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Abstract 

Motivation. The rapid growth of DNA sequences data in various DNA databanks has made analyzing these 
sequences, especially, finding genes in them very important, and it is even a more critical task at present to 
clarify the number of genes. The motivation of this paper is to suggest an artificial neural network method 
specific for predicting protein–coding genes in the yeast genome. 
Method. We first obtain a 12–dimensional vector from a DNA primary sequence, and then construct a 12×21×1 
three–layer feedforward neural network. After being trained in a supervised manner with the error back–
propagation algorithm by sufficient samples, the network is examined by the cross–validation test. 
Results. As a result, the average absolute error  and the average variance 2 are 0.0084 and 0.0077, 
respectively, and the accuracy of the prediction is better than 96%. Based on this, it was found that the numbers 
of coding ORFs in the 2nd–6th classes are 393, 189, 803, 924 and 229, respectively. Thus, the total number of 
protein coding genes in the yeast genome is equal to 5930 coincident with a widely accepted range 5800–6000. 
The names of putative non–coding ORFs are listed in detail. 
Conclusions. The results imply that the current artificial neural network method is a useful computer technique 
for predicting protein–coding genes, and can be extended to find genes with more complicated structures. 
Keywords. DNA sequence; neural network; gene prediction; gene recognition; Yeast genome. 

1 INTRODUCTION 

With the development of biotechnologies, the analysis of sequences, especially, gene finding 
become more and more important in bioinformatics. Essentially, there are two different gene 
prediction methods [1]. One is the signal sensor, by which we detect the presence of functional sites 
specific to a gene [2–7], such as splicing sites, poly (A) sites (in 3'–UTRs), promoters and start/stop 
codon, etc. The other is the content sensor, a measure to classify DNA regions by a sufficient 
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similarity [8–13], e.g. coding versus non–coding. Although much work has been done on this 
aspect, the prediction of protein coding genes is still far from being a trivial problem, and it is even 
a more critical task at present to clarify the number of genes [10]. 

The budding yeast (Saccharomyces cerevisiae) is an important model organism for the Human 
Genome Project. The number of protein coding genes in the yeast genome is estimated to be 5800–
6000 [14–16], which is widely accepted at present. However, some researchers believe that the 
number should be less than 4800 [17]. The two results are obviously controversial. 

In this paper, we first obtain a 12–dimensional vector from a DNA primary sequence. Then, 
based on the idea that the unknown genes have similar statistical properties to the known ones 
[9,10], we apply a multilayer feedforward artificial neural network (MLF ANN) method to predict 
protein–coding genes in the yeast genome, in which the network is trained in a supervised manner 
with the error back–propagation (BP) algorithm. As a satisfied result, the successful rates by both 
self–consistency and cross–validation tests are very high and the total number of genes estimated 
here is 5930, exactly coincident with 5800–6000. 

2 MATERIALS AND METHODS 

2.1 The Database 
In this paper, all the S. cerevisiae genome DNA primary sequences are taken from 

http://mips.gsf.de of MIPS (the Munich Information Center for Protein Sequences) released on 
October 10, 2001. In the MIPS database, all the ORFs are classified into six classes, which 
correspond to known proteins, no similarity, questionable ORFs, similarity or weak similarity to 
known proteins, similarity to unknown proteins and strong similarity to known proteins, 
respectively. The 1st, 2nd, 3rd, 4th, 5th and 6th classes include 3410 (18), 516, 471 (8), 820 (2), 
1003 and 229 entries, respectively, where the figures in the parentheses indicate the numbers of 
ORFs in the mitochondrial genome. The mitochondrial ORFs are excluded here since the samples 
are too few to have statistical significance. So in each of the six classes, 3392, 516, 463, 818, 1003 
and 229 ORFs are contained, respectively. 

