5a), (5b) and (6c) in Eq.(10a), one can find:

$$
\begin{gather*}
\frac{d^{2} \Psi_{v m}}{d r^{2}}+\left\{k\left[E_{V m}-U_{0}(r)\right]-\frac{\sum_{i=0}^{2} \mathrm{a}_{\mathrm{i}} \mathrm{~m}^{\mathrm{i}}}{\mathrm{r}^{2}}\right\} \Psi_{\mathrm{Vm}}=0 \tag{10b}\\
\frac{\mathrm{~d}}{\mathrm{dr}^{2}} \sum \phi_{\mathrm{V}}^{(\mathrm{i})} \mathrm{m}^{\mathrm{i}}+\left\{\mathrm{k}\left[\sum_{\mathrm{i}} \mathrm{E}_{\mathrm{V}}^{(\mathrm{i})} \mathrm{m}^{\mathrm{i}}-\mathrm{U}_{\mathrm{o}}(\mathrm{r})\right]-\frac{\sum_{\mathrm{i}=0}^{2} \mathrm{a}_{\mathrm{i}} \mathrm{~m}^{\mathrm{i}}}{\mathrm{r}^{2}}\right\} \sum \phi_{\mathrm{V}}^{(\mathrm{i})} \mathrm{m}^{\mathrm{i}}=0 \tag{10c}
\end{gather*}
$$

Since this equation is satisfied for any m, we obtain:

$$
\begin{gather*}
\phi_{\mathrm{V}}^{(0) "}+{\mathrm{k}\left[\mathrm{E}_{\mathrm{V}}^{(0)}-\mathrm{U}(\mathrm{r})\right] \phi_{\mathrm{V}}^{(0)}=0}_{\phi_{\mathrm{V}}^{(\mathrm{n}) "}+\mathrm{k}^{\prime}\left[\mathrm{E}_{\mathrm{V}}^{(0)}-\mathrm{U}(\mathrm{r})\right] \phi_{\mathrm{V}}^{(\mathrm{n})}=-\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~B}_{\mathrm{i}} \phi_{\mathrm{V}}^{(\mathrm{n}-\mathrm{i})}} . \tag{11}
\end{gather*}
$$

where:

$$
\begin{gather*}
\mathrm{U}(\mathrm{r})=\mathrm{U}_{0}(\mathrm{r})+\frac{\mathrm{a}_{0}}{\mathrm{kr}^{2}} \\
\mathrm{~B}_{1}=\mathrm{kE}_{\mathrm{v}}^{(1)}-\frac{\mathrm{a}_{1}}{\mathrm{r}^{2}} \tag{1}\\
\mathrm{~B}_{2}=\mathrm{kE}_{\mathrm{v}}^{(2)}-\frac{\mathrm{a}_{2}}{\mathrm{r}^{2}} \\
\mathrm{~B}_{\mathrm{i}}=\mathrm{kE}_{\mathrm{v}}^{(\mathrm{i})} \text { for } i \geq 3
\end{gather*}
$$

Eqs.(12) can be written in the general form:

$$
\begin{equation*}
\phi_{\mathrm{V}}^{(\mathrm{n})}{ }^{\prime \prime}(\mathrm{r})+\mathrm{k}\left(\mathrm{E}_{\mathrm{V}}^{(0)}-\mathrm{U}\right) \phi_{\mathrm{V}}^{(\mathrm{n})}=\mathrm{S}_{\mathrm{n}}(\mathrm{r}) \tag{13}
\end{equation*}
$$

By using the Rayleigh-Schrödinger perturbation approach [19] we can find:

$$
\begin{equation*}
<\mathrm{S}_{\mathrm{n}} \mid \phi_{0}>=0 \tag{14}
\end{equation*}
$$

If we replace the successive values of S_{n} (Eq.(12)) in (14) and by defining:

$$
\begin{align*}
\mathrm{I}_{\text {in }} & =<\phi_{\mathrm{v}}^{(\mathrm{i})}\left|\phi_{\mathrm{v}}^{(\mathrm{n})}\right\rangle \tag{15a}\\
\mathrm{R}_{\mathrm{in}}^{(\mathrm{P})} & \left.=<\phi_{\mathrm{v}}^{(\mathrm{i})}\left|\mathrm{B}_{\mathrm{P}}\right| \phi_{\mathrm{v}}^{(\mathrm{n})}\right\rangle \tag{15b}\\
\mathrm{T}_{\mathrm{q}} & =<\phi_{\mathrm{v}}^{(0)}\left|\frac{a_{\mathrm{q}}}{\mathrm{r}^{2}}\right| \phi_{\mathrm{v}}^{(0)} \tag{15c}
\end{align*}
$$

one can obtain for $\mathrm{E}_{\mathrm{v}}^{(\mathrm{i})}$ the analytic expressions:

$$
\begin{gather*}
\mathrm{E}_{\mathrm{v}}^{(1)}=\mathrm{T}_{1} / \mathrm{kI}_{00} \tag{16a}\\
\mathrm{E}_{\mathrm{v}}^{(2)}=\left(\mathrm{T}_{2}-\mathrm{R}_{01}^{(1)}\right) / \mathrm{kI}_{00} \tag{16b}\\
\mathrm{E}_{\mathrm{v}}^{(3)}=-\left(\mathrm{R}_{02}^{(1)}+\mathrm{R}_{01}^{(2)}\right) / \mathrm{kI} \mathrm{I}_{00} \tag{16c}
\end{gather*}
$$

and for $\mathrm{n} \geq 4$:

$$
\begin{equation*}
\mathrm{E}_{\mathrm{v}}^{(\mathrm{n})}=-\left(\mathrm{R}_{0(\mathrm{n}-1)}^{(1)}+\mathrm{R}_{0(\mathrm{n}-2)}^{(2)}+\sum_{\mathrm{i}=4}^{\mathrm{n}} \mathrm{~B}_{(\mathrm{i}-1)} \mathrm{I}_{0(\mathrm{n}-\mathrm{i}+1)}\right) / \mathrm{kI} 00 \tag{16n}
\end{equation*}
$$

