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Abstract 

Motivation. Two–electron four–center Coulomb and exchange integrals the rate limiting step of ab initio
molecular structure calculations. These integrals contribute to the total energy of the molecule, which is required 
to a precision sufficient for small fractional changes to be evaluated reliably. 
Method. The Fourier transform method combined with nonlinear transformations for improving convergence of 
highly oscillatory integrals is used to develop an efficient algorithm for a fast numerical evaluation of molecular 
integrals over Slater type orbitals. 
Conclusions. Numerical results are obtained for HCN, C2H2, Zn3, BH3, CH4 and SF6 molecules. They are all 
highly accurate and they show that the approach used in this work, which we previously used for the numerical 
evaluation of three–center nuclear attraction, three–center two–electron Coulomb and hybrid integrals, should 
lead to a suite of ab initio Slater software. 
Keywords. Molecular electronic integrals; Slater type orbitals; B functions; nonlinear transformations; 
convergence accelerators; numerical integration. 

Abbreviations and notations 
ETO, exponential–type orbitals STO, Slater–type orbitals 
GTO, Gaussian–type orbitals  

1 INTRODUCTION 

Previous work on accurate and fast numerical evaluation of molecular integrals over STOs 
continues with the present contribution. Among the integrals required to develop electronic 
structure theory over STOs [1,2] are the four–center two–electron Coulomb and exchange integrals. 
These integrals are without any doubt, the most difficult integrals occurring in molecular structure 
calculations. These integrals over STOs can be expressed in terms of integrals over the so–called B 
functions [3–7]. By applying the Fourier transform method [8,9], one can express the molecular 
integrals over B functions in terms of three–dimensional integral representations [9]. These integral 
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representations are the principal source of the difficulties occurring in the numerical evaluation of 
the molecular integrals. 

Recently, we developed an efficient and rapid algorithm based on the Fourier transform method 
and on the DS approach [10,11]. Recurrence relations were developed for a better control of the 
degree of accuracy [12,13]. This approach was efficiently applied to the three–center nuclear 
attraction, three–center two–electron Coulomb and hybrid integrals with linear and nonlinear 
systems [14]. In this work, we performed calculations for the two–electron four–center Coulomb 
and exchange integrals for a series of molecules. Values obtained using the ADGGSTNGINT code 
developed by Rico et al. [15] are also listed in the numerical tables. 

2 DEFINITIONS AND BASIC FORMULAE 

STOs are given by [1, 2]: 
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The B function is defined as follows [4,5]: 
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The two–electron four–center Coulomb integral over STOs is defined by: 

424,212,
21

323,111 ,,1,, 4

44

2

22

3

33

1

1,11
RrRr

rr
RrRr

m

ln

m

ln

m

ln

m

lnJ (5)



H. Safouhi and L. Berlu 
Internet Electronic Journal of Molecular Design 2004, 3, 728–736 

730 
BioChem Press http://www.biochempress.com

3 Analytical Development of Coulomb Integrals Over STOs

The molecular integral over STOs (5) can be expressed as finite linear combination of integrals 
over B functions. By applying the Fourier transform method, one can express the molecular 
integrals under consideration in terms of three–dimensional integral representations. The inner 
semi–infinite integral is a highly oscillatory integral, due to the presence of spherical Bessel 
functions. This semi–infinite integral is given by: 
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It is shown [16] that the above semi–infinite integral satisfies all the conditions to apply 
nonlinear D  transformation of Sidi [17,18]. This method was shown to be more accurate and 
efficient compared with the approaches using Gauss–Laguerre quadrature, Levin’s u transform [19] 
or the epsilon algorithm of Wynn [20]. However, the application of the D  transformation presents 
severe numerical and computation difficulties. The DS approach, which was recently introduced by 
Safouhi [10], led to great simplifications in the application of the D  transformation. This approach 
consists on transforming the semi–infinite integrals involving spherical Bessel functions into semi–
infinite integrals involving the simple sine function, which are given by: 
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It is shown that the semi–infinite integral involving the sine function (7) satisfies all the 
conditions to apply the D  transformation. The properties of the sine function in particular the fact 
that its zeros are equidistant allowed the use of Cramer’s rule [12], for evaluating the approximation 
of the semi–infinite integral (7): 
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where the functions F(x) and G(x) are given by: 

x
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Recurrence relations were developed for, an efficient computation of Eq. (9), a better control of 
the degree of accuracy and for a better stability of the algorithm [12,13]. 