2.2 The 12–Dimensional Vectors
Based on two facts: (1) amino acids are encoded by triplets of nucleotides of DNA (codons) and 

(2) each nucleotide base does not appear with equal probability at each codon position, comes a 
conclusion that both the four bases (A, C, G and T) and the three codon positions are likely to be 
related with the genetic code [6,18,19]. By denoting the bases A, C, G and T at the 1st, 2nd and 3rd

codon positions in an ORF with Ai, Ci, Gi and Ti, respectively, where i = 1, 2, 3, we write a DNA 
primary sequence as a sequence over 12 = 1 2 3 1 2 3 1 2 3 1 2 3{ , , , , , , , , , , , }A A A C C C G G G T T T
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naturally. For example, we write a fragment ATGTCACTC… as 1 2 3 1 2 3 1 2 3A T G T C A C T C …. Then, 

based on the 12–symbol sequence, we obtain a 12–dimensional vector 

1 2 3 1 3{ , , , , , }A A A C Tv f f f f f , where X
if  (i = 1, 2, 3, { ,  ,  ,  }X A C G T ) represents the 

occurrence frequency of the symbol iX  in the 12–symbol sequence. For convenience, the vector is 

rewritten by },,,{ 1221 fffv . Since the sum 
12

1
j

j
f  is 1, it is enough to compute only 11 such 

jf ’s. In addition, the redundancy  (defined later) reflects the difference of hereditary capacity 

between the coding ORF and non–coding DNA sequence, and was found to be a useful statistical 
quantity for the analysis of DNA sequences. Taking into account of these two aspects above, we 
replace the first component of  by the redundancy , thus get a new 12–dimensional vector written 
as },,,{' 122 ffv , where  is given as follows [20,21]: 

12ln0H ,
12

1
ln

j
jj ffH ,

0
1 H

H , (1)

where H0 is the maximum entropy of all possible 12–symbol sequences and H is the entropy of the 
12–symbol sequence considered. 

As an example, we take the sequence “YHR099W” (from yeast chromosome 8, positions 
302763–313997) of the 1st class in the MIPS database, its 12–dimensional vector is: 

v = (0.020276, 0.116364, 0.108529, 0.061610, 0.067931, 0.058583, 0.083244, 0.035791, 
0.060719, 0.078170, 0.113248, 0.105502). 

2.3 The MLF ANN Method 
With its many features and capabilities for recognition, generalization and classification, 

artificial neural network technology has been applied successfully in bioinformatics [7,22–27]. 
Generally speaking, a neural network is characterized by (a) its pattern of connections between the 
neurons, i.e. its architecture, (b) its method of determining the weights on the connections, i.e. its 
training, or learning, algorithm, and (c) its activation function [22,28,29]. 

In this paper, we use the MLF ANN to predict protein–coding genes in the yeast genome. 
Typically, this network consists of a set of sensory units (source nodes) that constitute the input 
layer, one or more hidden layers of computation nodes, and an output layer of computation nodes. 
The three–layer feedforward neural network is shown in Figure 1. The depicted network has an 
I×J×K architecture (with I input units, J hidden units and K output units), which has two bias units, 
both having an input signal of 1 (i.e. 0x  and 0z ), for the input and hidden layers, respectively. There 
are two layers of adaptive weights, and the term jiw ( kjw ) is the weight of the j–th hidden unit (k–th 
output unit) associated with the input (hidden) signal ix ( jz ). In this paper, since the recognition of 

protein coding genes is a 2–class classification problem, a single output neuron is enough, that is, K
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= 1 [28], and the weight kjw  can be denoted by jw  simply. In addition, considering that the vector 

obtained from a DNA primary sequence is 12–dimensional, we naturally design a 12×21×1 three–
layer feedforward ANN. 

Figure 1. A three-layer feedforward neural network. 

The activation function we used here is a sigmoidal nonlinearity defined by the logistic function 
[28,29]:

)exp(1
1)(

u
uf (2)

According to Eq. (2), the output of each layer unit can be calculated by: 
12

0
( ) ,     j 1, , 21j ji i

i
z f w x

21

0

( ) .j j
j

y f w z
(3)

Obviously, y, the output of the output unit, is exactly the actual output of a sample. 