2.4 Analytic Expressions for the Rovibrational Wave Function $\Psi_{\mathbf{v m}}$

The radial Schrödinger equation (10b) can be simply represented by:

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \Psi_{v m}}{\mathrm{dr}^{2}}=\mathrm{f}_{\mathrm{vm}}(\mathrm{x}) \Psi_{\mathrm{vm}}(\mathrm{x}) \tag{17}
\end{equation*}
$$

with $x=r-r e$ and:

$$
\begin{equation*}
f_{v m}=-k\left[E_{v m}-U_{0}(x)\right]-\frac{\sum_{i=0}^{2} a_{i} m^{i}}{\left(x+r_{e}\right)^{2}} \tag{18}
\end{equation*}
$$

By replacing Eq.(5b) in (18) one obtains:

$$
\begin{equation*}
\mathrm{f}_{\mathrm{vm}}(\mathrm{x})=\sum_{\mathrm{i}=0} \mathrm{C}_{\mathrm{i}}(\mathrm{x}) \mathrm{m}^{\mathrm{i}} \tag{19}
\end{equation*}
$$

where:

$$
\begin{gather*}
\mathrm{C}_{0}(\mathrm{x})=-\mathrm{k}\left[\mathrm{E}_{\mathrm{v}}^{(0)}-\mathrm{U}_{0}(\mathrm{x})\right]+\mathrm{a}_{0} \tag{20a}\\
\mathrm{C}_{1}(\mathrm{x})=-\mathrm{kE}_{\mathrm{v}}^{(1)}+\mathrm{a}_{1} /\left(\mathrm{x}+\mathrm{r}_{\mathrm{e}}\right)^{2} \tag{20b}\\
\mathrm{C}_{2}(\mathrm{x})=-\mathrm{kE}_{\mathrm{v}}^{(2)}+\mathrm{a}_{2} /\left(\mathrm{x}+\mathrm{r}_{\mathrm{e}}\right)^{2} \tag{20c}\\
\mathrm{C}_{\mathrm{i}}(\mathrm{x})=-\mathrm{kE}_{\mathrm{v}}^{(\mathrm{i})} \text { for } i \geq 3 \tag{20d}
\end{gather*}
$$

Equation (17) is equivalent to the second type of Volterra equation [20]:

$$
\begin{equation*}
\Psi_{v m}(\mathrm{x})=\Psi_{\mathrm{vm}}(0)+\mathrm{x}^{\prime} \Psi_{\mathrm{vm}}^{\prime}{ }^{(0)+}+\int_{0}^{\mathrm{x}}(\mathrm{x}-\mathrm{t}) \mathrm{f}_{\mathrm{vm}}(\mathrm{x}) \Psi_{\mathrm{vm}}(\mathrm{t}) \mathrm{dt} \tag{21}
\end{equation*}
$$

in the sense that the solution of one is the solution of other [21]. By replacing $\Psi_{v_{m}}(\mathrm{t})$ within the integral by its expressions in Eq.(12) an infinity of time, one can write:

$$
\begin{equation*}
\Psi_{\mathrm{vm}}(\mathrm{x})=\sum_{\mathrm{i}=0}^{\infty} \mathrm{D}_{\mathrm{i}}(\mathrm{x}) \tag{22}
\end{equation*}
$$

where:

$$
\begin{equation*}
D_{i}(x)=\int_{0}^{x}(x-t) f_{v m}(t) D_{i-1}(t) d t \tag{23a}
\end{equation*}
$$

with:

$$
\begin{equation*}
\mathrm{D}_{0}(\mathrm{x})=\Psi_{\mathrm{vm}}(0)+\mathrm{x} \Psi_{\mathrm{vm}}^{\prime}(0) \tag{23b}
\end{equation*}
$$

if D_{0} is replaced in D_{1} and D_{2}, and so one can obtain the solution of Eq.(17) in the form:

$$
\begin{equation*}
\Psi_{\mathrm{vm}}(\mathrm{x})=\Psi_{\mathrm{vm}}(0) \alpha_{\mathrm{vm}}(\mathrm{x})+\Psi_{\mathrm{vm}}^{\prime}(0) \beta_{\mathrm{vm}}(\mathrm{x}) \tag{24}
\end{equation*}
$$

where:

$$
\begin{gather*}
\alpha_{v m}(x)=\sum_{i=0}^{\infty} H_{i}(x) \tag{25a}\\
H_{i}(x)=\int_{0}^{x}(x-t) f_{v m}(t) H_{i-1}(t) d t \tag{25b}\\
H_{0}(x)=1 \tag{25c}
\end{gather*}
$$

with the initial values $\alpha_{\mathrm{vm}}(0)=1$ and $\alpha_{\mathrm{vm}}^{\prime}(0)=0$ and:

$$
\begin{gather*}
\beta_{v m}(x)=\sum_{i=0}^{\infty} G_{i}(x) \tag{26a}\\
G_{i}(x)=\int_{o}^{x}(x-t) f{ }_{v m}(t) G_{i-1}(t) d t \tag{26b}\\
G_{0}(x)=x \tag{26c}
\end{gather*}
$$

with $\quad \beta_{\mathrm{vm}}(0)=0$ and $\beta_{\mathrm{vm}}^{\prime}(0)=1$. The initial values $\Psi_{\mathrm{vm}}(0)$ and $\Psi_{\mathrm{vm}}^{\prime}(0)$ (Eq.(24)) are determined by the boundary conditions of the wave function:

$$
\begin{equation*}
\Psi_{\mathrm{vm}}(\mathrm{x}) \longrightarrow 0 \text { as } \mathrm{x} \rightarrow \infty \text { and } \mathrm{x} \rightarrow-\mathrm{r}_{\mathrm{e}} \tag{27}
\end{equation*}
$$