Table 1. Slater type orbital exponents 
Orbitals Zn S B C N F H 

1s 28.979194 15.396775 4.649767 5.636105 6.621925 8.593356 1.00000 
2s 9.212368 4.468108 1.076139 1.346562 1.612481 2.154463  
2p 13.015418 5.987867 1.226030 1.581274 1.929475 2.561510  
3s 4.615722 1.723750      
3p 4.754359 1.684294      
3d 4.660219 1.584294      
4s 0.966290       

4 RESULTS AND DISCUSSION 

For the computation of the function F(x), we transform the finite integral as follows: 
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For the numerical evaluation of each term of the finite sum in the right hand side of Eq. (12), we 
used the procedure described in [14]. For the computation of the function )(xG (11), we used 

Leibnitz formulae combined with Eqs. (3) and (4). The subroutine GAUNT.F developed by 
Weniger [21] was used for the numerical evaluation of Gaunt coefficients which occur in the 
complete expression of the molecular integrals under consideration. The spherical harmonics 

rr
m
lY ,  are computed using the recurrence formulae presented in [21]. For the following the 

abbreviations 2pz, 2p+1, 3pz and 3dz refer to the orbitals defined with the quantum numbers: n = 2, l
= 1, m = 0, n = 2, l = 1, m = 1, n = 3, l = 1, m = 0 and n = 3, l = 2, m = 0 respectively. Numerical 
values in tables refer to the approximations obtained using the DS approach. Values STOnG are 
obtained using the ADGGSTNGINT code developed by Rico et al. [15]. 
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Table 2. Geometry used for molecular calculations 
Molecules Geometry Cartesian coordinates 

HCN
Linear
H–C = a = 2.000 a.u. 
C–N = b = 2.187 a.u. 

H(0.0, 0.0, –a) 
C(0.0, 0.0, 0.0) 
N(0.0, 0.0, b) 

C2H2

Linear
H–C = a = 2.002 a.u. 
C–C = b = 2.281 a.u. 

H1(0.0, 0.0, –a–b/2) 
C1(0.0, 0.0, –b/2) 
C2(0.0, 0.0, b/2) 
H2(0.0, 0.0, a+b/2) 

Zn3

Equilateral Triangle, Planar 
Zn–Zn = a = 5.03593 a.u. 
b = 2.90749 a.u. 

Zn1(b, 0.0, 0.0) 
Zn2(–b/2, a/2, 0.0) 
Zn3(–b/2, –a/2, 0.0) 

BH3

Equilateral Triangle, Planar 
B–H = a = 2.250 a.u. 
b = 3.897 a.u. 

B ( 0.0, 0.0, 0.0) 
H1( 0.0, 0.0, a) 
H2( b/2, 0.0, –a/2) 
H3(–b/2, 0.0, –a/2) 

CH4

Regular Tetrahedron 
C–H = a = 2.0665 a.u. 
b = 1.1931 a.u. 

C ( 0.0, 0.0, 0.0) 
H1( b, b, b) 
H2(b,–b, –b) 
H3(–b,b, –b) 
H4(–b,–b, b) 

SF6
Regular Octahedron 
S–F = a = 2.88769 a.u. 

S ( 0.0, 0.0, 0.0) 
F1( a, 0.0, 0.0) 
F2( 0.0, a, 0.0) 
F3( –a, 0.0, 0.0) 
F4( 0.0, –a, 0.0) 
F5( 0.0, 0.0, a) 
F6( 0.0, 0.0, –a) 

Table 3. Two–center exchange integrals over STOs 
Molecules Integrals Values Values STOnG 

HCN    
 <1sN 1sC | 1sC 1sN > 0.243 975 171(–7) 0.243 952 818(–7) 
 <2sN 1sC | 1sC 2sN> 0.963 853 612(–2) 0.963 852 715(–2) 
 <2pz

N 1sC | 1sC 2pz
N > 0.179 652 035(–1) 0.179 652 008(–1) 

 <2pz
N 2pz

C | 2pz
C 2pz

N > 0.133 191 021( 0) 0.133 191 021( 0) 
 <2p+1

N 2p+1
C | 2pz

C 2pz
N > –0.679 931 457(–1) –0.679 931 457(–1) 

C2H2    
 <1sC1 1sC2 | 1sC2 1sC1 > 0.442 480 198(–7) 0.442 431 402(–7) 
 <2sC1 1sC2 | 1sC2 2sC1> 0.103 215 026(–1) 0.103 214 727(–1) 
 <2pz

C1 1sC2 | 1sC2 2pz
C1 > 0.235 015 751(–1) 0.235 015 641(–1) 

 <2pz
C1 2pz

C2 | 2pz
C2 2pz

C1 > 0.122 612 112( 0) 0.122 612 112( 0) 
 <2p+1

C1 2p+1
C2 | 2pz

C2 2pz
C1 > –0.695 485 685(–1) –0.695 485 685(–1) 

BH3    
 <1sB 1sH1 | 1sH1 1sB > 0.105 851 555(–1) 0.105 851 420(–1) 
 <2sB 1sH1 | 1sH1 2sB> 0.173 063 383( 0) 0.173 063 383( 0) 
 <2pz

