Internet Electronic Journal of Molecular Design

August 2003, Volume 2, Number 8, Pages 527–538

Editor: Ovidiu Ivanciuc

Special issue dedicated to Professor Nenad Trinajstić on the occasion of the 65th birthday Part 2

Guest Editors: Douglas J. Klein and Sonja Nikolić

Artificial Neural Network Method for Predicting Protein Coding Genes in the Yeast Genome

Chun Li,¹ Ping–an He,¹ and Jun Wang^{1,2}

 ¹ Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, P. R. China
 ² College of Advanced Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China

Received: March 14, 2003; Revised: May 12, 2003; Accepted: May 19, 2003; Published: August 31, 2003

Citation of the article:

C. Li, P. He, and J. Wang, Artificial Neural Network Method for Predicting Protein Coding Genes in the Yeast Genome, *Internet Electron. J. Mol. Des.* **2003**, *2*, 527–538, http://www.biochempress.com.

Internet BEFFONG Journal of Molecular Design BIOCHEM Press http://www.biochempress.com

Artificial Neural Network Method for Predicting Protein Coding Genes in the Yeast Genome[#]

Chun Li,^{1,*} Ping–an He,¹ and Jun Wang^{1,2}

¹ Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, P. R.

China

² College of Advanced Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China

Received: March 14, 2003; Revised: May 12, 2003; Accepted: May 19, 2003; Published: August 31, 2003

Internet Electron. J. Mol. Des. 2003, 2 (8), 527–538

Abstract

Motivation. The rapid growth of DNA sequences data in various DNA databanks has made analyzing these sequences, especially, finding genes in them very important, and it is even a more critical task at present to clarify the number of genes. The motivation of this paper is to suggest an artificial neural network method specific for predicting protein–coding genes in the yeast genome.

Method. We first obtain a 12–dimensional vector from a DNA primary sequence, and then construct a $12 \times 21 \times 1$ three–layer feedforward neural network. After being trained in a supervised manner with the error back–propagation algorithm by sufficient samples, the network is examined by the cross–validation test.

Results. As a result, the average absolute error δ and the average variance σ^2 are 0.0084 and 0.0077, respectively, and the accuracy of the prediction is better than 96%. Based on this, it was found that the numbers of coding ORFs in the 2nd–6th classes are 393, 189, 803, 924 and 229, respectively. Thus, the total number of protein coding genes in the yeast genome is equal to 5930 coincident with a widely accepted range 5800–6000. The names of putative non–coding ORFs are listed in detail.

Conclusions. The results imply that the current artificial neural network method is a useful computer technique for predicting protein–coding genes, and can be extended to find genes with more complicated structures.

Keywords. DNA sequence; neural network; gene prediction; gene recognition; Yeast genome.

1 INTRODUCTION

With the development of biotechnologies, the analysis of sequences, especially, gene finding become more and more important in bioinformatics. Essentially, there are two different gene prediction methods [1]. One is the signal sensor, by which we detect the presence of functional sites specific to a gene [2–7], such as splicing sites, poly (A) sites (in 3'–UTRs), promoters and start/stop codon, etc. The other is the content sensor, a measure to classify DNA regions by a sufficient

[#] Dedicated to Professor Nenad Trinajstić on the occasion of the 65th birthday.

^{*} Correspondence author; E-mail: lchlmb@yahoo.com.cn.

similarity [8–13], *e.g.* coding versus non–coding. Although much work has been done on this aspect, the prediction of protein coding genes is still far from being a trivial problem, and it is even a more critical task at present to clarify the number of genes [10].

The budding yeast (*Saccharomyces cerevisiae*) is an important model organism for the Human Genome Project. The number of protein coding genes in the yeast genome is estimated to be 5800–6000 [14–16], which is widely accepted at present. However, some researchers believe that the number should be less than 4800 [17]. The two results are obviously controversial.

