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Abstract 

Motivation. Novel carbon allotropes, with finite molecular structure, including spherical fullerenes are 
nowadays currently produced and investigated. The Kekulé structure count and permanent of the adjacency 
matrix of these molecules are related to structural parameters involving the presence of contiguous pentagons. 
The close relationship between these parameters suggests considering also their quotients. 
Method. Both single– and complete–linkage cluster analyses of the structural parameters allow classifying these 
parameters. PCA (principal component analysis) of the structural parameters and the cluster analyses of the 
fullerenes permits classifying these molecules. 
Results. Cluster analysis provides a binary taxonomy of the structural parameters that separates first the r–r/p
from the p–q–q/p parameters. PCA clearly distinguishes five classes of fullerenes. The cluster analysis of 
fullerenes is in agreement with the PCA classification. 
Conclusions. Cluster analysis shows that the greatest similarity is between the q–q/p and r–r/p pairs of 
parameters. Split decomposition indicates a spurious relationship resulting from base composition effects. PCA 
provides five orthogonal factors F1–F5. The use of F1 gives an error of 28%. The use F1 and F2 decreases the 
error to 2%. PCA groups the fullerenes in five classes. Some fullerenes with different numbers of atoms belong 
to the same class, while some fullerene isomers are members of different classes. 
Keywords. Cluster analysis; dendrogram; split decomposition; principal component analysis; PCA; similarity 
matrix; fullerene. 

1 INTRODUCTION 

Multivariate data often consist of sets of high–dimensional vectors. In chemical applications, a 

vector could be a series of physical measurements or calculated properties made on a molecule. A 

dataset of compounds may be a series of related molecules collected for, e.g., a structure–activity 

study. If the vectors are only two–dimensional (2D), they can be plotted on a plane. This allows the 

visual inspection of the structure of the dataset to identify clusters and particular objects, i.e., to 
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perform an exploratory data analysis. 

When dealing with vectors whose dimensions are larger than two, it is not possible to represent 

them graphically on a plane. One way to overcome this problem is to transform the N–dimensional 

vectors into 2D. Many projection methods were developed for this task. A good projection method 

preserves as faithfully as possible the original structure of the high–dimensional data. 

Unfortunately, the true distances between the vectors in the original high–dimensional space cannot 

be preserved exactly in the projected 2D display. The 2D plot thus obtained must distort in some 

way the original picture. Such distortions can cause misleading plots. Among the many papers 

concerned with the projection of multivariate data, the checking of the projections remains mostly 

an exception. Projection algorithms can be either supervised or unsupervised. Because this article 

deals with exploratory data structure analysis, only unsupervised methods are used. Unsupervised 

algorithms can be either linear (e.g., principal component analysis) or non–linear (e.g., non–linear 

mapping, self–organizing map). Comparisons of the quality of projection methods were described 

elsewhere [1–6]. 

Principal component analysis (PCA) is probably one of the most popular projection methods [7]. 

Its principal feature is to rotate the vector space using the eigenvectors (principal components, PCs 

or factors) of the covariance matrix as a new basis [8]. PCs corresponding to the two largest 

eigenvalues (variance) are used to produce 2D plots [9]. The quality of the projection is commonly 

expressed by the retained variance of the first two PCs. In addition, plots of other PCs, such as the 

first against the third, etc., might be useful. PCA facilitates the statistical analysis, but the 

interpretation is obscured as each new variable results from the combination of others. In order to 

illustrate the usefulness of this method, PCA is applied to a dataset of 31 fullerenes represented by 

five structural parameters. For this example, PCA projection method is applied. On the other hand, 

a method is described for cluster analysis (CA) data. The relative efficiency of CA algorithms and 

similarity descriptors was the subject of several articles [10–12]. 

In previous works, the calculation of the Kekulé structure count and the permanent of adjacency 

matrices [13] were applied to fullerenes with different structural parameters involving the presence 

of contiguous pentagons [14]. PCA of the structural parameters was carried out [15,16]. In this 

report, two new parameters have been introduced. The aim of this report is to analyse the 

interdependence between the structural parameters, to classify them and to classify the fullerenes. 

Section 2 presents the computational methods. Section 3 discusses the calculation results for 

fullerenes. Section 4 summarizes the conclusions. 
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2 COMPUTATIONAL METHODS 

2.1 Principal Component Analysis
PCA is used to transform a number of potentially correlated variables into the same number of 

independent variables, which can then be ranked based upon their contributions for explaining the 
whole data set. The transformed variables that can explain all the information in the data are called 
principal components (PCs) or factors. The first PC, F1, accounts for as much of the variability in 
the data as possible and each succeeding component, Fi, accounts for as munch of the remaining 
variability as possible. PCs having minor contribution to the data set may be discarded without 
losing too much information. If the number of PCs is less than four then the multidimensional data 
can be graphed in 2D or 3D space, i.e., PCA can be used to reduce dimensionality. The main 
purpose of employing PCA is to reduce the number of variables (PCs) used in the analysis. PCA 
creates new variables as linear combinations of all the initial variables so that the first PC contains 
the largest variance, the second PC contains the second largest variance, and so on, until the last PC 
can be truncated. PCA also allows diminishing the number of total variables in a data set. 