By using this condition in Eq. (24):

$$
\begin{equation*}
\frac{\Psi_{\mathrm{vm}^{\prime}}(0)}{\Psi_{\mathrm{vm}}(0)}=\lim \frac{\alpha_{\mathrm{vm}}(\mathrm{x})}{\beta_{\mathrm{vm}}(\mathrm{x})} \text { as } \mathrm{x} \rightarrow \infty \text { and } \mathrm{x} \rightarrow-\mathrm{r}_{\mathrm{e}} \tag{28}
\end{equation*}
$$

For the un-normalized wave function and without any loss of the generality of the problem we take:

$$
\begin{equation*}
\Psi_{\mathrm{vm}}(0)=1 \tag{29}
\end{equation*}
$$

Thus an analytic expression is obtained for the wave function Ψ_{vm} without any restriction on the potential function of the considered electronic state.

2.5 Analytic Expressions for the Functions $\phi_{\mathbf{v}}^{(\mathbf{i})}$

In order to have successively the analytic expressions for the functions $\phi_{\mathrm{V}}^{(\mathrm{i})}$, Eq.(11) can be written in the form:

$$
\begin{equation*}
\phi_{\mathrm{V}}^{(0) "}+\mathrm{f}_{\mathrm{V}}(\mathrm{r}) \phi_{\mathrm{V}}^{(0) "}=0 \tag{30}
\end{equation*}
$$

where:

$$
\begin{equation*}
\mathrm{f}_{\mathrm{v}}(\mathrm{r})=\mathrm{k}\left(\mathrm{E}_{\mathrm{v}}^{(0)}-\mathrm{U}(\mathrm{r})\right) \tag{31}
\end{equation*}
$$

Table 1. Values of the pure vibrational energy E_{V}, the rotational constant B_{V} and the centrifugal distortion constants for several vibrational levels for a Dunham potential of the ground state of the molecule CO calculated by using the highly accurate method of Ref. [17]. The number in parentheses is a multiplicative power of 10 .

v	E_{V}	B_{V}	$-\mathrm{D}_{\mathrm{V}}$
0	1081.776425149	1.9225288721884	6.1195381900457 (-6)
1	3225.047998885	1.9050257901391	6.1188473561624 (-6)
3	7432.218208258	1.8700243821234	6.1184420237645 (-6)
5	11534.025078516	1.8350345332216	6.1189169777807 (-6)
7	15531.120784273	1.8000746520496	6.1188350207823 (-6)
9	19424.385126713	1.7651937002118	6.1146677661437 (-6)
11	23215.178726636	1.7305025043721	6.0990072539553 (-6)
13	26908.787935516	1.6962241484309	6.0580087383690 (-6)
15	30500.138111400	1.6627654530600	5.9686516388037 (-6)
17	34004.814019292	1.6307966971334	5.7981854718139 (-6)
19	37430.275022813	1.6012922698096	5.5108072746541 (-6)
21	40791.837404834	1.5754430955839	$5.086158954178(-6)$
23	44109.660979866	1.5543710691237	4.5428346473703 (-6)
25	47407.110167068	1.5387339075939	3.9433150013883 (-6)
27	50707.803288057	1.5284874615789	3.3660699956803 (-6)
29	54032.686216679	1.5229580231240	2.8682593588572 (-6)

V	H_{V}	L_{V}	M_{V}	N_{V}
0	$5.8008264828928(-12)$	$-3.6444821134198(-17)$	$-4.870538869963(-23)$	$-7.9446187163396(-28)$
1	$5.6556260638422(-12)$	$-3.7160166074177(-17)$	$-5.2869778412642(-2)$	$-8.2024432914161(-28)$
3	$5.3658768716944(-12)$	$-3.8409303899672(-17)$	$-5.0891904156628(-23)$	$-5.2884447738907(-28)$
5	$5.1006902619864(-12)$	$-3.8397431716565(-17)$	$-4.8666330963876(-24)$	$9.1503773444623(-28)$
7	$4.9322899950315(-12)$	$-3.4490621558615(-17)$	$1.5663459962616(-22)$	$5.0640212496167(-27)$
9	$5.0223858972337(-12)$	$-1.8334588507977(-17)$	$4.9901410890482(-19)$	$2.9382021839819(-20)$
11	$5.6847433294025(-12)$	$1.0393849336931(-17)$	$1.4273812933406(-21)$	$3.1959987790247(-26)$
13	$7.4526300552449(-12)$	$7.4327467728424(-17)$	$2.9250940837987(-21)$	$5.5215338573414(-26)$
15	$1.1080416397713(-11)$	$1.8254444401644(-16)$	$4.8675355631025(-21)$	$6.3563049778791(-26)$
17	$1.7297791540246(-11)$	$3.2685833325677(-16)$	$5.9581125435247(-21)$	$6.0909344720502(-27)$
19	$2.6097691729497(-11)$	$4.4909003589346(-16)$	$3.5884719311499(-21)$	$-1.5220006209637(-25)$
21	$3.5879187967322(-11)$	$4.4270189355234(-16)$	$-3.5761551551786(-21)$	$-2.9907056920959(-25)$
23	$4.3060122946888(-11)$	$2.4359058245612(-16)$	$-1.1457284295605(-20)$	$-2.1752288706063(-25)$
25	$4.5058514501930(-11)$	$-6.7018387003047(-17)$	$-1.3402948208451(-20)$	$5.3937002329236(-26)$
27	$4.1620410230151(-11)$	$-3.2570480762391(-16)$	$-8.7273503002733(-21)$	$2.3051787682257(-25)$
29	$3.4930222711987(-11)$	$-4.4401109033563(-16)$	$-2.3889982983618(-21)$	$2.1341119397825(-25)$