In this paper, we first obtain a 12-dimensional vector from a DNA primary sequence. Then, based on the idea that the unknown genes have similar statistical properties to the known ones [9,10], we apply a multilayer feedforward artificial neural network (MLF ANN) method to predict protein-coding genes in the yeast genome, in which the network is trained in a supervised manner with the error back-propagation (BP) algorithm. As a satisfied result, the successful rates by both self-consistency and cross-validation tests are very high and the total number of genes estimated here is 5930, exactly coincident with 5800–6000.

2 MATERIALS AND METHODS

2.1 The Database

In this paper, all the *S. cerevisiae* genome DNA primary sequences are taken from http://mips.gsf.de of MIPS (the Munich Information Center for Protein Sequences) released on October 10, 2001. In the MIPS database, all the ORFs are classified into six classes, which correspond to known proteins, no similarity, questionable ORFs, similarity or weak similarity to known proteins, similarity to unknown proteins and strong similarity to known proteins, respectively. The 1st, 2nd, 3rd, 4th, 5th and 6th classes include 3410 (18), 516, 471 (8), 820 (2), 1003 and 229 entries, respectively, where the figures in the parentheses indicate the numbers of ORFs in the mitochondrial genome. The mitochondrial ORFs are excluded here since the samples are too few to have statistical significance. So in each of the six classes, 3392, 516, 463, 818, 1003 and 229 ORFs are contained, respectively.

2.2 The 12–Dimensional Vectors

Based on two facts: (1) amino acids are encoded by triplets of nucleotides of DNA (codons) and (2) each nucleotide base does not appear with equal probability at each codon position, comes a conclusion that both the four bases (A, C, G and T) and the three codon positions are likely to be related with the genetic code [6,18,19]. By denoting the bases A, C, G and T at the 1st, 2nd and 3rd codon positions in an ORF with A_i , C_i , G_i and T_i , respectively, where i = 1, 2, 3, we write a DNA primary sequence as a sequence over $\Omega_{12} = \{A_1, A_2, A_3, C_1, C_2, C_3, G_1, G_2, G_3, T_1, T_2, T_3\}$

naturally. For example, we write a fragment ATGTCACTC... as A₁T₂G₃T₁C₂A₃C₁T₂C₃.... Then, obtain a 12–dimensional based 12-symbol sequence, we on the vector $v = \{f_1^A, f_2^A, f_3^A, f_1^C, \dots, f_3^T\}$, where f_i^X $(i = 1, 2, 3, X \in \Omega = \{A, C, G, T\})$ represents the occurrence frequency of the symbol X_i in the 12-symbol sequence. For convenience, the vector is rewritten by $v = \{f_1, f_2, \dots, f_{12}\}$. Since the sum $\sum_{j=1}^{12} f_j$ is 1, it is enough to compute only 11 such f_j 's. In addition, the redundancy γ (defined later) reflects the difference of hereditary capacity between the coding ORF and non-coding DNA sequence, and was found to be a useful statistical quantity for the analysis of DNA sequences. Taking into account of these two aspects above, we replace the first component of v by the redundancy γ , thus get a new 12-dimensional vector written as $v' = \{\gamma, f_2, \dots, f_{12}\}$, where γ is given as follows [20,21]:

$$H_{0} = \ln 12, \ H = -\sum_{j=1}^{12} f_{j} \ln f_{j}, \ \gamma = 1 - \frac{H}{H_{0}},$$
(1)

where H_0 is the maximum entropy of all possible 12–symbol sequences and H is the entropy of the 12–symbol sequence considered.

As an example, we take the sequence "YHR099W" (from yeast chromosome 8, positions 302763-313997) of the 1st class in the MIPS database, its 12–dimensional vector is:

v' = (0.020276, 0.116364, 0.108529, 0.061610, 0.067931, 0.058583, 0.083244, 0.035791, 0.060719, 0.078170, 0.113248, 0.105502).

2.3 The MLF ANN Method

With its many features and capabilities for recognition, generalization and classification, artificial neural network technology has been applied successfully in bioinformatics [7,22–27]. Generally speaking, a neural network is characterized by (*a*) its pattern of connections between the neurons, *i.e.* its architecture, (*b*) its method of determining the weights on the connections, *i.e.* its training, or learning, algorithm, and (*c*) its activation function [22,28,29].

