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Abstract 

Motivation. Among the molecular integrals, the two–center overlap integrals play a major role in any accurate 
molecular structure calculation. They are central to the calculation of multicenter overlap integrals when using 
the series expansion formulae for Slater type functions about a new center. Consequently, these integrals require 
an accurate and fast numerical evaluation. Recently, we showed that these integrals are suitable to apply the 
nonlinear D  transformation of Sidi, which is shown to be highly efficient in improving convergence of highly 
oscillatory integrals. 
Method. In this work, we present an algorithm for a numerical evaluation of the molecular integrals under 
consideration over STOs. Convergence properties in the numerical evaluation of these molecular integrals are 
discussed. It is now shown that the approximation obtained using the nonlinear D  transformation converges to 
the exact value of the integral without any constraint. 
Results. Numerical results are obtained for two–center overlap integrals over Slater type orbitals with HCN, 
C2H2, BH3 and CH4 molecules. Comparisons with results obtained using the ACJU code developed by Homeier 
et al. are presented. Numerical results from the literature were also reproduced using the algorithm described in 
the present work. 
Conclusions. The results obtained in this work illustrate the efficiency of the algorithm based on the nonlinear 
D  transformation, which will lead to a highly accurate algorithm for the numerical evaluation of the integrals 
under consideration. 
Keywords. Molecular electronic integrals; Slater type orbitals; B functions; nonlinear transformations; 
convergence accelerators; numerical integration. 

Abbreviations and notations 
STO, Slater–type orbital  ETO, exponential–type orbital 
GTO, Gaussian–type orbital  

1 INTRODUCTION 

The numerical evaluation of two–center overlap integrals over exponential type functions is of 
great importance for any accurate molecular structure calculations. Multicenter molecular integrals 
can be expressed in terms of the two–center integrals, therefore the accurate and rapid numerical 
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evaluation of these integrals becomes more important in quantum mechanical calculations of the 
electronic structure of molecules. 

STOs [1,2] are chosen for the expansion of atomic orbitals. These functions have a dominating 
position among ETOs, due to the fact that their analytical expression is very simple. STOs are better 
suited than GTOs to represent electron wave functions near the nucleus and at long range, provided 
that multicenter integrals using such functions could be computed efficiently. 

STOs can be expressed as finite linear combinations of B functions [3,4,5]. The Fourier 
transforms of these B functions are exceptionally simple [6,7] and well adapted to the Fourier 
transform method [8,9], which led to analytical expressions for multicenter electronic integrals over 
B functions. These analytical expressions involve two–dimensional integral representations, which 
present severe numerical and computation difficulties. The integrand of the inner semi–infinite 
integral is a very oscillating function due to the presence of spherical Bessel function. 

The molecular integrals under consideration are to be evaluated via a numerical quadrature of 
integral representations in terms of nonphysical integration variables. These integral representations 
were derived with the help of the Fourier transformation Method. 

The semi–infinite integrals can be transformed into infinite series of integrals of alternating sign. 
These series are slowly convergent and this is why their use is prohibitively long for sufficient 
accuracy. The epsilon algorithm of Wynn [10] or Levin’s u transform [11], accelerate the 
convergence of infinite series but in the case of the semi–infinite integrals involved in the analytical 
expressions of molecular integrals, the calculation times for a sufficient accuracy still long. 
Therefore new numerical integration techniques are required. 

Recently [12], we demonstrate that the semi–infinite integrals under consideration are suitable to 
apply the nonlinear D  transformation of Sidi [13,14,15]. It is shown that the D  transformation is 
much more efficient and rapid compared with the alternative cited above. 