By using Eq.(21) and by applying the same approach used in the calculation of Ψ_{vm} one can obtain

$$
\begin{equation*}
\phi_{\mathrm{V}}^{(0)}(\mathrm{x})=\phi_{\mathrm{V}}^{(0)}(0) \alpha_{\mathrm{V}}(\mathrm{x})+\phi_{\mathrm{V}}^{(0)^{\prime}} \beta_{\mathrm{V}}(\mathrm{x}) \tag{32}
\end{equation*}
$$

where the canonical functions $\alpha_{v}(x)$ and $\beta_{v}(x)$ are given by the analytic expressions (25) and (26) in which $\mathrm{f}_{\mathrm{vm}}(\mathrm{x})$ (Eq.(19)) is substituted by $\mathrm{f}_{\mathrm{v}}(\mathrm{x})$ (Eq.(31)) with the same initial conditions

$$
\begin{gather*}
\alpha_{\mathrm{v}}(0)=1 \alpha_{\mathrm{v}}^{\prime}(0)=0 \tag{33a}\\
\beta_{\mathrm{v}}(0)=0 \beta_{\mathrm{v}}^{\prime}(0)=1 \tag{33b}\\
\phi_{\mathrm{V}}^{\prime}(0)(0)=-\lim _{\frac{\alpha_{\mathrm{v}}}{}(\mathrm{x})}^{\beta_{\mathrm{v}}(\mathrm{x})} \text { as } \mathrm{x} \rightarrow \infty \text { and } \mathrm{x} \rightarrow-\mathrm{r}_{\mathrm{e}} \tag{33c}
\end{gather*}
$$

Table2. Values of the coefficients $\mathrm{E}_{\mathrm{V}}^{(\mathrm{i})}$ calculated from Eq. (16) (first entry) compared to those calculated from Eq. (8) by taking $a_{1}=+1$ (second entry) for the Dunham potential of the ground state of the molecule CO

V	$\mathrm{E}_{\mathrm{V}}^{(0)}$	$\mathrm{E}_{\mathrm{V}}^{(1)}$	$\mathrm{E}_{\mathrm{V}}^{(2)}$	$\mathrm{E}_{\mathrm{V}}^{(3)}$
0	1083.218318361	-1.922 5196928909	$4.8062380369760(-1)$	3.0597567684374 (-6)*
	1	9**	0	0
1	3226.476764786	-1.9050166118776	$4.7624803413477(-1)$	$3.0594116600500(-6)$
	6	6	7	16
3	7433.620723103	-1.870 0152044964	$4.6749768268741(-1)$	3.0592096095739 (-6)
	3	4	1	802
5	11535.40135097	-1.8350253548547	$4.5875021980819(-1)$	3.0594476501035 (-6)
	7	7	9	21
7	15532.47083682	-1.800 0654738054	$4.5001024962742(-1)$	3.0594070294366 (-6)
	2	4	2	5
9	19425.70901854	-1.7651845282186	$4.4129001739820(-1)$	$3.0573232105859(-6)$
	4	6	0	3872
11	23216.47660008	-1.7304933558708	$4.3261723997324(-1)$	3.0494915468493 (-6)
	8	8	4	520
13	26907.06010022	-1.6962150614304	$4.2404770736564(-1)$	$3.0289885319972(-6)$
	2	4	4	877
15	30501.38518213	-1.6627565001012	$4.1568315639860(-1)$	2.9843022726613 (-6)
	3	2	0	751
17	34006.03711355	-1.630 7879998843	$4.0769120182454(-1)$	2.8990559765677 (-6)
	5	3	4	28
19	37431.45798891	-1.6012840036427	$4.0031549016213(-1)$	2.7553481770532 (-6)
	1	7	3	97
21	40793.01898429	-1.5754354664058	$3.9385378052304(-1)$	2.5430034229898 (-6)
	9	8	4	30375
23	44110.82675561	-1.554 3642549444	$3.8858652099833(-1)$	2.2713258197821 (-6)
	1	3	3	8432
25	47408.26421528	-1.5387279926974	$3.8467805496074(-1)$	$1.9715617516651(-6)$
	8	4	4	7410
27	50708.94965176	-1.5284824125442	$3.8211723715974(-1)$	1.6829465365566 (-6)
	5	2	4	6046
	54033.82845383	-1.522980720 7939	$3.0877231201771(-1)$	1.4340554547866 (-6)
29	3	9	1	83

$$
\begin{equation*}
\phi_{0}(1)=1 \tag{33d}
\end{equation*}
$$

and the boundary condition [22]:

$$
\begin{equation*}
\phi_{\mathrm{V}}^{(0)}(\mathrm{x}) \longrightarrow 0 \text { as } \mathrm{x} \rightarrow \infty \text { and } \mathrm{x} \rightarrow-\mathrm{r}_{\mathrm{e}} \tag{34}
\end{equation*}
$$

By repeating the same way of calculation to Eq.(13) for $n \geq 1$ one obtains:

$$
\begin{equation*}
\phi_{\mathrm{V}}^{(\mathrm{i})}(\mathrm{x})=\phi_{\mathrm{V}}^{(\mathrm{i})}(0) \alpha_{\mathrm{V}}(\mathrm{x})+\phi_{\mathrm{V}}^{(\mathrm{i})^{\prime}}(0) \beta_{\mathrm{V}}(\mathrm{x})+\gamma_{\mathrm{V}}^{(\mathrm{i})}(\mathrm{x}) \tag{35}
\end{equation*}
$$

where $\alpha_{V}(x)$ and $\beta_{V}(x)$ are those of Eq.(32) and $\gamma_{V}^{(i)}(x)$ is a particular solution of the inhomogeneous differential equation (Eq.(13)) which is given by:

$$
\begin{equation*}
\gamma_{\mathrm{v}}^{(\mathrm{i})}(\mathrm{x})=\sum_{\mathrm{p}=0}^{\infty} \mathrm{F}_{\mathrm{p}}(\mathrm{x}) \tag{36a}
\end{equation*}
$$