In this paper, we use the MLF ANN to predict protein–coding genes in the yeast genome. Typically, this network consists of a set of sensory units (source nodes) that constitute the input layer, one or more hidden layers of computation nodes, and an output layer of computation nodes. The three–layer feedforward neural network is shown in Figure 1. The depicted network has an $I \times J \times K$ architecture (with *I* input units, *J* hidden units and *K* output units), which has two bias units, both having an input signal of 1 (*i.e.* x_0 and z_0), for the input and hidden layers, respectively. There are two layers of adaptive weights, and the term $w_{ji}(w_{kj})$ is the weight of the *j*–th hidden unit (*k*–th output unit) associated with the input (hidden) signal $x_i(z_j)$. In this paper, since the recognition of protein coding genes is a 2–class classification problem, a single output neuron is enough, that is, *K*

= 1 [28], and the weight w_{kj} can be denoted by w_j simply. In addition, considering that the vector obtained from a DNA primary sequence is 12–dimensional, we naturally design a $12 \times 21 \times 1$ three–layer feedforward ANN.

Figure 1. A three-layer feedforward neural network.

The activation function we used here is a sigmoidal nonlinearity defined by the logistic function [28,29]:

$$f(u) = \frac{1}{1 + \exp(-u)} \tag{2}$$

According to Eq. (2), the output of each layer unit can be calculated by:

$$z_{j} = f(\sum_{i=0}^{12} w_{ji} x_{i}), \quad j = 1, \dots, 21$$

$$y = f(\sum_{j=0}^{21} w_{j} z_{j}).$$
 (3)

Obviously, *y*, the output of the output unit, is exactly the actual output of a sample.

To optimize the weights of the network, the back-propagation algorithm is used in the threelayer feedforward ANN. For a given training set, corresponding to the supervised learning, we denote its *n*-th sequence by the sample pair (v'_n, O_n) , where $v'_n \in \mathbb{R}^{12}$ is as pointed in Section 2.2, $O_n \in \{0,1\}$ $(n = 1, 2, \dots, N)$. Here 0 and 1 are used to stand respectively for the two classes: the non-coding and coding sequences. The algorithm is formulated as follows:

Step 1: Initialize the weights and learning rate of the network and n = 1.

Step 2: Present the sample *n*.

Step 3: Compute outputs by Eq. (3).

Step 4: Update weights.

$$w_{j}(t+1) = w_{j}(t) - \eta(t) \times d \times z_{j}$$
$$w_{j}(t+1) = w_{j}(t) - \eta(t) \times d_{j} \times x_{j}$$

where $\eta(t)$ is the learning-rate that decreases automatically as the number of training iterations increases; $d = (y - O_n) \times f'(\sum_{j=0}^{21} w_j(t)z_j)$, and $d_j = w_j \times d \times f'(\sum_{i=0}^{12} w_{ji}(t)x_i)$.

Step 5: If n < N, n = n+1, go to step 2.

Step 6: Go to step 7 if the absolute value of each weight adjustment for every sample n is smaller than a specified value ε (*e.g.* 0.0001); Otherwise, n = 1, go to step 2.

Step 7: End.

3 RESULTS AND DISCUSSION

3.1 Self-consistency and Cross-validation Tests

We examine the results by a self–consistency test and a cross–validation test. In the self– consistency test, two criterion parameters, the average absolute error δ and the variance σ^2 , are introduced to evaluate the training quality:

$$\delta = \frac{1}{N} \sum_{n=1}^{N} |O_n - y_n|, \ \sigma^2 = \frac{1}{N} \sum_{n=1}^{N} (\delta - |O_n - y_n|)^2,$$
(4)

where O_n and y_n are the expected output and the actual output for the *n*-th sample, respectively.