B 1sH1 | 1sH1 2pz
B> 0.202 801 420( 0) 0.202 801 420( 0) 

 <1sH1 1sH2 | 1sH2 1sH1> 0.180 097 063(–1) 0.180 097 063(–1) 
CH4    

 <1sC 1sH1 | 1sH1 1sC > 0.102 388 056(–1) 0.102 387 602(–1) 
 <2sC 1sH1 | 1sH1 2sC> 0.196 677 543( 0) 0.196 677 543( 0) 
 <2pz

C 1sH1 | 1sH1 2pz
C> 0.784 621 598(–1) 0.784 621 598(–1) 

 <1sH1 1sH2 | 1sH2 1sH1> 0.362 760 883(–1) 0.362 760 883(–1) 

Table 1 contains the values of the screening parameters, which occur in the analytic expression 
of STOs. Table 2 contains the geometry used for the calculations performed for the present work. 
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Table 4. Three–center exchange integrals over STOs 
Molecules Integrals Values Values STOnG 

HCN    
 <1sN 1sH | 1sC 1sN> 0.127 620 475(–5) 0.127 619 737(–5) 
 <2sN 1sH | 1sC 2sN> 0.675 018 598(–2) 0.675 018 594(–2) 
 <2pz

N 1sH | 1sC 2pz
N> 0.860 798 342(–2) 0.860 798 343(–2) 

 <2p+1
N 1sH | 1sC 2p+1

N> 0.898 860 131(–4) 0.898 860 102(–4) 
 <2pz

N 1sH | 2pz
C 2pz

N> 0.249 011 534(–1) 0.249 011 534(–1) 
 <2pz

N 1sH | 2p+1
C 2p+1

N> –0.170 766 308(–1) –0.170 766 308(–1) 
 <2p+1

N 1sH | 2pz
C 2p+1

N> 0.467 638 749(–2) 0.467 638 750(–2) 
C2H2    

 <1sC1 1sC2 | 1sH 1sC1> 0.130 739 389(–4) 0.467 638 750(–2) 
 <2sC1 2sC2 | 1sH 2sC1> 0.274 923 735(–1) 0.274 923 741(–1) 
 <2pz

C1 2pz
C2 | 1sH 1sC1> –0.168 852 102(–1) –0.168 852 102(–1) 

 <2pz
C1 2pz

C2 | 1sH 2pz
C1> 0.248 702 455(–1) 0.248 702 455(–1) 

 <2p+1
C1 2p+1

C2 | 1sH 2pz
C1> –0.494 475 624(–1) –0.494 475 624(–1) 

 <2p+1
C1 2pz

C2 | 1sH 2p+1
C1> –0.217 852 119(–1) –0.217 852 119(–1) 

BH3    
 <1sB 1sH1 | 1sH2 1sB > 0.102 603 529(–1) 0.102 603 394(–1) 
 <2sB 1sH1 | 1sH2 2sB> 0.125 812 602( 0) 0.125 812 602( 0) 
 <2pz

B 1sH1 | 1sH2 2pz
B> –0.157 273 465(–1) –0.157 273 464(–1) 

 <1sH1 1sH2 | 1sH3 1sH2 > 0.148 704 520(–1) 0.148 704 520(–1) 
CH4    

 <1sC 1sH1 | 1sH2 1sC > 0.100 453 277(–1) 0.100 452 821(–1) 
 <2sC 1sH1 | 1sH2 2sC> 0.155 295 223( 0) 0.155 295 223( 0) 
 <2pz

C 1sH1 | 1sH2 2pz
C> 0.185 191 461(–3) 0.185 191 465(–3) 

 <1sH1 1sH2 | 1sH3 1sH2 > 0.308 175 489(–1) 0.308 175 489(–1) 

Table 5. Four–center two–electron integrals over STOs 
Molecules Integrals Values Values STOnG 

C2H2    
 <1sH1 1sC1 | 1sC2 1sH2> 0.258 403 185 (–2) 0.258 403 144 (–2) 
 <1sH1 2sC1 | 2sC2 1sH2> 0.913 277 985 (–1) 0.913 277 985 (–1) 
 <1sH1 2pz

C1 | 2sC2 1sH2> –0.538 260 731 (–1) –0.538 260 731 (–1) 
 <1sH1 2pz

C1 | 2pz
C2 1sH2> –0.327 338 167 (–1) –0.327 338 167 (–1) 

 <1sH1 2p+1
C1 | 2p+1

C2 1sH2> 0.473 085 665 (–2) 0.473 085 665 (–2) 
 <1sC1 1sC2 | 1sH1 1sH2> 0.332 120 355 (–5) 0.332 120 421 (–5) 
 <1sC1 2sC2 | 1sH1 1sH2> 0.136 080 233 (–2) 0.136 080 232 (–2) 
 <2sC1 2sC2 | 1sH1 1sH2> 0.948 583 025 (–2) 0.948 583 024 (–2) 
 <2pz