Table2. (Continued)

v	$E_{v}^{(4)}$	$E_{v}^{(5)}$	$\mathrm{E}_{\mathrm{V}}^{(6)}$
0	-3.824 $6597064290(-7)$	$-1.0875980202266(-12)$	9.0622538502623 (-14)
	- 86	3684	15664
1	-3.824 $2292284679(-7)$	$-1.0603718239040(-12)$	$8.8353480157382(-14)$
	94	40688	67536
3	-3.823 $9784673413(-7)$	$-1.0060418986099(-12)$	$8.3825622055483(-14)$
	92	3505	4389
5	-3.824 $2776844192(-7)$	-9.563 $1942810716(-13)$	$7.9680286413686(-14)$
	75	26576	26079
7	-3.824 $2279609748(-7)$	-9.247504 $8338153(-13)$	7.7052480871274 (-14)
	6	7199	69381
9	-3.811828 $9036169(-7)$	-9.416713 $3987076(-13)$	$7.8648494663194(-14)$
	4689	099002234	5989348963
11	-3.811828 $9036169(-7)$	$-1.0659056229386(-12)$	$8.8828503344356(-14)$
	99	7394	28754
13	-3.786 $1890839215(-7)$	$-1.3974842890070(-12)$	$1.1647870954106(-13)$
	098	4440	7692
15	-3.730 $3085829756(-7)$	$-2.0778633285207(-12)$	$1.7320853050942(-13)$
	928	33380	01930
17	-3.623 $7118501149(-7)$	-3.243 $8466645271(-12)$	$2.7041590252566(-13)$
	088	6397	3643
19	-3.444 $0220961441(-7)$	-4.894 $0695482888(-12)$	4.0797012172804 (-13)
	519	72822	64261
21	-3.1785305835850 (-7)	-6.711164 $4448174(-12)$	$5.5939281703431(-13)$
	6447	32575	689991
23	-2.838 $8881419569(-7)$	$-8.0741535963165(-12)$	6.7291715437954 (-13)
	20337	51660	25427
25	-2.464 $1705757935(-7)$	$-8.4483666750833(-12)$	$7.0401097893160(-13)$
	8882	2981	4583
27	$-2.1034230524965(-7)$	$-7.8033179537363(-12)$	$6.5018147918360(-13)$
	5560	8861	9169
29	$-1.7923510173569(-7)$	-6.548722977 $3057(-12)$	$5.4559740614244(-13)$
	90	69690	1236

$$
\begin{gather*}
F_{p}(x)=\int_{0}^{x}(x-t) S_{i}(t) F_{p-1}(t) d t \tag{36b}\\
F_{0}(x)=\int_{0}^{x}(x-t) S_{i}(t) \phi_{v}^{(0)}(t) d t \tag{36c}
\end{gather*}
$$

By using the Boundary conditions (28) and (34) in (5a):

$$
\begin{equation*}
\phi_{\mathrm{V}}^{(\mathrm{i})}(\mathrm{x}) \longrightarrow 0 \text { as } \mathrm{x} \rightarrow \infty \text { and } \mathrm{x} \rightarrow-\mathrm{r}_{\mathrm{e}} \tag{37}
\end{equation*}
$$

and by replacing the conditions (29) and (33d) in (5a) one finds:

$$
\begin{equation*}
\phi_{V}^{(i)}(0)=0 \text { for } i \neq 0 \tag{38}
\end{equation*}
$$

from this condition a function $\phi_{\mathrm{V}}^{(\mathrm{i})}(\mathrm{x})$ will be given by:

Table 3. Values of the function $\phi_{\mathrm{V}}^{(\mathrm{i})}(0 \leq i \leq 5)$ (Eqs. (32), (39)) and the wave function Ψ_{vm} calculated from $\sum \phi_{\mathrm{V}}^{(\mathrm{i})} \mathrm{m}^{\mathrm{i}}$ (Eq. (5a)) compared to Ψ_{vm} calculated from a direct numerical method [24] for $\mathrm{m}=-3$ and $\mathrm{v}=0,5,10$ at x $=0.03 \AA, 0.06 \AA, 0.09 \AA$.

$\mathrm{m}=-5$				
$\mathrm{X}\left(\mathrm{A}^{\circ}\right)$		$\mathrm{v}=0$	$\mathrm{v}=5$	$\mathrm{v}=10$
0.03	$\phi_{\mathrm{V}}^{(0)}$	0.853779042	-0.628 689912	-0.746 271835
	$\phi_{\mathrm{V}}^{(1)}$	$-0.403364851(-4)^{*}$	$-0.237123424(-3)$	-0.167 721066 (-3)
	$\phi_{\mathrm{v}}^{(2)}$	0.100850055 (-4)	$0.592703387(-4)$	$0.419651635(-4)$
	$\phi_{\mathrm{V}}^{(3)}$	-0.467024 033 (-9)	0.525321283 (-8)	-0.174 $617832(-7)$
	$\phi_{\mathrm{V}}^{(4)}$	$0.583868998(-10)$	0.653260291 (-9)	0.219100921 (-8)
	$\phi_{\mathrm{v}}^{(5)}$	-0.266 $885116(-14)$	$0.101705210(-11)$	0.248965974 (-11)
	$\Psi_{\mathrm{Vm}}=\sum_{\mathrm{i}=0}^{5} \phi_{\mathrm{v}}^{(\mathrm{i})} \mathrm{m}^{\mathrm{i}}$	0.854232945	-0.626 032598	-0.744 380541
	$\Psi_{\text {vm }}^{* *}$	5***	601	38
0.06	$\phi_{\mathrm{V}}{ }^{(0)}$	0.503481580	-0.509123121	0.344191238
	$\phi_{\mathrm{V}}^{(1)}$	-0.474 $923607(-4)$	$0.204739736(-3)$	$0.333499906(-3)$
	$\phi_{\mathrm{V}}^{(2)}$	$0.118753084(-4)$	-0.511753 $561(-4)$	-0.834 411834 (-4)
	$\phi_{\mathrm{V}}^{(3)}$	-0.110919 296 (-8)	$-0.478427792(-8)$	0.331292250 (-7)
	$\phi_{\mathrm{V}}^{(4)}$	0.138691949 (-9)	$0.595140409(-9)$	-0.415 725968 (-8)
	$\phi_{\mathrm{V}}^{(5)}$	-0.128 $497528(-13)$	0.867989493 (-12)	0.483729440 (-11)
	$\Psi_{v m}=\sum_{i=0}^{5} \phi_{\mathrm{V}}^{(\mathrm{i})} \mathrm{m}^{\mathrm{i}}$	0.504016150	-0.511425236	0.304430655
	$\Psi_{\text {vm }}^{* *}$	0	4	48