In the cross-validation test, we discuss the accuracy, sensitivity and specificity, which are widely used to evaluate the performance of an algorithm. The notations used here are the same as that in [3,9,10,30]. Let *TP* (*FN*) denote the number of coding ORFs that have been predicted as coding (non-coding), and *TN* (*FP*) the number of non-coding sequences that have been predicted as non-coding (coding). The three parameters, S_n (sensitivity), S_p (specificity) and \tilde{S} denoting the accuracy of the prediction, are given by

$$S_n = \frac{TP}{TP + FN} , \ S_p = \frac{TN}{TN + FP}, \ \widetilde{S} = \frac{1}{2}(S_n + S_p).$$
(5)

Namely, S_n is the proportion of coding ORFs that have been correctly predicted as coding, S_p is the proportion of non-coding sequences that have been correctly predicted as non-coding, and \tilde{S} is the average of the sensitivity and specificity. The definition of S_p in Eq. (5) may cause problems in recognizing genes along the genomic DNA sequence. Because the frequency of non-coding nucleotides is generally much greater than that of coding ones (both in reality and in the predictions), $TN \gg FP$, and therefore S_p tends towards 1. To solve this problem, instead of using

the definition of S_p in Eq. (5), one used the refined definition [30]:

$$S'_{p} = \frac{TP}{TP + FP} \tag{6}$$

However, in this study, the test set consists of 2400 coding ORFs and 2400 non-coding sequences, respectively, and it is therefore appropriate to use S_p as defined in Eq. (5) rather than in Eq. (6). To perform the self-consistency and cross-validation tests, two independent sets are needed, namely a training set and a test set. They both consist of two parts: one part includes the positive samples composed of true protein coding genes, and the other part includes the negative samples composed of non-coding DNA sequences.

In this paper, we use the 3392 known genes of the 1st class in the MIPS database as the positive samples. As should be pointed out, to extend the method to more complicated structures, we haven't excluded intron–containing genes of the 1st class. Considering that the intergenic sequence with length longer than 300 bp, which starts with ATG and ends with one of the stop codons, is unlikely to be ORF [9,10], we randomly select about 7600 such intergenic sequences from the 16 yeast chromosomes to produce the negative samples.

According to the ergodicity principle, we randomly select 992 representative positive samples and 992 representative negative samples to form the training set. To form the test set, we use the remaining 2400 positive samples and 2400 negative samples randomly selected from the remaining ones. Then, using the sequences in the training set, the average absolute error δ and the variance σ^2 (see Eq. (4)) are calculated, while by using the sequences in the test set, we obtain the S_n , S_p and \tilde{S} (see Eq. (5)). We perform both the self–consistency test and the cross–validation test five times in this way, and list the results in Table 1 and Table 2. Observing Table 1, we find that the average absolute error δ and the variance σ^2 in each self–consistency test are fairly small, whose averages are only 0.0084 and 0.0077, respectively. This result indicates that the neural network has strong self–organizing and self–adaptability ability. In addition, as can be seen from Table 2, the accuracy in each cross–validation test is always greater than 96.0%, which is higher than that reported by Zhang *et al.* [9,10].

Table 1. The average absolute error δ and the variance σ^2 for 5 different training sets

	1	2	3	4	5	average
δ	0.0073	0.0089	0.0092	0.0083	0.0082	0.0084
σ^2	0.0071	0.0080	0.0085	0.0075	0.0075	0.0077

|--|

		2				
	1	2	3	4	5	average
S_n	95.75	97.70	97.12	96.67	96.00	96.65
S_p	96.50	95.67	96.25	96.29	96.17	96.18
\widetilde{S}	96.13	96.69	96.69	96.48	96.09	96.42