In the present work, we discussed the convergence properties of D  transformation in improving 
convergence of the semi–infinite integrals occurring in the analytic expression of overlap integrals 
and we also presented the algorithm for the numerical evaluation of overlap integrals over STOs. 
We performed calculations with HCN, C2H2, BH3 and CH4 molecules and we reproduce values 
from table I in [16]. We also used the ACJU code developed Homeier et al. [17] to perform the 
same calculations. From the numerical tables, one can easily notice that our numerical results are in 
a complete agreement with those listed in Table I in [16] and with those obtained using the ACJU 
code. This illustrates clearly that the approach using nonlinear transformations for improving 
convergence of oscillatory integrals will probably lead to an efficient package for accurate 
numerical evaluation of all molecular integrals over exponential type functions. 
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2 DEFINITIONS AND PROPERTIES 

Slater–type orbital (STOs) are given by [1,2]: 
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The two–center overlap integral over STOs is defined by: 
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Using the fact that STFs can be expressed in terms of B functions, one can express the above 
integrals in terms of integrals over B functions, which are given by: 
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The Fourier transform method allowed analytic expressions to be developed for the above 
integrals over B functions [18]. These analytic expressions involve semi–infinite highly oscillatory, 
which are the principal source of the difficulty in the numerical evaluation of the molecular 
integrals under consideration. These semi–infinite integrals are given by [18]: 
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Where xn , , 1k  and 2k  are positive integers and they depend on the quantum numbers. 
)(Rxj  stands for the spherical Bessel function. In practice 10,,, 21 kknx .

Recently [12], we demonstrate the applicability of the nonlinear D  transformation of Sidi 
[13,14]. Numerical results were obtained for two–center overlap integrals over B functions and they 
were in a complete agreement with results in the literature [16] and with results obtained using 
existing codes such as ACJU developed by Homeier et al. [17]. 

In the present work, we demonstrate by using previous work of Sidi [13,19,20], that the 
approximation of the above semi–infinite integrals obtained using the nonlinear D  transformation 
converges to the exact value of the semi–infinite integrals without any constraint. 
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Calculations of these integrals over STFs were also performed and presented, to show that our 
approach will definitely lead to a highly efficient algorithm for the numerical evaluation of two–
center overlap integrals over B functions and over STFs. 

3 NONLINEAR TRANSFORMATION AND CONVERGENCE PROPERTIES

The approximation of the semi–infinite integral (5) using D  is given by: 
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where nl ,...,1,0  and lx  are the successive positive zeros of the spherical Bessel function. )(tF  is 
the integrand of the semi–infinite integral (5) and )(xg is given by: 
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The unknows i,1  for 1,...,1,0 ni  stand for the approximations of the coefficients of the 

asymptotic expansion of the semi–infinite integral (5) [23]. 

Let )(x  be defined by: 
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Let ),...,,( 10 n  the first row of the inverse matrix of the linear system given by Eq. (6). From 
the fact that the first column of the matrix of the system (6) is the vector T)1,...,1,1(  it follows that: 
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then the approximation )2(
nD  converges to the exact value of the semi–infinite integral without any 
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In [19], Sidi demonstrated that a necessary and sufficient for 0
i

, ni ,...,1,0 , is: 
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From the fact that ix  are the leading positive zeros of the spherical Bessel function, it follows that: 
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Now by using the fact that 0)(2 xgx , it follows that (13) is satisfied and consequently, the 
approximation )2(

nD  converges to the exact value of the semi–infinite integral without any 

constraint.

4 RESULTS AND DISCUSSION 

The computation of the approximation )2(
nD  (6), require the computation of the first derivative of 

the spherical Bessel function. This can be obtained using the following equations: 
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In our algorithm, we used the following procedure. Note that if x  is a zero of the spherical 
Bessel function of order  for 1, then Eq. (16) becomes: 
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From the above equation, it follows that it is faster to use Eq. (17) than Eq. (15). But in this case, 
one has to separate the case where 1 , where the use of Cramer’s rule is possible since the zeros 
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x
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where lx  are the successive positive zeros of the sine function and where 
)!(!

!
ini

nC i
n .

We evaluate two–center overlap integrals over STOs. First, we expressed these integrals over 
STOs in terms of integrals over B functions, by expressing STOs as finite linear combinations of B 
functions [21]. Then we used the analytic expression obtained by Weniger et al. for the two–center 
overlap integrals over B functions. These analytic expressions involve the semi–infinite integrals 
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given by Eq. (5). We notice that these semi–infinite integrals have compact analytic expressions in 
the case where the scaling parameters are equal [18]. In the case where the scaling parameters are 
not equal, the semi–infinite integrals are evaluated using the nonlinear D  transformation (6). 