To optimize the weights of the network, the back–propagation algorithm is used in the three–
layer feedforward ANN. For a given training set, corresponding to the supervised learning, we 
denote its n–th sequence by the sample pair ( nv , nO ), where 12

nv R  is as pointed in Section 2.2, 
{0,1}nO ( 1,  2,  ,  )n N . Here 0 and 1 are used to stand respectively for the two classes: the 

non–coding and coding sequences. The algorithm is formulated as follows: 

Step 1: Initialize the weights and learning rate of the network and n = 1. 

Step 2: Present the sample n.

Step 3: Compute outputs by Eq. (3). 

Step 4: Update weights. 
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( 1) ( ) ( )j j jw t w t t d z

( 1) ( ) ( )ji ji j iw t w t t d x

where ( )t  is the learning–rate that decreases automatically as the number of training iterations 

increases; 
21

0
( ) ( ( ) )n j j

j
d y O f w t z , and 

12

0
( ( ) )j j ji i

i
d w d f w t x .

Step 5: If n N , 1n n , go to step 2. 

Step 6: Go to step 7 if the absolute value of each weight adjustment for every sample n is smaller 
than a specified value  (e.g. 0.0001); Otherwise, 1n , go to step 2. 

Step 7: End. 

3 RESULTS AND DISCUSSION 

3.1 Self–consistency and Cross–validation Tests 
We examine the results by a self–consistency test and a cross–validation test. In the self–

consistency test, two criterion parameters, the average absolute error  and the variance 2, are 
introduced to evaluate the training quality: 

1

1 | |
N

n n
n

O y
N

 , 2 2

1

1 ( | |)
N

n n
n

O y
N

, (4)

where On and yn are the expected output and the actual output for the n–th sample, respectively. 

In the cross–validation test, we discuss the accuracy, sensitivity and specificity, which are widely 
used to evaluate the performance of an algorithm. The notations used here are the same as that in 
[3,9,10,30]. Let TP (FN) denote the number of coding ORFs that have been predicted as coding 
(non–coding), and TN (FP) the number of non–coding sequences that have been predicted as non–
coding (coding). The three parameters, Sn (sensitivity), Sp (specificity) and S~  denoting the accuracy 
of the prediction, are given by 

FNTP
TPSn  , 

FPTN
TNS p , )(

2
1~

pn SSS . (5)

Namely, Sn is the proportion of coding ORFs that have been correctly predicted as coding, Sp is the 
proportion of non–coding sequences that have been correctly predicted as non–coding, and S~  is the 
average of the sensitivity and specificity. The definition of Sp in Eq. (5) may cause problems in 
recognizing genes along the genomic DNA sequence. Because the frequency of non–coding 
nucleotides is generally much greater than that of coding ones (both in reality and in the 
predictions), TN >> FP, and therefore Sp tends towards 1. To solve this problem, instead of using 
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the definition of Sp in Eq. (5), one used the refined definition [30]: 

p
TPS

TP FP
(6)

However, in this study, the test set consists of 2400 coding ORFs and 2400 non–coding 
sequences, respectively, and it is therefore appropriate to use Sp as defined in Eq. (5) rather than in 
Eq. (6). To perform the self–consistency and cross–validation tests, two independent sets are 
needed, namely a training set and a test set. They both consist of two parts: one part includes the 
positive samples composed of true protein coding genes, and the other part includes the negative 
samples composed of non–coding DNA sequences. 

In this paper, we use the 3392 known genes of the 1st class in the MIPS database as the positive 
samples. As should be pointed out, to extend the method to more complicated structures, we haven’t 
excluded intron–containing genes of the 1st class. Considering that the intergenic sequence with 
length longer than 300 bp, which starts with ATG and ends with one of the stop codons, is unlikely 
to be ORF [9,10], we randomly select about 7600 such intergenic sequences from the 16 yeast 
chromosomes to produce the negative samples. 