		,,,))		
yal064w	ydr042c	yhr095w	ylr124w	ynl211c
yar030c	ydr095c	yhr139c-a	ylr162w	ynl269w
yar047c	ydr102c	yhr173c	ylr296w	ynl303w
yar053w	ydr215c	yil012w	ylr366w	ynl324w
yar064w	ydr274c	yil058w	ylr400w	yol038c-a
yar070c	ydr278c	yil086c	ylr402w	yol118c
ybl044w	ydr344c	yil152w	ylr404w	yol160w
ybl048w	ydr350c	yir020c	ylr416c	yor015w
ybl071c	ydr524w–a	yj1027c	yml084w	yor024w
ybr027c	ydr525w	yj1028w	yml090w	yor029w
ybr056w-a	ydr535c	yjl064w	yml107c	yor183w
ybr126w-a	yel010w	yjl077c	yml122c	yor248w
ybr144c	yel014c	yjl118w	ymr003w	yor268c
ybr157c	yel059w	yjl136w–a	ymr007w	yor314w
ybr292c	yer066c-a	yjl215c	ymr057c	yor343c
ycl056c	yer091c-a	yjr023c	ymr082c	yor364w
ycl075w	yer135c	yjr120w	ymr103c	yor376w
ycr006c	yer172c–a	yjr157w	ymr122c	yor392w
ycr022c	yfr035c	ykl044w	ymr141c	ypl041c
ycr025c	yfr042w	ykl097c	ymr151w	ypl055c
ycr043c	yfr054c	ykl158w	ymr187c	ypl056c
ydl162c	ygl006w-a	ykr032w	ymr320w	ypl080c
ydl196w	ygl015c	ykr073c	ynl017c	ypr064w
ydr010c	ygl188c	y11030c	ynl122c	ypr096c
ydr015c	ygr290w	ylr111w	ynl150w	ypr170c
ydr024w	ygr291c	ylr112w	ynl174w	ypr170w–a
ydr029w	yhl037c	ylr122c	ynl179c	

Table 3. The 134 ORFs of the 2nd class (no similarity) in the MIPS database, which are recognized as non-coding

Table 4. The 271 ORFs of the 3rd class, questionable ORFs, in the MIPS database, which are recognized as non-coding

yal019w–a	ydr355c	ygr228w	ykl136w	ynl171c
yal031w–a	ydr360w	ygr259c	ykl147c	ynl184c
yal056c–a	ydr401w	ygr265w	ykl153w	ynl198c
yal059c–a	ydr431w	yhl002c–a	ykl169c	ynl205c
ybl012c	ydr467c	yhl006w–a	ykl202w	ynl226w
ybl053w	ydr521w	yhl019w–a	ykr033c	ynl228w
ybl070c	ydr526c	yhl030w–a	ykr047w	ynl235c
ybl073w	yel009c-a	yhl046w–a	yll020c	ynl266w
ybl077w	yel018c-a	yhr028w–a	ylr101c	ynl296w
ybl083c	yel075w-a	yhr049c–a	ylr123c	ynr025c
ybl094c	yer014c–a	yhr056w–a	ylr140w	yol013w-a
ybl107w–a	yer046w-a	yhr063w-a	ylr169w	yol150c
ybr090c	yer076w–a	yhr071c–a	ylr171w	yor041c
ybr113w	yer084w	yhr125w	ylr198c	yor082c
ybr116c	yer084w–a	yhr145c	ylr202c	yor102w
ybr178w	yer087c–a	yil020c-a	ylr230w	yor121c
ybr206w	yer119c–a	yil030w–a	ylr232w	yor146w
ybr224w	yer133w-a	yil047c–a	ylr252w	yor169c
ybr226c	yer137w-a	yil060w	ylr261c	yor199w
ybr266c	yer138w-a	yil066w–a	ylr269c	yor218c
ycl023c	yer145c-a	yil068w–a	ylr279w	yor225w
ycl041c	yer148w-a	yil071w–a	ylr280c	yor235w
ycr041w	yer152w-a	yil100c–a	ylr282c	yor263c
ycr049c	yer181c	yil163c	ylr294c	yor282w