C1 2sC2 | 1sH1 1sH2> 0.724 269 212 (–2) 0.724 269 213 (–2) 
 <2pz

C1 2pz
C2 | 1sH1 1sH2> –0.526 504 948 (–2) –0.526 504 940 (–2) 

 <2p+1
C1 2p+1

C2 | 1sH1 1sH2> 0.534 650 086 (–2) 0.534 650 082 (–2) 
BH3    

 <1sB 1sH1 | 1sH2 1sH3> 0.856 095 760 (–2) 0.856 095 756 (–2) 
 <2sB 1sH1 | 1sH2 1sH3> 0.400 583 908 (–1) 0.400 583 908 (–1) 
 <2pz

B 1sH1 | 1sH2 1sH3> 0.306 774 048 (–1) 0.306 774 048 (–1) 
CH4     

 <1sC 1sH1 | 1sH2 1sH3> 0.111 715 585 (–1) 0.111 713 904 (–1) 
 <2sC 1sH1 | 1sH2 1sH3> 0.646 387 830 (–1) 0.646 387 830 (–1) 
 <2pz

C 1sH1 | 1sH2 1sH3> 0.198 498 772 (–1) 0.198 498 772 (–1) 
SF6    

 <2sF1 2sF2 | 2sF3 2sF4> 0.347 853 730 (–3) 0.347 853 730 (–3) 
 <2pz

F1 2pz
F2 | 2pz

F3 2pz
F4> 0.320 176 089 (–5) 0.320 175 851 (–5) 

 <2pz
F1 2pz

F3 | 2pz
F5 2pz

S> –0.124 943 479 (–5) –0.124 943 392 (–5) 
 <2pz

F1 2pz
F3 | 2pz

F5 3pz
S> –0.150 917 109 (–4) –0.150 917 115 (–4) 

 <2pz
F1 2pz

F3 | 2pz
F5 3dz

S> –0.127 096 896 (–4) –0.127 096 900 (–4) 
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Table 3 contains values obtained for two–center exchange integrals over STOs. Table 4 contains 

values obtained for three–center exchange integrals over STOs. Table 5 contains values obtained for 

two–electron four–center exchange integrals over STOs. 

The numerical results listed in Tables 3–5 are obtained with HCN, C2H2, Zn3, BH3, CH4 and SF6

molecules. The molecular integrals over STOs are expressed as finite linear combinations of 

integrals over the so–called B functions. These integrals over B functions are transformed into 

analytical expressions in terms of the semi–infinite integrals given by Eq. (6). The DS approach

was used for the numerical evaluation of these semi–infinite integrals. Note that this approach was 

demonstrated to be more accurate and more rapid compared with alternatives using the 

D transformation, Levin’s u transform or the epsilon algorithm of Wynn. 

For the computation of ),2( j
nDS , we used the recurrence relations developed in [12,13], which 

allowed a better control of the degree of accuracy. From the numerical tables, one can easily notice 

that the values obtained using the algorithm described in the present work are in a complete 

agreement with those obtained using the ADGGSTNGINT code, namely 9 similar digits in most 

cases for two–center exchange integrals over STOs (Table 3), 10 correct digits for the three–center 

exchange integrals over STOs (Table 4) and 10 correct digits for four–center exchange integrals 
over STOs (Table 5). From these arguments, it follows that the DS  approach is the key to the 

development of a complete software for an accurate and fast numerical evaluation of molecular 

integrals over STOs. All the calculations were performed on a PC–Workstation Intel Xeon 

Processor 2.4GHz. 

5 CONCLUSIONS 

The basis set of STOs was used to represent atomic orbitals. These STOs constitute an important 

basis set for all calculations of physical properties of molecules and solids, which use the linear 

combination of atomic orbitals (LCAO) approach. Molecular integrals over STOs are expressed as 

finite linear combinations of integrals over B functions in order to apply the Fourier transform 

method to obtain analytic expressions of the integrals of interest. These analytic expressions turned 

to be difficult to evaluate rapidly and to a high pre–determined accuracy because of the presence of 

highly oscillatory semi–infinite integrals. With the help of the DS approach, these semi–infinite 

integrals are transformed into semi–infinite integrals involving the simple sine function suitable to 

apply the D  transformation using Cramer’s rule. 

Recurrence relations were developed for the computation of the approxiamtions ),2( j
nDS . These 
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relations further improved the accuracy and the rapidity of the algorithm. 

The numerical results obtained for the molecular integrals for HCN, C2H2, Zn3, BH3, CH4 and SF6

molecules are very accurate and in a complete accordance with those obtained using existing codes. 

A complete optimized code using the algorithm described in the present contribution will be 

submitted in the near future. 
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