According to the ergodicity principle, we randomly select 992 representative positive samples 
and 992 representative negative samples to form the training set. To form the test set, we use the 
remaining 2400 positive samples and 2400 negative samples randomly selected from the remaining 
ones. Then, using the sequences in the training set, the average absolute error  and the variance 2

(see Eq. (4)) are calculated, while by using the sequences in the test set, we obtain the Sn, Sp and S~

(see Eq. (5)). We perform both the self–consistency test and the cross–validation test five times in 
this way, and list the results in Table 1 and Table 2. Observing Table 1, we find that the average 
absolute error  and the variance 2 in each self–consistency test are fairly small, whose averages 
are only 0.0084 and 0.0077, respectively. This result indicates that the neural network has strong 
self–organizing and self–adaptability ability. In addition, as can be seen from Table 2, the accuracy 
in each cross–validation test is always greater than 96.0%, which is higher than that reported by 
Zhang et al. [9,10]. 

Table 1. The average absolute error  and the variance 2 for 5 different training sets 
 1 2 3 4 5 average 

0.0073 0.0089 0.0092 0.0083 0.0082 0.0084 
2 0.0071 0.0080 0.0085 0.0075 0.0075 0.0077 

Table 2. The accuracy of the prediction for 5 different test sets 
 1 2 3 4 5 average 

Sn 95.75 97.70 97.12 96.67 96.00 96.65 
Sp 96.50 95.67 96.25 96.29 96.17 96.18 
S~ 96.13 96.69 96.69 96.48 96.09 96.42 
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Table 3. The 134 ORFs of the 2nd class (no similarity) in the MIPS database, which are recognized as non–coding 
yal064w 
yar030c 
yar047c 
yar053w 
yar064w 
yar070c 
ybl044w 
ybl048w 
ybl071c 
ybr027c 
ybr056w–a 
ybr126w–a 
ybr144c 
ybr157c 
ybr292c 
ycl056c 
ycl075w 
ycr006c 
ycr022c 
ycr025c 
ycr043c 
ydl162c 
ydl196w 
ydr010c 
ydr015c 
ydr024w 
ydr029w 

ydr042c 
ydr095c 
ydr102c 
ydr215c 
ydr274c 
ydr278c 
ydr344c 
ydr350c 
ydr524w–a 
ydr525w 
ydr535c 
yel010w 
yel014c 
yel059w 
yer066c–a 
yer091c–a 
yer135c 
yer172c–a 
yfr035c 
yfr042w 
yfr054c 
ygl006w–a 
ygl015c 
ygl188c 
ygr290w 
ygr291c 
yhl037c 

yhr095w 
yhr139c–a 
yhr173c 
yil012w 
yil058w 
yil086c 
yil152w 
yir020c 
yjl027c 
yjl028w 
yjl064w 
yjl077c 
yjl118w 
yjl136w–a 
yjl215c 
yjr023c 
yjr120w 
yjr157w 
ykl044w 
ykl097c 
ykl158w 
ykr032w 
ykr073c 
yll030c 
ylr111w 
ylr112w 
ylr122c 

ylr124w 
ylr162w 
ylr296w 
ylr366w 
ylr400w 
ylr402w 
ylr404w 
ylr416c 
yml084w 
yml090w 
yml107c 
yml122c 
ymr003w 
ymr007w 
ymr057c 
ymr082c 
ymr103c 
ymr122c 
ymr141c 
ymr151w 
ymr187c 
ymr320w 
ynl017c 
ynl122c 
ynl150w 
ynl174w 
ynl179c 

ynl211c 
ynl269w 
ynl303w 
ynl324w 
yol038c–a 
yol118c 
yol160w 
yor015w 
yor024w 
yor029w 
yor183w 
yor248w 
yor268c 
yor314w 
yor343c 
yor364w 
yor376w 
yor392w 
ypl041c 
ypl055c 
ypl056c 
ypl080c 
ypr064w 
ypr096c 
ypr170c 
ypr170w–a 