The comparison of the measures of two different variables has no sense. However, the initial 
measures can be transformed: the N values of the j–th variable are transformed using the mean jx

and standard deviation j of this j–th variable. In fact, the converted value is: 

jjijij xxx (1)

PCA, which consists in finding the eigenvalues and eigenvectors of the covariance matrix, proceeds 
the standardized variables to diagonalize the correlation matrix of the initial variables. In effect, PCs 
have the form: 

Fi Cikxk
k 1

P

(2)

On the (F1, F2) plane, each point (variable) k has as coordinates some numbers proportional to 
the C1k and C2k coefficients of the PCs F1 and F2. The profile of a PC Fi is the vector of the squared 
Cik coefficients (Ci1

2, Ci2
2,…, CiP

2). Each Cik
2 represents the weight of variable k in PC Fi. It gives 

the fraction of each variable in PC Fi.

2.2 Cluster Analysis
The term cluster analysis (CA) was first used by Tryon, in 1939 [17]. Actually, CA encompasses 

a number of different classification algorithms. A general question in many areas of an inquiry is 
how to organize the observed data into meaningful structures, i.e., how to develop taxonomies. 
Conceptually, the approach used by CA to address this problem can well be described by the saying 
birds of a feather flock together. Since its initial introduction, many CA algorithms have been 
invented. They belong to two categories: hierarchical cluster analysis (HCA) and non–hierarchical 
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(partitional) cluster analysis (NHCA) [18]. HCA rearranges objects in a tree–structure. In HCA, 
either the database is divided successively until a predetermined number of clusters have been 
created, or members are successively grouped together until the predetermined number of clusters 
has been assembled. In either case, a dendrogram (binary tree) is created that maps N members in 
one cluster to N members in N clusters. In NHCA, a nearest–neighbour list is created and used to 
assemble members into related clusters. An example of this is the Jarvis–Patrick NHCA algorithm, 
which has been widely used to cluster chemical structures and structural databases. In HCA, each 
object (e.g., the 31 studied fullerenes) is initially assumed to be a lone cluster. A distance matrix is 
built, generally calculating the Euclidean distance between all the objects and scanned for the minor 
values. The corresponding objects are clustered together and treated as a single cluster. Successive 
iterations lead to the total clustering of all objects, generating a dendrogram with the objects 
clustered together according to their similarity level. 

Correct CA results rely on: (a) proper structure representation (bioactivity–related descriptors), 
(b) suitable data normalization, and (c) carefully selected CA algorithms and proper parameter 
settings. Data normalization is the basis for comparing experiments with large series when 
experimental conditions may not be identical. Normalization ensures that the experimental quality 
of the data is comparable and sound mathematical algorithms were employed. Normalization 
includes various options to standardize data, and to adjust background levels and correct gradients. 
The commonly used normalization functions follow. 

1. Linear normalization: 

x' i X' min

X' max X' min xi Xmin

Xmax Xmin
(3)

2. Ratio normalization: 

x' i
xi

xi
i 1

n
(4)

3. Z–score normalization: 

xx
x i

i' (5)

where  is the standard deviation. Generally, linear normalization is recommended [if X’max = 1 and 
X’min = 0, x’i is normalized in percentage by Eq. (3)]. Z–score assumes xi obeys Gaussian 
distribution. If xi has a different distribution, then the normalization will twist the pattern (variance 
will be far away from the standard deviation) and leads to incorrect pattern recognition. One of the 
puzzling problems of CA algorithms is that they require a user in some ways to guess the number of 
clusters before carrying out the CA computation. In addition, CA cannot tolerate the heterogeneity 
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of the data. 

There are many reasons why one might want to cluster a database of molecular structures [19]. 
Two of the most practical reasons are to identify representative compounds from a structural 
database or virtual compound library for screening or synthesis [20]. It is sometimes useful just to 
be able to determine if a database offering is rather diverse, or if most of the structures fall into a 
small number of homologous structural classes [21]. Three objectives must be in mind when 
designing a CA algorithm [22]. (a) A method would divide a database into an appropriate number 
of clusters based on the structures and their relative similarity, rather than some predefined number. 
Having to specify the number of clusters is a significant shortcoming of most CA algorithms, which 
create a defined number of clusters, without regard to the fact that this sometimes requires grouping 
very unlike structures together. (b) A method would allow clustering additional structures without 
starting from scratch. This objective requires an algorithm that can begin with a set of clusters and 
add future structures to existing clusters, or create new clusters as their structural topology dictates. 
(c) Any method has to be computationally tenable for very large structural databases. Speed is one 
of the most significant problems with HCA, but even the more efficient NHCA scale formally as 
N2.