Table 1. Exponents of STOs for a series of orbitals 
Orbitals B C N H 

1s 4.649767 5.636105 6.621925 1.00000 
2s 1.076139 1.346562 1.612481 
2p 1.226030 1.581274 1.929475 

Table 2. The geometry used for the molecular calculations 
Molecules Geometry Cartesian Coordinates 

C2H2

Linear
H–C = a = 2.002 a.u. 
C–C = b = 2.281 a.u. 

H1(0.0, 0.0, –a–b/2) 
C1(0.0, 0.0, –b/2) 
C2(0.0, 0.0, b/2) 
H2(0.0, 0.0, a+b/2) 

BH3

Equilateral Triangle, Planar 
B–H = a = 2.250 a.u. 
 b = 3.897 a.u. 

B ( 0.0, 0.0, 0.0) 
H1( 0.0, 0.0, a) 
H2( b/2, 0.0, –a/2) 
H3(–b/2, 0.0, –a/2) 

CH4

Regular Tetrahedron 
C–H = a = 2.0665 a.u. 
 b = 1.1931 a.u. 

C ( 0.0, 0.0, 0.0) 
H1( b, b, b) 
H2(b,–b, –b) 
H3(–b,b, –b) 
H4(–b,–b, b) 

HCN
Linear
H–C = a = 2.000 a.u. 
C–N = b = 2.187 a.u. 

H(0.0, 0.0, –a) 
C(0.0, 0.0, 0.0) 
N(0.0, 0.0, b) 

Table 3. Values obtained for the two–center overlap integrals over STOs 
Molecules Integrales Values D Values ACJU

C2H2 <1sC1 | 1sC2 > 0.17999067797259(–3) 0.179990672868803(–3) 
 <2sC1 | 1sC2 > 0.75773470045080(–1) 0.757734700451693(–1) 
 <2pz

C1 | 1sC2 > 0.11347210396549( 0) 0.113472103965470( 0) 
 <2pz

C1|2pz
C2 > –.28034732991369( 0) –0.280347329913672( 0) 

 <2p+1
C1|2pz

C2> 0.35111604505883( 0) 0.351116045058850( 0) 
    
BH3 <1sB | 1sH1> 0.84488384216158(–1) 0.844883842160902(–1) 
 <2sB | 1sH1> 0.61417323135024( 0) 0.614173231350241( 0) 
 <2pz

B | 1sH1> 0.54664981962486( 0) 0.546649819624870( 0) 
 <1sH1 | 1sH2> 0.20218404614891( 0) 0.202184046148936( 0) 
    
CH4 <1sC | 1sH1> 0.75634817563177(–1 0.756348175631746(–1) 
 <2sC | 1sH1> 0.62274411537583( 0) 0.622744115375811( 0) 
 <2pz

C | 1sH1> 0.47623357260361( 0) 0.274991804720407( 0) 
 <1sH1 | 1sH2> 0.27969702358746( 0) 0.279697023587438( 0) 
    
HCN <1sN | 1sc> 0.12627258447390(–3) 0.126272578207178(–3) 
 <2sN | 1sc> 0.73192433120423(–1) 0.731924331205254(–1) 
 <2pz

N | 1sc> –.99048113986006(–1) –.991971925002319(–1) 
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For the computation of the function )(xF , we transform the finite integral as follows: 
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For the numerical evaluation of each term of the finite sum in the right hand side of Eq. (19), we 

used Gauss–Legendre quadrature of order 48. The linear system given by Eq. (6) is solved using the 

LU decomposition method. 