Table 4. The 271 ORFs of the 3rd class, questionable ORFs, in the MIPS database, which are recognized as non–coding 
yal019w–a 
yal031w–a 
yal056c–a 
yal059c–a 
ybl012c 
ybl053w 
ybl070c 
ybl073w 
ybl077w 
ybl083c 
ybl094c 
ybl107w–a 
ybr090c 
ybr113w 
ybr116c 
ybr178w 
ybr206w 
ybr224w 
ybr226c 
ybr266c 
ycl023c 
ycl041c 
ycr041w 
ycr049c 

ydr355c 
ydr360w 
ydr401w 
ydr431w 
ydr467c 
ydr521w 
ydr526c 
yel009c–a 
yel018c–a 
yel075w–a 
yer014c–a 
yer046w–a 
yer076w–a 
yer084w 
yer084w–a 
yer087c–a 
yer119c–a 
yer133w–a 
yer137w–a 
yer138w–a 
yer145c–a 
yer148w–a 
yer152w–a 
yer181c 

ygr228w 
ygr259c 
ygr265w 
yhl002c–a 
yhl006w–a 
yhl019w–a 
yhl030w–a 
yhl046w–a 
yhr028w–a 
yhr049c–a 
yhr056w–a 
yhr063w–a 
yhr071c–a 
yhr125w 
yhr145c 
yil020c–a 
yil030w–a 
yil047c–a 
yil060w 
yil066w–a 
yil068w–a 
yil071w–a 
yil100c–a 
yil163c 

ykl136w 
ykl147c 
ykl153w 
ykl169c 
ykl202w 
ykr033c 
ykr047w 
yll020c 
ylr101c 
ylr123c 
ylr140w 
ylr169w 
ylr171w 
ylr198c 
ylr202c 
ylr230w 
ylr232w 
ylr252w 
ylr261c 
ylr269c 
ylr279w 
ylr280c 
ylr282c 
ylr294c 

ynl171c 
ynl184c 
ynl198c 
ynl205c 
ynl226w 
ynl228w 
ynl235c 
ynl266w 
ynl296w 
ynr025c 
yol013w–a 
yol150c 
yor041c 
yor082c 
yor102w 
yor121c 
yor146w 
yor169c 
yor199w 
yor218c 
yor225w 
yor235w 
yor263c 
yor282w 
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Table 4. (Continued) 
ycr064c 
ycr087w 
ydl009c 
ydl016c 
ydl032w 
ydl050c 
ydl062w 
ydl151c 
ydl152w 
ydl158c 
ydl172c 
ydl187c 
ydl221w 
ydr008c 
ydr034w–b 
ydr048c 
ydr053w 
ydr094w 
ydr112w 
ydr114c 
ydr133c 
ydr136c 
ydr149c 
ydr157w 
ydr199w 
ydr203w 
ydr220c 
ydr230w 
ydr241w 
ydr290w 
ydr327w 

yfl012w–a 
yfl032w 
yfr036w–a 
yfr052c–a 
yfr056c 
ygl052w 
ygl072c 
ygl088w 
ygl109w 
ygl149w 
ygl152c 
ygl165c 
ygl177w 
ygl182c 
ygl193c 
ygl204c 
ygr011w 
ygr018c 
ygr025w 
ygr039w 
ygr064w 
ygr069w 
ygr073c 
ygr107w 
ygr115c 
ygr137w 
ygr139w 
ygr151c 
ygr164w 
ygr176w 
ygr182c 

yil171w–a 
yir017w–a 
yjl009w 
yjl015c 
yjl022w 
yjl032w 
yjl067w 
yjl086c 
yjl120w 
yjl135w 
yjl150w 
yjl152w 
yjl175w 
yjl182c 
yjl188c 
yjl202c 
yjl211c 
yjl220w 
yjr018w 
yjr020w 
yjr038c 
yjr087w 
yjr128w 
ykl030w 
ykl036c 
ykl053w 
ykl083w 
ykl111c 
ykl115c 
ykl118w 
ykl131w 

ylr302c 
ylr317w 
ylr358c 
ylr428c 
ylr434c 
ylr444c 
ylr458w 
ylr465c 
yml009c–a 
yml034c–a 
yml047w–a 
yml089c 
yml094c–a 
yml116w–a 
ymr031w–a 
ymr075c–a 
ymr086c–a 
ymr135w–a 
ymr158w–b 
ymr172c–a 
ymr193c–a 
ymr290w–a 
ymr304c–a 
ymr306c–a 
ymr316c–a 
ynl013c 
ynl028w 
ynl105w 
ynl114c 
ynl120c 
ynl170w 

yor300w 
yor309c 
yor325w 
yor333c 
yor345c 
yor379c 
ypl025c 
ypl034w 
ypl035c 
ypl102c 
ypl114w 
ypl185w 
ypl205c 
ypl261c 
ypr039w 
ypr044c 
ypr050c 
ypr053c 
ypr077c 
ypr087w 
ypr092w 
ypr099c 
ypr136c 
ypr142c 
ypr146c 
ypr150w 
ypr177c 