A program has been written using the IMSL [23] subroutine CLINK to carry out HCA based 
upon either a distance or a similarity (e.g., correlation) matrix. Initially, each data point is 
considered to be a cluster, numbered 1 to n = Npt, where Npt is the number of data points to be 
clustered. HCA proceeds in four steps. 

Step 1. If the data matrix contains similarities they are converted to distances. 

Step 2. A search is made of the distance matrix to find the two closest clusters. These clusters are 
merged to form a new cluster, numbered n + k.

Step 3. Based upon the method of CA, updating of the distance measure corresponding to the 
new cluster is performed. 

Step 4. Set k = k + 1. If k < n, go to step 2. 

The procedure allows two methods of computing the distances between clusters. The single– 
(SLHCA) and complete–linkage hierarchical cluster analyses (CLHCA) differ primarily in how the 
distance matrix is updated, after two clusters have been joined. To understand these measures, 
suppose in the following discussion that clusters A and B have just been joined to form cluster Z,
and interest is in computing the distance of Z with another cluster called C. In SLHCA, the distance 
from Z to C is the minimum of the distances (A to C, B to C). In CLHCA, the distance from Z to C
is the maximum of the distances (A to C, B to C). In general, SLHCA will yield long thin clusters, 
while CLHCA will yield clusters that are more spherical. 
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2.3 Leave–n–Out
In modelling, it is essential to determine the complexity of the model to avoid overfitting. The 

predictive capability of the resulting model depends on the quality of the data (the more and better 
the data available, the more accurate prediction is possible), and on the number k of significant 
latent necessary variables. Cross–validation is a practical and reliable method for testing this 
significance. The leave–one–out approach consists in developing a number of models with one 
sample omitted at the time. After developing each model, the omitted data are predicted and the 
differences between actual and predicted y (e.g., ln[per(A)]/ln K) values are calculated. Leave–one–
out can be generalized [leave–many(n)–out] for the cross–validated properties that will be obtained 
when n fullerenes are being separated from the original group. Leave–n–out protocols are more 
adequate to obtain significant and optimal results. A result obtained by cross–validation possesses 
some intrinsic robustness, and even more if a leave–n–out protocol has been considered [24]. 

3 CALCULATION RESULTS AND DISCUSSION 

The structural features involving adjacent pentagons are encoded by the parameters p, q and r.
The counts p and q enumerate, respectively, the number of edges common to two pentagons and the 
number of vertices common to three pentagons [25]. The count r enumerates the number of pairs of 
non–adjacent pentagon edges shared with two other pentagons [26]. Thus, q and r complement each 
other by counting both possible arrangements of three contiguous pentagons. However, there are 
close relationships between p and q, and between p and r. For instance, the minimum structure with 
q = 1 needs p = 3, and the minimum structure with r = 1 requires p = 2. The interdependences p–q
and p–r suggest expanding the count set of a previous work [15] with the quotients q/p and r/p.

Table 1. Values of p, q and r Counts for Fullerenes 
Fullerene K per(A) ln[per(A)]/ln K q/p r/p 
C20 (Ih) 36 1392 2.0199 0.6667 1.0000 
C24 (D6d) 54 4692 2.1192 0.5000 1.5000 
C26 (D3h) 63 8553 2.1853 0.3810 1.4286 
C28 (Td) 75 15705 2.2378 0.2222 1.3333 
C28 (D2) 90 16196 2.1540 0.4000 1.2000 
C30 (C2v) I 107 29621 2.2034 0.2353 1.1765 
C30 (C2v) II 117 30053 2.1651 0.3333 1.1111 
C30 (D5h) 151 31945 2.0672 0.5000 1.0000 
C32 (D3) 144 55140 2.1968 0.1333 1.2000 
C32 (C2) I 151 55705 2.1780 0.2500 1.0000 
C32 (C2) II 168 57092 2.1375 0.3529 0.9412 
C32 (D2) 184 58384 2.1045 0.4444 0.8333 
C34 (C3v) 195 103665 2.1902 0.2000 1.0000 
C34 (Cs) 196 104484 2.1896 0.2000 1.0667 
C34 (C2) I 204 103544 2.1714 0.1429 1.0000 
C34 (C2) II 212 107720 2.1632 0.3529 0.9412 
C36 (D6h) 272 192528 2.1706 0.0000 1.0000 
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Table 1. (Continued) 
Fullerene K per(A) ln[per(A)]/ln K q/p r/p 
C36 (D2d) 288 192720 2.1489 0.0000 1.0000 
C36 (C2v) 312 197340 2.1231 0.1538 0.7692 
C36 (D3h) 364 207924 2.0764 0.4000 0.4000 
C38 (C2v) 360 366820 2.1768 0.1429 1.0000 
C38 (C3v) 378 363300 2.1572 0.0833 0.7500 
C38 (D3h) 456 411768 2.1116 0.4444 1.0000 
C40 (D5d) I 562 515781 2.0775 0.0000 1.0000 
C40 (Td) 576 704640 2.1185 0.3333 0.0000 
C40 (D5d) II 701 803177 2.0750 0.5000 1.0000 
C44 (T) 864 2478744 2.1775 0.3333 0.0000 
C44 (D3h) 960 2436480 2.1416 0.2222 0.0000 
C60 (Ih) 12500 395974320 2.0986 – – 
C70 (D5h) 52168 – – – – 
C82 (Cs) – – – – – 