Table 4. (Continued)					
ycr064c	yfl012w–a	yil171w–a	ylr302c	yor300w	
ycr087w	yfl032w	yir017w–a	ylr317w	yor309c	
yd1009c	yfr036w–a	yj1009w	ylr358c	yor325w	
ydl016c	yfr052c–a	yj1015c	ylr428c	yor333c	
ydl032w	yfr056c	yjl022w	ylr434c	yor345c	
yd1050c	ygl052w	yjl032w	ylr444c	yor379c	
ydl062w	ygl072c	yjl067w	ylr458w	ypl025c	
ydl151c	ygl088w	yj1086c	ylr465c	ypl034w	
ydl152w	ygl109w	yjl120w	yml009c–a	ypl035c	
ydl158c	ygl149w	yjl135w	yml034c–a	ypl102c	
ydl172c	ygl152c	yjl150w	yml047w–a	ypl114w	
ydl187c	ygl165c	yjl152w	yml089c	ypl185w	
ydl221w	ygl177w	yjl175w	yml094c–a	ypl205c	
ydr008c	ygl182c	yjl182c	yml116w–a	ypl261c	
ydr034w-b	ygl193c	yjl188c	ymr031w-a	ypr039w	
ydr048c	ygl204c	yjl202c	ymr075c–a	ypr044c	
ydr053w	ygr011w	yjl211c	ymr086c–a	ypr050c	
ydr094w	ygr018c	yjl220w	ymr135w-a	ypr053c	
ydr112w	ygr025w	yjr018w	ymr158w–b	ypr077c	
ydr114c	ygr039w	yjr020w	ymr172c–a	ypr087w	
ydr133c	ygr064w	yjr038c	ymr193c–a	ypr092w	
ydr136c	ygr069w	yjr087w	ymr290w-a	ypr099c	
ydr149c	ygr073c	yjr128w	ymr304c–a	ypr136c	
ydr157w	ygr107w	yk1030w	ymr306c–a	ypr142c	
ydr199w	ygr115c	yk1036c	ymr316c–a	ypr146c	
ydr203w	ygr137w	ykl053w	ynl013c	ypr150w	
ydr220c	ygr139w	ykl083w	ynl028w	ypr177c	
ydr230w	ygr151c	ykl111c	ynl105w		
ydr241w	ygr164w	ykl115c	ynl114c		
ydr290w	ygr176w	yk1118w	ynl120c		
ydr327w	ygr182c	yk1131w	ynl170w		

Table 5. The 50 ORFs of the 4th class (similarity or weak similarity to known proteins) in the MIPS database, which are recognized as non-coding

ybr239c	ydr411c	ygl160w	yk1037w	ynl176c
ybr293w	ydr413c	ygl186c	ykr030w	ynr059w
ycl001w-a	yel045c	ygr101w	yl1005c	yol163w
ycr001w	yer048w-a	ygr284c	ylr064w	yor053w
ydl119c	yer097w	yhr035w	ylr184w	yor247w
ydl228c	yer113c	yhr130c	ylr283w	ypl072w
ydr115w	yf1040w	yhr143w	ylr311c	ypr013c
ydr307w	yfl067w	yil025c	ylr365w	ypr015c
ydr319c	yfr057w	yjl091c	ymr158w	ypr079w
ydr393w	ygl046w	yjl193w	ymr245w	ypr094w

3.2 Predict Genes in the ORFs of the 2nd-6th Classes

After performing the self-consistency and cross-validation tests, we randomly selected a group of weights from the above five different training sets to calculate the output y of each query DNA sequence of the 2nd-6th classes in the MIPS database. If $y \ge 0.5$, the sequence is recognized as a true protein-coding gene; otherwise, it is recognized as a non-coding sequence. As a result, there are 134, 271, 50, 113 and 6 sequences in the 2nd-6th classes that are recognized as non-coding ORFs, respectively. We listed them in Tables 3–7.