Table 5. The 50 ORFs of the 4th class (similarity or weak similarity to known proteins) in the MIPS 
database, which are recognized as non–coding 

ybr239c 
ybr293w 
ycl001w–a 
ycr001w 
ydl119c 
ydl228c 
ydr115w 
ydr307w 
ydr319c 
ydr393w 

ydr411c 
ydr413c 
yel045c 
yer048w–a 
yer097w 
yer113c 
yfl040w 
yfl067w 
yfr057w 
ygl046w 

ygl160w 
ygl186c 
ygr101w 
ygr284c 
yhr035w 
yhr130c 
yhr143w 
yil025c 
yjl091c 
yjl193w 

ykl037w 
ykr030w 
yll005c 
ylr064w 
ylr184w 
ylr283w 
ylr311c 
ylr365w 
ymr158w 
ymr245w 

ynl176c 
ynr059w 
yol163w 
yor053w 
yor247w 
ypl072w 
ypr013c 
ypr015c 
ypr079w 
ypr094w 

3.2 Predict Genes in the ORFs of the 2nd–6th Classes 
After performing the self–consistency and cross–validation tests, we randomly selected a group 

of weights from the above five different training sets to calculate the output y  of each query DNA 

sequence of the 2nd–6th classes in the MIPS database. If y  0.5, the sequence is recognized as a true 
protein–coding gene; otherwise, it is recognized as a non–coding sequence. As a result, there are 
134, 271, 50, 113 and 6 sequences in the 2nd–6th classes that are recognized as non–coding ORFs, 
respectively. We listed them in Tables 3–7. 
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Table 6. The 113 ORFs of the 5th class (similarity to unknown proteins) in the MIPS database, which are 
recognized as non–coding 

yal034c 
yal047w–a 
yar060c 
ybl029c–a 
ybl049w 
ybl059w 
ybl108w 
ybl109w 
ybr004c 
ybr096w 
ybr099c 
ybr103c–a 
ybr168w 
ybr250w 
ybr300c 
ycl002c 
ycl065w 
ycr038w–a 
ycr097w–a 
ycr102w–a 
ydl027c 
ydl114w–a 
ydl159w–a 

ydl183c 
ydl185c–a 
ydr084c 
ydr210w 
ydr306c 
ydr367w 
ydr425w 
ydr459c 
ydr504c 
ydr543c 
ydr544c 
yel033w 
yel067c 
yel074w 
yer140w 
yer188c–a 
yfl015c 
yfl062w 
yfr012w 
ygl041c 
ygl124c 
ygl219c 
ygl231c 

ygl260w 
ygl263w 
ygr149w 
yhl034w–a 
yhl041w 
yhl044w 
yhl045w 
yhr017w 
yhr067w 
yhr069c–a 
yhr162w 
yhr212c 
yhr217c 
yil029c 
yil080w 
yil090w 
yil174w 
yil175w 
yir030w–a 
yir040c 
yjl052c–a 
yjr013w 
yjr162c 

ykl018c–a 
ykl106c–a 
ykl165c–a 
ykl223w 
ykl225w 
ykr051w 
ykr065c 
yll065w 
ylr023c 
ylr036c 
ylr149c–a 
ylr156w 
ylr159w 
ylr161w 
ylr463c 
yml007c–a 
yml047c 
ymr013w–a 
ymr119w 
ymr155w 
ymr181c 
ymr326c 
ynl018c 

ynl034w 
ynl067w–a 
ynl074c 
ynl156c 
ynl162w–a 
ynl194c 
ynl326c 
ynl337w 
ynl338w 
ynr014w 
ynr075w 
ynr077c 
yol002c 
yol003c 
yor044w 
ypl165c 
ypl229w 
ypr071w 
ypr074w–a 
ypr100w 
ypr151c 