The values for the new structural parameters involving the presence of contiguous pentagons are 
listed in Table 1. Much chemical graph–theory work revolved around the adjacency matrices A of 
the compounds under investigation. The determinant of the 3 3 matrix [a b c, d e f, g h i] is aei –
ahf – dbi + dhc + gbf – gec. The permanent of this matrix, per(A), is the sum of the same six terms. 
K denotes the Kekulé structure count. A motivation for the consideration of K is that K is never zero 
for fullerenes [27]. Per(A) is bounded below by K2. As per(A) and K increase exponentially with 
system size, several authors used their logarithms. Cash selected a group of 27 fullerenes (included 
in Table 1) to correlate ln[per(A)]/ln K, ln K and ln[per(A)] with the structural parameters p, q and 
r. Despite the good results obtained by Cash, three important remarks were made. (1) Counts p, q
and r include some redundant information. (2) The error of some fitted parameters is large. (3) 
Non–linear effects of p, q and r can affect ln[per(A)]/ln K, ln K or ln[per(A)]. Therefore, a different 
strategy was used. (1) Smaller superpositions of the pairs p–q and p–r were sought. (2) Not all the 
three counts p–q–r were necessarily retained in the fits. (3) Non–linear correlations were allowed. 

The best linear correlation of ln[per(A)]/ln K with p, q and r for the first 29 fullerenes in Table 1 
results:

ln per A ln K 2.14 0.0108q 0.00364r (6)

n 29 R 0.721 s 0.036 F 14.1 MAPE 1.21% AEV 0.4803

The mean absolute percentage error (MAPE) is 1.21% and the approximation error variance 
(AEV) is 0.4803. There are general degeneracy problems with trying to fit per(A) and K with the 
structural invariants p, q and r. Even with restriction to fullerenes there are numerous cases of 
whole families of fullerenes with exactly the same values for p, q and r, yet with rather widely 
varying values of per(A) and K. For instance, bucky–tubes with fixed fullerenic caps but of varying 
length are fullerenes all with the same values of p, q and r, while the values of per(A) and K
increase without bound as the length of the tubes are increased. In addition, fairly large fullerenes 
surely almost all have p = q = r = 0, although the values for per(A) and K increase exponentially 
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with N (the number of sites of the fullerene). As N has not been included in the correlations, the 
applicability of the present fits is restricted to smaller fullerenes (N < 70). All other models with 
greater MAPE and AEV have been discarded. As there are several fullerenes with the same set of 
counts p, q and r, Equation (6) explains 95% of the correlation coefficient of the means (n = 24, 
R = 0.757). On the other hand, the best quadratic correlation of ln[per(A)]/ln K with quadratic 
functions of p, q and r gives: 

ln per A ln K 2.13 0.0515z41

z41 0.225z31 1.20z32

z31 1.16 0.232q
z32 1.05z22 0.875z21z22

z21 1.22 0.0983r 0.00277qr
z22 0.726z11 0.921z12

z11 1.16 0.232q
z12 1.22 0.0983r 0.00277qr

MAPE 0.87% AEV 0.2432

(7)

and AEV decreases 49%. 

If q/p and r/p are included in the model the best linear fit for the first 28 fullerenes in Table 1 
results:

ln per A ln K 1.88 0.0361p 0.0490q 0.00953r 0.0497q p 0.253r p
n 28 R 0.941 s 0.019 F 34.2 MAPE 0.66% AEV 0.1558

(8)

and AEV decreases 68%. Eq. (8) explains 98% of the correlation coefficient of the means (n = 23, 
R = 0.956). The best non–linear model does not improve the results. 