$$
\begin{equation*}
\phi_{\mathrm{V}}^{(\mathrm{i})}(\mathrm{x})=\phi_{\mathrm{V}}^{(\mathrm{i})^{\prime}}(0) \beta_{\mathrm{V}}(\mathrm{x})+\gamma_{\mathrm{V}}^{(\mathrm{i})}(\mathrm{x}) \tag{39}
\end{equation*}
$$

, (i)
where $\phi_{\mathrm{V}}(0)$ is obtained from the boundary condition:

$$
\begin{equation*}
\phi_{\mathrm{V}}^{\prime}(\mathrm{i})(0)=\lim \frac{\gamma_{\mathrm{V}}^{(\mathrm{i})}(\mathrm{x})}{\beta_{\mathrm{V}}(\mathrm{x})} \text { as } \mathrm{x} \rightarrow \infty \text { and } \mathrm{x} \rightarrow-\mathrm{r}_{\mathrm{e}} \tag{40}
\end{equation*}
$$

Table3. (Continued)

0.09	$\phi_{\mathrm{V}}^{(0)}$	0.210338145	0.107123434	0.237413614
	$\phi_{\mathrm{V}}^{(1)}$	-0.297 $1567762(-4)$	$0.116825775(-3)$	-0.460 $495292(-3)$
	$\phi_{\mathrm{V}}^{(2)}$	$0.743102987(-5)$	-0.291 $972731(-4)$	$0.115212696(-3)$
	$\phi_{\mathrm{v}}^{(3)}$	-0.104 300028 (-8)	-0.458 203437 (-8)	-0.444 719366 (-7)
	$\phi_{\mathrm{v}}^{(4)}$	$0.130435703(-9)$	$0.570723262(-9)$	$0.558104009(-8)$
	$\phi_{\mathrm{V}}^{(5)}$	-0.182 $029512(-13)$	$0.609060117(-12)$	$-0.662164445(-11)$
	$\Psi_{\mathrm{vm}}=\sum_{\mathrm{i}=0}^{5} \phi_{\mathrm{v}}^{(\mathrm{i})} \mathrm{m}^{\mathrm{i}}$	0.210672711	0.106993121	0.242605476
	$\Psi_{\text {vm }}^{* *}$	1	1	85

[^1]
3 NUMERICAL APPLICATION

The present formulation is applied to the ground state of the molecule CO by using a Dunham potential [23] in the case of Raman transitions where $J^{\prime}-J=j= \pm 2$ with $a_{0}=\frac{3}{4}, a_{1}=-1$ and $\mathrm{a}_{2}=\frac{1}{4}$ (Eq.(6d)). In order to have the successive values of $\mathrm{E}_{\mathrm{v}}^{(\mathrm{i})}$ and $\phi_{\mathrm{v}}^{(\mathrm{i})}$, the $\phi_{\mathrm{v}}^{(0)}$ are computed from $\operatorname{Eqs}(32)$, (33) and (34) and then by using alternatively Eqs.(16) and (39). The values of $\mathrm{E}_{\mathrm{V}}^{(\mathrm{i})}$ for $\mathrm{i}=0,1,2 \ldots 6$ and $0 \leq \mathrm{v}<29$ are presented in Table 2 (first entry); the comparison of these values to those calculated from Eqs. (8) (second entry), by using the data of Table 1 (calculated by using a highly accurate method [17]), shows the excellent agreement up 10 significant figures and more. The values of $\phi_{\mathrm{V}}^{(\mathrm{i})}(0 \leq i \leq 5)$ calculated from Eqs. (32) and (39) for $\mathrm{m}=-5, \mathrm{x}=0.03,0.06$ and 0.09 for the different vibrational levels $\mathrm{v}=0,5,10$ are showed in Table 3.

The comparison of the wave function calculated from $\sum \phi_{\mathrm{v}}^{(\mathrm{i})} \mathrm{m}^{\mathrm{i}}$ (Eq.(5a)) to those calculated by direct numerical method [24] shows an excellent agreement between these values up to seven
significant figures, or more, for the considered vibrational levels and for the different values of x .