Table 4. Values obtained for two–center overlap integrals over STOs. The two–centers are separated by unit distance in 
the z direction. Results are computed in double precision. Numbers in parenthesis represent powers of 10. 
n1 l1 m1 1 n2 l2 m2 2 Values D Values ACJU Values [16]  
1 0 0 0.1 1 0 0 0.1 0.998337272657 0.998337285 0.998337285 
1 0 0 1.0 1 0 0 0.1 0.187051615915 0.187051616 0.187051616 
1 0 0 5.0 1 0 0 0.1 0.201680371415(–1) 0.20168086523(–1) 0.2016803717(–1) 
1 0 0 1.0 1 0 0 1.0 0.858385362733 0.858385363 0.858385363 
1 0 0 5.0 1 0 0 1.0 0.239940017735 0.239940018 0.239940018 
1 0 0 5.0 1 0 0 5.0 0.965772403202(–1) 0.96577240320(–1) 0.9657724032(–1) 
8 0 0 1.0 8 0 0 1.0 0.989015721 0.989015721 0.989015721 
8 0 0 5.0 8 0 0 1.0 0.107437341700(–1) 0.10743703415(–1) 0.1074373417(–1) 
8 0 0 5.0 8 0 0 5.0 0.78523085 0.78523085 0.78523085 
5 4 0 1.0 5 4 0 0.1 0.219794514202(–2) 0.22132767718(–2) 0.2213276772(–2) 
5 4 4 1.0 5 4 4 0.1 0.225942860190(–2) 0.22596477308(–2) 0.2259647731(–2) 
5 4 0 5.0 5 4 0 0.1 0.664469344963(–6) 0.66675704065(–6) 0.6667585746(–6) 
5 4 4 5.0 5 4 4 0.1 0.729423185992(–6) 0.72945439326(–6) 0.7294559035(–6) 
5 4 0 1.0 5 4 0 1.0 0.768617011 0.768617016 0.768617016 
5 4 4 1.0 5 4 4 1.0 0.955778746 0.955778746 0.955778746 
5 4 0 5.0 5 4 0 1.0 0.900262308903(–2) 0.90026230924(–2) 0.9002623092(–2) 
5 4 4 5.0 5 4 4 1.0 0.318003745747(–1) 0.31800374574(–1) 0.3180037457(–1) 
5 4 0 5.0 5 4 0 5.0 –0.138257012 –0.138257012 –0.138257012 
5 4 4 5.0 5 4 4 5.0 0.356825987 0.356825987 0.356825987 
1 0 0 0.1 1 0 0 0.1 0.998337273 0.998337285 0.998337285 

For the numerical evaluation of Gaunt coefficients, which occur in the analytic expression of the 

molecular integrals, we used the subroutine GAUNT.F developed by Weniger [22]. The spherical 
harmonics rr

m
lY ,  are computed using the recurrence formulae presented in [22]. 

We used the ACJU program developed by Homeier et al. [17] to evaluate the molecular integrals 

under consideration. As it can be seen from the numerical tables our numerical results are in a 

complete agreement with those obtained using ACJU program. 

Table 1 contains the values of the screening parameters, which occur in the analytic expression 

of STOs. Table 2 contains the geometry used for the calculations that we performed for the present 

work. Table 3 contains values obtained for two–center overlap integrals over STOs with HCN, 
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C2H2, BH3 and CH4 molecules. The ACJU code was also used to perform the same calculations. 

Table 4 contains values obtained for two–center overlap integrals over STOs. In this table, we listed 

the results obtained using the ACJU code and the results obtained by Talman [16]. 

As it can be seen from this table our results are in a complete agreement with those obtained 

using the ACJU code and with the results obtained by Talman [16]. The abbreviations 2pz and 2p+1

refer to orbitals defined with the quantum numbers: n = 2, l = 1, m = 0 and n = 2, l = 1, m = 1 

respectively. Numbers in parentheses represent powers of 10. All the calculations were performed 

on a PC–Workstation Intel Xeon Processor 2.4GHz. 

5 CONCLUSIONS 

Analytic expressions for the two–center overlap integrals over STOs are obtained by expressing 

these STOs in terms of the so–called B functions and then by applying the Fourier transform 

method. These analytic expressions turned out very difficult to evaluate to because of the presence 

of highly semi–infinite integrals involving spherical Bessel functions. 

It was shown that these semi–infinite integrals are suitable to apply the nonlinear D  method, 

which consists on transforming the semi–infinite integrals involving Bessel functions into 

asymptotic expansions in inverse powers of x as x . These asymptotic expansions are 

transformed into sets of linear equations. The approximations of semi–infinite integrals are obtained 

by solving these linear systems and it is shown that the approximations obtained using 

D transformation converge to the exact values of the semi–infinite integrals. 

The numerical results show that the approach described in this work yields values for these 

integrals to a high pre–determined accuracy and in a complete agreement with values from the 

literature. These results confirm that this D  transformation represents another most significant 

advance in molecular multicenter integral problems. 
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