There are already powerful exact computational approaches for K, which are fairly reasonable or 
general. For arbitrary chemical graphs enumeration via Heilbronner recursion is feasible up to ~90 
atoms. Better efficiency is found with Kasteleyn’s method, which is generally applicable for all 
planar graphs (including all fullerenes). This simply involves the evaluation of the determinant of a 
signed adjacency matrix A' [28], where the method is neatly extended to deal with conjugated 
circuit counts, simply using the inverse of A'. Indeed this has been applied for fullerenes of up to 
980 atoms [29], and even fullerenes of up to at least 2000 atoms could presumably be similarly 
treated if desired. The method has also been applied for infinite translationally symmetric networks 
(i.e., with a finite number of sites per unit cell) [30]. For ln K alone, the best linear correlation for 
the first 30 fullerenes in Table 1 results: 

ln K 10.1 0.376p 0.255q
n 30 R 0.965 s 0.401 F 181.6 MAPE 4.21% AEV 0.0692 (9)
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Eq. (9) explains 98% of the correlation coefficient of the means (n = 24, R = 0.982). The use of 
non–linear models or the inclusion of q/p and r/p does not improve the results. 

For ln[per(A)] alone, the best linear correlation for the first 29 fullerenes in Table 1 results: 

ln per A 20.2 0.660 p 0.383q
n 29 R 0.949 s 0.757 F 118.5 MAPE 4.05% AEV 0.0988

(10)

Eq. (10) explains 97% of the correlation coefficient of the means (n = 24, R = 0.977). On the 
other hand, the best quadratic correlation gives: 

pqqp 00850.0616.0666.00.20perln A
MAPE 3.91% AEV 0.0871

(11)

and AEV decreases 12% with respect to the linear fit. The inclusion of the q/p and r/p indices does 
not improve the results. 

No superposition of the variables p–q or p–r is observed in Eqs. (6) and (7). This diminishes the 
risk of co–linearity in the fit given the close relationships p–q and p–r [31]. The signs and 
magnitudes of the coefficients in Eqs. (6)–(11) are of some interest. One would intuitively expect 
that, for some property determined in part by the presence of abutting pentagons p, an arrangement 
such as q would make less of a contribution than would three isolated p–type pairs of pentagons. If 
this is true, then the sign of the q coefficient would be opposite that of the p coefficient, as is the 
case in Eqs. (8)–(11). 

By the same sort of argument, one would expect the magnitude of the r coefficient to be smaller 
than that of the q coefficient on the assumption that an r–type cluster is intermediate in properties 
between a q–type cluster and two isolated p–type pairs. In Eq. (6) and (8), the expected situation 
obtains. These findings indicate that ln[per(A)]/ln K may be the quantitative structure–property 
relationship variable of choice for some properties. 

Table 2. Cross–Validation Correlation Coefficient in a Leave–n–Out Procedure for Fullerenes. 
n ln[per(A)]/ln K

vs. p, q, r
ln[per(A)]/ln K

vs. q, r
ln[per(A)]/ln K

vs. p, q, r, q/p, r/p
ln K

vs. p, q, r
ln K

vs. p, q
ln[per(A)] 
vs. p, q, r

ln[per(A)]
vs. p, q

1 0.551 0.623 0.818 0.935 0.943 0.930 0.932 
2 0.550 0.623 0.819 0.935 0.943 0.930 0.932 
3 0.548 0.622 0.820 0.936 0.944 0.930 0.932 
4 0.546 0.622 0.821 0.937 0.944 0.930 0.932 
5 0.544 0.622 0.822 0.938 0.944 0.929 0.932 
6 0.542 0.621 0.824 0.939 0.945 0.929 0.932 
7 0.540 0.621 0.824 0.939 0.945 0.929 0.932 
8 0.538 0.620 0.825 0.940 0.946 0.928 0.932 
9 0.536 0.619 0.826 0.941 0.946 0.928 0.932 
10 0.534 0.619 0.827 0.942 0.946 0.927 0.932 
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Table 2. (Continued) 
n ln[per(A)]/ln K vs.

p, q, r, q/p, r/p (means) 
ln K vs. p, q, r

(means) 
ln K vs. p, q

(means) 
ln[per(A)]/ln K vs.

p, q, r, q/p, r/p (27 points) 
1 0.821 0.974 0.975 0.899 
2 0.823 0.974 0.975 0.899 
3 0.825 0.973 0.975 0.898 
4 0.827 0.973 0.974 0.897 
5 0.829 0.973 0.974 0.896 
6 0.830 0.972 0.974 0.895 
7 0.832 0.972 0.974 0.895 
8 0.833 0.972 0.974 0.894 
9 0.835 0.971 0.974 0.893 
10 0.836 0.971 0.974 0.892 