Table 4. Values of the successive approximations of the wave function $\Psi_{v m}(x)=S_{p}$, (Eqs. (32), (39)) compared to Ψ_{vm} calculated from a direct numerical method [24] from $\mathrm{m}=-3,-7,-11$ and $\mathrm{v}=0,5,10$ at $\mathrm{x}=0.06 \AA$

$\mathrm{x}=0.06 \AA$				
m		$\mathrm{v}=0$	$\mathrm{v}=5$	$\mathrm{v}=10$
-3	S_{0}	0.503481503	-0.591231205	0.344191238
	S1	0.503624057	-0.509 737339	0.343190738
	S2	0.503730935	-0.510 197917	0.342439767
	S_{3}	0.503730965	-0.510 197788	0.342438873
	S4	0.503730976	-0.510 197740	0.342438536
	S_{5}	0.503730976	-0.510 197741	0.342438535
	$\begin{aligned} & \Psi_{\mathrm{vm}}=\sum_{\mathrm{i}=0}^{5} \phi_{\mathrm{v}}^{(\mathrm{i})} \mathrm{m}^{\mathrm{i}} \\ & \Psi_{\mathrm{Vm}}^{* *} \end{aligned}$	$\begin{aligned} & 0.503730976 \\ & 6^{*} \end{aligned}$	$\begin{aligned} & -0.510197741 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.342438535 \\ & 5 \end{aligned}$
-7	S_{0}	0.503481580	-0.509 123120	0.344191238
	S1	0.503814026	-0.510 556298	0.341856738
	S2	0.504395917	-0.513 063891	0.337768121
	S_{3}	0.504396297	-0.513062250	0.337756757
	S4	0.504396630	-0.513060821	0.337746776
	S_{5}	0.504396631	-0.513 060835	0.337746694
	$\begin{aligned} & \Psi_{\mathrm{vm}}=\sum_{\mathrm{i}=0}^{5} \phi_{\mathrm{V}}^{(\mathrm{i})} \mathrm{m}^{\mathrm{i}} \\ & \Psi_{\mathrm{vm}}^{* *} \end{aligned}$	$\begin{aligned} & 0.504396631 \\ & 1 \end{aligned}$	$\begin{aligned} & -0.513060835 \\ & 44 \end{aligned}$	$\begin{aligned} & 0.337746694 \\ & 47 \end{aligned}$
-11	S_{0}	0.503481580	-0.509123120	0.344191238
	S1	0.504003996	-0.511 375257	0.340522739
	S2	0.505440908	-0.517567475	0.330426356
	S_{3}	0.505442385	-0.517 561107	0.330382261
	S4	0.505444514	-0.517 552394	0.330321394
	S_{5}	0.505444417	-0.517552534	0.330320615
	$\begin{aligned} & \Psi_{\mathrm{vm}}=\sum_{\mathrm{i}=0}^{5} \phi_{\mathrm{v}}^{(\mathrm{i})} \mathrm{m}^{\mathrm{i}} \\ & \Psi_{\mathrm{vm}}^{* *} \end{aligned}$	$\begin{aligned} & 0.505444417 \\ & 95 \end{aligned}$	$\begin{aligned} & -0.517522534 \\ & 661 \end{aligned}$	$\begin{aligned} & 0.330320615 \\ & 19882 \end{aligned}$

In Table 3 the wave function $\Psi_{v m}(\mathrm{x})$ is represented by successive approximations as:

$$
\begin{gathered}
\mathrm{S}_{0}=\phi_{\mathrm{v}}^{(0)} \\
\mathrm{S}_{1}=\mathrm{S}_{0}+\phi_{\mathrm{v}}^{(1)} \mathrm{m} \\
\mathrm{~S}_{2}=\mathrm{S}_{1}+\phi_{\mathrm{v}}^{(2)} \mathrm{m}^{2}
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{S}_{3}=\mathrm{S}_{2}+\phi_{\mathrm{v}}^{(3)} \mathrm{m}^{3} \\
& \mathrm{~S}_{4}=\mathrm{S}_{3}+\phi_{\mathrm{v}}^{(4)} \mathrm{m}^{4} \\
& \mathrm{~S}_{5}=\mathrm{S}_{4}+\phi_{\mathrm{v}}^{(5)} \mathrm{m}^{5}
\end{aligned}
$$

for $\mathrm{m}=-3, \mathrm{x}=0.03 \AA, 0.06 \AA, 0.09 \AA$ and for the vibrational levels $\mathrm{v}=0,5,10$. The comparison of S_{5} to Ψ_{vm} calculated by direct method [24] shows an excellent agreement between these values up to seven significant figures, or more, for all the considered vibrational levels and for the different values of x . The comparison of S_{i} to Ψ_{vm} calculated by a numerical method [24] shows that (i) a good agreement can be obtained by third order of correction; if highly accurate wave functions are needed the fourth and the fifth order of correction are required; (ii) the agreement decreases slightly with the increasing value of $|\mathrm{m}|$, this is may explained by the perturbative aspect of the present formulation.

4 CONCLUSIONS

For any transition $\mathrm{vJ} \leftrightarrow \mathrm{v}^{\prime} \mathrm{J}^{\prime}$ (infrared, Raman, ...), the corresponding eigenfunctions and eigenvalues are expressed for the two considered states in terms of the same transition number m as:

$$
\begin{aligned}
& E_{v m}=\sum_{i=0} E_{v}^{(i)} m^{i} E_{v^{\prime} m}=\sum_{i=0} E_{v^{\prime}}^{(i)} m^{i} \\
& \Psi_{v m}=\sum_{i=0} \phi_{v}^{(i)} m^{i} \Psi_{v^{\prime} m}=\sum_{i=0} \phi_{v^{\prime}}^{(i)} m^{i}
\end{aligned}
$$

where the coefficients $\mathrm{E}_{\mathrm{v}}^{(\mathrm{i})}$ and $\phi_{\mathrm{V}}^{(\mathrm{i})}$ are given by analytical expressions (Eqs.(16), (32) and (39)). This approach is governed by three coefficients a_{0}, a_{1} and a_{2} (Eqs. (3d)). The type of a transition is defined by the value of j in a_{0} and $\mathrm{a}_{2}(\mathrm{j}= \pm 1$ in infrared and $\mathrm{j}= \pm 2$ in Raman transitions) and the rovibrational state is defined by the sign of $a_{1}\left(a_{1}=-1\right.$ for the lower state and $a_{1}=+1$ for the upper state). The numerical application to the ground state of the molecule CO in Raman transitions shows the excellent accuracy of the m-representation of the eigenvalue and the eigenfunction. By using this formulation, the calculation of the matrix elements for a transition is greatly simplified.