Table 7. The 6 ORFs of the 6th class (strong similarity to known proteins) in the MIPS database, which 
are recognized as non–coding 

yar061w ybl009w ycr063w yel004w ypl032c ypl183w–a

Furthermore, we re–estimate the number of protein coding genes in the 16 yeast chromosomes 
based on the above results. Take the 2nd class ORFs as an example, we calculate FP, FN, TN and 
TP. The total number of the 2nd class ORFs is 516, in which 134 are recognized as non–coding. 
Assume that both the sensitivity and specificity are equal to 96%. We have a system of linear 
equations as follows: 

         ( ) 0.96
         TN ( ) 0.96
                 134

516

TP TP FN
TN FP
TN FN

TP FN TN FP

Solving the above system of equations, we can obtain FP  5, FN  16, TN  118, and TP  377. 
Therefore, the number of real coding ORFs of the 2nd class equals to TP + FN = 377 + 16 = 393. 
Similar calculations for the others are performed. Note that for the 6th–class, the above system has 
negative solutions: FP  0, FN  9, TN  –3, TP  223. The reason is that the number predicted as 
non–coding sequences is only 6, which is too small. In this case, we prefer FN = 6, TN = 0.Then we 
listed the “revised” results in Table 8. 
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Table 8. The numbers of predicted coding and non–coding ORFs of the 2nd–6th classes 
Class 2 3 4 5 6 
Total number of ORFs 516 463 818 1003 229 
TP 377 181 767 887 223 
FN 16 8 36 37 6 
TN 118 263 14 76 0 
FP 5 11 1 3 0 
TP + FN 393 189 803 924 229 
TN + FP 123 274 15 79 0 

Thus, the total number of protein coding genes should be equal to 5930, the sum of the number 
of the 1st class (3392) and the number of those in the 2nd–6th classes recognized by the present 
method (393 + 189+ 803+ 924 + 229 = 2538, see Table 8). Note that the accuracy is actually greater 
than 96%, so, this figure should be considered as an upper limit of the number of genes in the yeast 
genome. The above estimate of protein coding genes in the yeast genome is coincident with 5800–
6000, which is widely accepted [14–16]. 

4 CONCLUSIONS 

In this paper, based on the single nucleotide frequencies at three codon positions in the ORFs and 
the redundancy  of the entropy, we obtain a 12–dimensional vector from a DNA primary sequence. 
Then, we apply a 12×21×1 three–layer feedforward ANN method to predict protein–coding genes 
in the yeast genome by training the network in a supervised manner with a highly popular algorithm 
known as the error back–propagation algorithm. By this method, we find that the numbers of coding 
sequences (i.e. TP + FN in Table 8) in the 2nd–6th classes are at most 393, 189, 803, 924 and 229, 
respectively. Thus, the total number of protein coding genes in the 16 yeast chromosomes is 
estimated to be less than or equal to 5930. This method is based on the assumption that the DNA 
sequences coding for proteins in the 1st class ORFs have similar statistical properties to those 
coding for proteins in the 2nd–6th class ORFs. The prediction is examined by self–consistency test 
and cross–validation test. As a result, the averages of the average absolute error  and the variance 

2 through the self–consistency test are 0.0084 and 0.0077, respectively, which indicates that the 
neural network has strong ability of self–organizing and self–adaptability. As can be obtained 
through cross–validation test, the accuracy of the prediction, 96.0%, is higher than that reported by 
Zhang et al. [9,10]. In a word, the successful rates of both self–consistency and cross–validation 
tests are quite high. Worthy of mentioning is that both the training set and the test set in this paper 
do not exclude the intron–containing genes. This fact may imply that the current artificial neural 
network method is a useful computer technique for predicting protein–coding genes, and can be 
extended to recognize genes with more complicated structures. 
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