The correlation coefficient found between cross–validated representatives and the property 
values Rcv has been calculated with the leave–n–out procedure [32]. Leave–n–out furnishes a new 
method for selecting the best set of descriptors according to the criterion of maximization of the 
value of Rcv. The Rcv calculated for fullerenes are given in Table 2 for 1 n  10. In general, Rcv

decreases with n. However, for ln[per(A)]/ln K vs. {p, q, r, q/p, r/p} and for both ln K methods, Rcv

increases with n. In general, the effect is corrected when the set of points is substituted by the set of 
their means (cf. the three columns labelled means in Table 2). Nevertheless, for the method 
ln[per(A)]/ln K vs. {p, q, r, q/p, r/p}, Rcv increases again with n. The effect is finally corrected when 
the first point in Table 1 is eliminated (cf. the last column of Table 2). In particular, for 
ln[per(A)]/ln K, the set of descriptors {p, q, r, q/p, r/p} gives the greatest Rcv for the whole range of 
n given in Table 2. However, for both ln K and ln[per(A)], {p, q} gives the greatest Rcv. The 
corresponding interpretation is that the set {p, q, r, q/p, r/p} is more predictive than {q, r} or {p, q,
r} for modelling ln[per(A)]/ln K, and that {p, q} is more predictive than {p, q, r} for representing 
both ln K and ln[per(A)]. The upper triangle of the 3x3 symmetrical correlation matrix R calculated 
for the structural parameters p, q and r results: 

R
1.000 0.836 0.864

1.000 0.691
1.000

High correlation is observed for the pairs p–r and p–q. The correlation increases in the order 
Rqr << Rpq < Rpr. The upper triangle of the 5×5 correlation matrix R calculated for the structural 
parameters p, q, r, q/p and r/p results: 

000.1
0.029000.1
0.8750.457000.1
0.2250.9340.635000.1
0.5420.8050.8570.929000.1

R

High correlation is obtained for the pairs q–q/p, p–q, r–r/p and p–r. Notice that the correlation 
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between the derived q/p and r/p parameters (0.029) is 20 times smaller than that between the 
primary q and r parameters (0.635). The correlation increases in the order Rqr << Rpr < Rpq. The 
difference with R3×3 is due to the smaller number of points in the calculation of R5×5, because the 
parameters q/p and r/p are undefined for the last three fullerenes in Table 1. From both HCAs, the 
radial tree [33] is built for the parameters p, q, r, q/p and r/p of the fullerenes (cf. Figure 1). 

0.1

q

q/p

p

r

r/p

Figure 1. Radial tree graph for the parameters p, q, r, q/p and r/p of fullerenes. 

SplitsTree is an interactive program for analysing and visualizing CA data [34]. Based on the 
method of split decomposition, it takes as input a distance matrix or a set of CA data and produces 
as output a graph that represents the relationships between the taxa. For ideal data, this graph is a 
tree, whereas less ideal data will give rise to a tree–like network that can be interpreted as possible 
evidence for different and conflicting data. Further, as split decomposition does not attempt to force 
data onto a tree, it can provide a good indication of how tree–like given data are. The splits graph 
for the structural parameters p, q, r, q/p and r/p of the fullerenes is displayed in Figure 2. The splits 
graph in Figure 2 reveals that a conflicting relationship exists between p, and parameters q–q/p and 
r–r/p. This is due to the interdependences p–q and p–r. Therefore, the splits graph indicates a 
spurious relationship resulting from base composition effects. The portion r–p–q of the splits graph 
is in qualitative agreement with a previous study of the set {p, q, r}, which also indicated a spurious 
relationship between p, q and r resulting from base composition effects. 

p.nex

Fit=55.2 ntax=5

r/p
q/p

p

r

q
0.1

Figure 2. The splits graph for the parameters p, q, r, q/p and r/p of fullerenes. 
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Table 3. Importance of the Principal Component Analysis Factors 
Factor Eigenvalue Percentage of variance Cumulative percentage of variance 

F1 3.59677680 71.94 71.94 
F2 1.31894604 26.37 98.31 
F3 0.05633613 1.13 99.44 
F4 0.01775178 0.36 99.80 
F5 0.01018925 0.20 100.00 

The importance of PCA factors F1–F5 for the structural parameters of the fullerenes is collected 
in Table 3. In particular, the use of only the first factor F1 explains 72% of the variance and gives a 
relative error of 28%. Moreover, the combined use of the first two factors, F1 and F2, explains 98% 
of the variance, reducing the relative error to 2%. Furthermore, the use of the first three factors, F1–
F3, explains 99.4% of the variance, reducing the relative error to only 0.6%. 

Table 4. Principal Component Analysis Loadings for the Structural Parameters a
 PCA factor loadings 

Property F1 F2 F3 F4 F5
p 0.523 –0.045 0.389 –0.141 0.744 
q 0.480 –0.342 0.439 –0.240 –0.634 
r 0.470 0.385 –0.010 0.779 –0.154 

q/p 0.421 –0.501 –0.753 –0.002 0.068 
r/p 0.314 0.694 –0.297 –0.561 –0.130 

a Loadings greater than 0.7 are boldfaced 

Table 5. Profile of the Principal Component Analysis Factors.a

Factor Percentage of p Percentage of q Percentage of r Percentage of q/p Percentage of r/p
F1 27.33 23.07 22.06 17.71 9.83 
F2 0.20 11.69 14.83 25.09 48.19 
F3 15.16 19.30 0.01 56.73 8.80 
F4 2.00 5.76 60.75 0.00 31.49 
F5 55.31 40.18 2.36 0.46 1.69 

a Percentages greater than 50% are boldfaced.