5 REFERENCES

[1] H. Kubinyi, Variable Selection in QSAR Studies. I. An Evolutionary Algorithm, Quant. Struct.-Act. Relat. 1994, 13, 285-294.
[2] . A. Toth, R. H. Hunt and E. K. Plyler, Line Strengths, Line Widths and Dipole Moment Function for HCl, J. Mol. Spectrosc. 1970, 35, 110-126.
[3] J. P. Bouanich, N. V. Thanh and I. Rossi, Intensity, Transition Moment and Band Shapes for the Second Overtone of Compressed CO, J. Quant. Spectrosc. Radiat. Transf. 1983, 30, 9-15.
[4] R. Herman and R. F. Wallis, Influence of Vibration-Rotation Interaction of Line Intensities in Vibration-Rotation Band of Diatomic Molecules, J. Chem. Phys. 1955, 23, 637-646
[5] H. Kobeissi and M. Korek, Diatomic Rovibrational Matrix Elements Expression of the Rotational Factor of any Potential, J. Phys. B: At. Mol. Phys. 1994, 27, 3653-3658.
[6] M. Korek and H. Kobeissi, New Analytical Expressions for the Herman-Wallis Coefficients of Infrared Transitions Up to the Third Order, J. Quant. Spectrosc Radiat. Transfer. 1994, 52, 631-638.
[7] M. Korek and H. Kobeissi, Explicit Pure Rotational Effect for Diatomic Molecule in Infrared Transitions, J. Quant. Spectrosc. Radiat. Transfer. 1998, 60, 69-75.
[8] T. C. James and W. Klemperer, Line Intensities in the Raman Effect of ${ }^{1} \Sigma$ Diatomic Molecules, J. Chem. Phys. 1959, 31, 130-134.
[9] M. Korek and H. Kobeissi, New Analytical Expression for the Rotational Factor in Raman transitions, Can. J. Phys. 1995, 73, 559-565.
[10] M. Korek, Analytical Expression for the High-Order Herman-Wallis Coefficients of a Diatomic Molecule, Can. J. Phys. 1997, 75, 795-804.
[11] R. H. Tipping and J. F. Ogilvic, Herman-Wallis Factors for Raman Transitions of ${ }^{1} \Sigma$ state Diatomic Molecule, J. Ram. Spectrosc. 1984, 15, 38-40.
[12] J. P. Bouanich, Analytic Vibration-Rotation Matrix Elements for High Δv Infrared Transitions of Diatomic Molecules, J. Quant. Spectrosc. Radiat. Transfer. 1987, 38, 89-112.
[13] J. F. Ogilvic, W. R. Rodwell and R. H. Tipping, Dipole Moment Functions of the Hydrogen Halides, J. Chem. Phys. 1980, 73, 5221-5229.
[14] M. Korek and H. Kobeissi, Diatomic Centrifugal Distortion Constants for Large Orders at any Level : Application to the $\mathrm{XO}^{+}{ }_{\mathrm{g}}-\mathrm{I}_{2}$ state, Can. J. Chem. 1993, 71, 313-317.
[15] M. Korek and A. R. Allouche, Theoretical Study of the Low-Lying Electronic States of the RbCs ${ }^{+}$Molecular Ion, J. Phys. B: At. Mol. Opt. Phys. 2001, 34, 3689-3702.
[16] M. Korek, A. R. Allouche and S. N. Abdul Al, Potential Curves and Rovibrational Energies for Electronic States of the Molecular Ion KCs^{+}, Can. J. Phys. 2002, 80, 1025-1035.
[17] M. Korek and H. Kobeissi, Highly Accurate Diatomic Centrifugal Distorsion Constants for High Orders and High Levels, J. Comput. Chem. 1992, 13, 1103-1108.
[18] G. Hersberg (Ed.), The Spectra of Diatomic Molecules, Van Nostrand, Toronto, 1950
[19] J. M. Hutson, Centrifugal Distorsion Constants for Diatomic Molecules: An Improved Computational Method, J. Phys. B: At Mol. Opt. Phys. 1981, 14, 851-857.
[20] L. Piskonov, Calcul Différential et Intégral, Mir, Moscow, 1969.
[21] H. Kobeissi and Y. S. Tergiman, Contribution à l'étude de la Fonction d'onde de Vibration d'une Molecule Diatomique: Les Fonctions Canoniques de Vibration, J. Phys. (Paris). 1974, 35, 635-640.
[22] H. Kobeissi and M. Korek, Eigenvalue Functions Associated with Diatomic Rotation and Distortion Constants, J. Phys. B: At. Mol. Opt. Phys. 1985, 18, 1155-1165.
[23] J. P. Bouanich, Higher-Order Contribution to the Dunham Coefficients; Applications to the Ground State of CO, J. Quant. Spectrosc. Radiat. Transfer. 1978, 19, 381-386.
[24] H. Kobeissi, M. Dagher, M. Korek and A. Chaalan, A New Treatment of the Vibration-Rotation Eigenvalue Problem for a Diatomic Molecule, J. Comput. Chem. 1983, 4, 218-225.

[^0]: \# Dedicated to Professor Nenad Trinajstić on the occasion of the $65^{\text {th }}$ birthday.

 * Correspondence author; phone: 961-1-300110; fax: 961-1-818402; E-mail: fkorek@cyberia.net.lb.

[^1]: * Number between parentheses is a multiplicative power of 10 ** Ref [24]
 *** Omitted figures are identical to those in the leading entry