The factor loadings of PCA are shown in Table 4.The profile of PCA factors F1–F5 for the 
structural parameters of the fullerenes is resumed in Table 5. In particular, for both F1 and F5

factors, variable p has the greatest weight in the profile. However, factor F1 cannot be reduced to 
three variables (p, q and r) without making a relative error of 28% (the sum of both q/p and r/p
percentages). On the other hand, for factor F2 the most important variable is r/p. For F3, the variable 
with greatest weight is q/p. For F4, the variable with greatest weight is r. In some way, factors F1

and F5 could be considered as linear combinations of p, q and r (with relative errors of 28% and 
2%, respectively). Nevertheless, factor F2 can be expressed as a linear combination of r, q/p and r/p
with a relative error of 12%. 

PCA F2 vs. F1 plot for the fullerenes is illustrated in Figure 3. The fullerenes with the same set of 
p, q, r, q/p and r/p values in Table 1, belonging to classes 1, 3, 4 and 5, appear superposed in Figure 
3. Five classes of fullerenes are clearly distinguished: class 1 with 7 members (below the bisector, 



F. Torrens 
Internet Electronic Journal of Molecular Design 2003, 2, 546–563 

558 
BioChem Press http://www.biochempress.com

F1 >> F2, middle right of Figure 3), class 2 with 4 members (under the bisector, F1 > F2 > 0, top 
right of Figure 3), class 3 with 8 members (over the bisector, F1 < F2, top of Figure 3), class 4 with 
5 members (above the bisector, F1 << F2, top left of Figure 3) and class 5 with 4 members (under 
the bisector, 0 > F1 > F2, bottom left of Figure 3). In general, those fullerenes with the same number 
of atoms belong to the same class. The exceptions are the isomers of the fullerenes C28, C30, C32,
C34, C36, C38 and C40, which fit in two or three classes. However, no fullerene has isomers going to 
four or five classes. 

-2

-1

0

1

F 2

-1 0 1 2

F1

Class 5

Class 4

Class 3

Class 2

Class 1

C20Ih

C24D6d

C26D3h

C28Td

C28D2

C30C2vI

C30C2vII

C30D5h=C40D5d

C32D3

C32C2I

C32C2II=C34C2

C32D2

C34C3v
C34Cs

C34C2I=C38C2v

C36D6h=C36D2d

C36C2v

C36D3h

C38C3v

C38D3h

C40D5d

C40Td=C44T

C44D3h

Figure 3. PCA F2 vs. F1 plot for the fullerenes. 

With the purpose of classifying the C60 (Ih), C70 (D5h) and C82 (Cs) fullerenes, PCA was repeated 
with the set {p, q, r}. PCA F2 vs. F1 plot grouped these fullerenes in class 5, close to C44 (D3h).
Therefore, the final consideration is the inclusion of C60, C70 and C82 in class 5. The patterns in 
Figure 3 are rather similar to those in Figure 6 of the previous study [15]. The number of reported 
classes is different by the following reasons. (a) The previous study uses all the 31 fullerenes in 
Table 1. (b) It is limited to only 3 counts (p, q and r). However, as it can be seen from the profiles in 
the present Table 5, the new F1 depends 18% on q/p and 10% on r/p, and the new F2 depends 25% 
on q/p and 48% on r/p. (c) In the previous study, the distance is non–metric. Triangle inequalities 
are not satisfied. Worst violating triplets are 29–2–20, 30–2–20 and 31–2–20. This limitation also 
affects the dendrogram and radial tree. (d) The number of classes has been maximized because 
merging classes always gives a loss of information. Using only PCA, alternate classifications could 
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be proposed. For instance, classes 2 and 3 are somewhat close and could be candidates to merge. 
(e). The reported classification has been selected because it maximizes the number of classes and it 
is compatible with the five classes suggested by the dendrogram (cf. Figure 4) and with the five 
classes suggested by the radial tree (Figure 5). Unfortunately, in the previous study the dendrogram 
and radial tree provide no privileged cutting point. They are compatible with any number of classes. 
Therefore, they cannot be used to support any particular number of classes, which had to be 
determined exclusively by PCA. 

Instead of N fullerenes (points) in the P space of P parameters, let us consider P structural 
parameters in the N space of N fullerenes. A table with P rows and N columns has been built and 
the similarity of the fullerenes is compared. The dendrogram for the fullerenes matching to the 
structural parameters p, q, r, q/p and r/p is shown in Figure 4. The tree provides a binary taxonomy 
of the fullerenes in Table 1, which separates first the 7 fullerenes in class 1 [from C20 (Ih) to C34 (C2)
II, Figure 4 top], then the 4 fullerenes in class 2 [from C24 (D6d) to C30 (C2v) II, Figure 4 top middle], 
the 8 fullerenes in class 3 [from C28 (Td) to C38 (C2v), Figure 4 middle], the 5 fullerenes in class 4 
[from C40 (D5d) I to C38 (C3v), Figure 4 bottom middle] and the 4 fullerenes in class 5 [from C36

(D3h) to C44 (T), Figure 4 bottom]. The classes correspond to those obtained by PCA (Figure 3). 
With the purpose of classifying the last three fullerenes in Table 1, the dendrogram was repeated for 
the set {p, q, r}. The result was the inclusion of C60, C70 and C82 in a new branch connected to C44

(D3h).

The radial tree for the fullerenes relating to the parameters p, q, r, q/p and r/p is displayed in 
Figure 5. It separates first the 7 fullerenes in class 1 [C20 (Ih)–C34 (C2) II, Figure 5 bottom right], 
then the 4 fullerenes in class 2 [C24 (D6d)–C30 (C2v) II, Figure 5 bottom], the 8 fullerenes in class 3 
[C28 (Td)–C38 (C2v), Figure 5 left], the 5 fullerenes in class 4 [C40 (D5d) I–C38 (C3v), Figure 5 top] 
and the 4 fullerenes in class 5 [C36 (D3h)–C44 (T), Figure 5 right]. The classes correspond to those 
obtained by PCA (Figure 3) and dendrogram (Figure 4). With the purpose of classifying the last 
three fullerenes in Table 1, the radial tree was repeated for the set {p, q, r}. The result was the 
inclusion of C60, C70 and C82 in a new branch connected to C44 (D3h).

The present report allows the classification of fullerenes and fullerene isomers. The application 
of the work to different fullerene or hydrocarbon datasets would give a classification of these 
molecules. For instance, the fullerenes C60 (Ih), C70 (D5h) and C82 (Cs) classified together. The 
application of the method to C80 (Ih), C120 (Ih), C140 (Ih), C180 (Ih) and C240 (Ih) all with p = q = r = 0 
is expected to group these five fullerenes with C60, C70 and C82. On the other hand, the correlation 
of structural parameters against properties gives a classification of the properties. This is an added 
value of the method. The elimination of close properties would diminish the risk of co–linearity in 
the fits. 
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Figure 4. Dendrogram for the fullerenes. 
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Figure 5. Radial tree graph for the fullerenes. 

Cluster analyses are correct provided the dataset is complete. In the present case, a small subset 
of the fullerene structures has been examined for larger fullerenes. Therefore, the comparison of 
distances between C82 (Cs) and other fullerenes is limited. However, other points are part of wider 
subsets and no limitation is expected, as for the three C34 isomers in Class 3. Any clustering based 
on p, q, r or combinations thereof will necessarily group all isolated–pentagon isomers together. 
Similarly, any regression equation will yield the same value of the dependent value for all isolated–
pentagon isomers. For instance, C60 (Ih), C70 (D5h), C80 (Ih), C82 (Cs), C120 (Ih), C140 (Ih), C180 (Ih) and 
C240 (Ih) all with p = q = r = 0, which are represented by one only point in the space of parameters, 
must be used as one only point in the fits. 

4 CONCLUSIONS 

From the preceding results the following conclusions can be drawn. 

1. Linear and non–linear correlation models have been obtained for ln[per(A)]/ln K, ln K and 
ln[per(A)] of fullerenes as functions of structural parameters involving the presence of contiguous 
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pentagons. The non–linear regression equation for ln[per(A)]/ln K has been improved. The variance 
of the fit has decreased 68%. It has also diminished the risk of co–linearity in the fit. The cross–
validation leave–n–out procedure shows that the most predictive sets of descriptors according to the 
criteria of maximization of Rcv are {p, q, r, q/p, r/p} for ln[per(A)]/ln K, and {p, q} for both ln K
and ln[per(A)]. Leave–n–out has been successfully used to identify outliers. 

2. CA shows greater similarity for the parameters p–q than when comparing with the count r.
Split decomposition indicates a spurious relationship resulting from base composition effects. 

3. PCA provides five orthogonal factors F1–F5. The use of F1 gives a relative error of 28%. The 
use of F1 and F2 decreases the relative error to 2%. The fullerenes have been grouped in five 
classes. Some fullerenes with different numbers of atoms belong to the same class. However, some 
fullerene isomers are members of different classes. Nevertheless, no fullerene belongs to four 
classes.

4. The similarity between fullerenes has been compared with CA of these molecules. CA is in 
agreement with PCA classification. 
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