recognized as non-co	ung			
yal034c	ydl183c	ygl260w	ykl018c–a	ynl034w
yal047w–a	ydl185c–a	ygl263w	ykl106c–a	ynl067w–a
yar060c	ydr084c	ygr149w	ykl165c–a	ynl074c
ybl029c-a	ydr210w	yhl034w-a	ykl223w	ynl156c
ybl049w	ydr306c	yhl041w	ykl225w	ynl162w–a
ybl059w	ydr367w	yhl044w	ykr051w	ynl194c
ybl108w	ydr425w	yhl045w	ykr065c	ynl326c
ybl109w	ydr459c	yhr017w	yll065w	ynl337w
ybr004c	ydr504c	yhr067w	ylr023c	ynl338w
ybr096w	ydr543c	yhr069c–a	ylr036c	ynr014w
ybr099c	ydr544c	yhr162w	ylr149c–a	ynr075w
ybr103c-a	yel033w	yhr212c	ylr156w	ynr077c
ybr168w	yel067c	yhr217c	ylr159w	yol002c
ybr250w	yel074w	yil029c	ylr161w	yol003c
ybr300c	yer140w	yil080w	ylr463c	yor044w
ycl002c	yer188c–a	yil090w	yml007c–a	ypl165c
ycl065w	yf1015c	yil174w	yml047c	ypl229w
ycr038w-a	yfl062w	yil175w	ymr013w-a	ypr071w
ycr097w-a	yfr012w	yir030w-a	ymr119w	ypr074w–a
ycr102w-a	ygl041c	yir040c	ymr155w	ypr100w
ydl027c	ygl124c	yjl052c–a	ymr181c	ypr151c
ydl114w-a	ygl219c	yjr013w	ymr326c	
ydl159w-a	ygl231c	yjr162c	ynl018c	

Table 6. The 113 ORFs of the 5th class (similarity to unknown proteins) in the MIPS database, which are recognized as non-coding

Table 7. The 6 O	RFs of the 6th cla	ass (strong similar	ity to known prot	teins) in the MIPS	database, which
are recognized as	non-coding				
yar061w	ybl009w	ycr063w	yel004w	ypl032c	ypl183w–a

Furthermore, we re-estimate the number of protein coding genes in the 16 yeast chromosomes based on the above results. Take the 2^{nd} class ORFs as an example, we calculate *FP*, *FN*, *TN* and *TP*. The total number of the 2^{nd} class ORFs is 516, in which 134 are recognized as non-coding. Assume that both the sensitivity and specificity are equal to 96%. We have a system of linear equations as follows:

$$\begin{cases} TP/(TP + FN) = 0.96 \\ TN/(TN + FP) = 0.96 \\ TN + FN = 134 \\ TP + FN + TN + FP = 516 \end{cases}$$

Solving the above system of equations, we can obtain $FP \approx 5$, $FN \approx 16$, $TN \approx 118$, and $TP \approx 377$. Therefore, the number of real coding ORFs of the 2nd class equals to TP + FN = 377 + 16 = 393. Similar calculations for the others are performed. Note that for the 6th–class, the above system has negative solutions: $FP \approx 0$, $FN \approx 9$, $TN \approx -3$, $TP \approx 223$. The reason is that the number predicted as non–coding sequences is only 6, which is too small. In this case, we prefer FN = 6, TN = 0. Then we listed the "revised" results in Table 8.

Class	2	3	4	5	6
Total number of ORFs	516	463	818	1003	229
TP	377	181	767	887	223
FN	16	8	36	37	6
TN	118	263	14	76	0
FP	5	11	1	3	0
TP + FN	393	189	803	924	229
TN + FP	123	274	15	79	0

Table 8. The numbers of predicted coding and non-coding ORFs of the 2nd-6th classes

Thus, the total number of protein coding genes should be equal to 5930, the sum of the number of the 1st class (3392) and the number of those in the $2^{nd}-6^{th}$ classes recognized by the present method (393 + 189+ 803+ 924 + 229 = 2538, see Table 8). Note that the accuracy is actually greater than 96%, so, this figure should be considered as an upper limit of the number of genes in the yeast genome. The above estimate of protein coding genes in the yeast genome is coincident with 5800–6000, which is widely accepted [14–16].

4 CONCLUSIONS

In this paper, based on the single nucleotide frequencies at three codon positions in the ORFs and the redundancy γ of the entropy, we obtain a 12–dimensional vector from a DNA primary sequence. Then, we apply a 12×21×1 three-layer feedforward ANN method to predict protein-coding genes in the yeast genome by training the network in a supervised manner with a highly popular algorithm known as the error back-propagation algorithm. By this method, we find that the numbers of coding sequences (*i.e.* TP + FN in Table 8) in the 2nd-6th classes are at most 393, 189, 803, 924 and 229, respectively. Thus, the total number of protein coding genes in the 16 yeast chromosomes is estimated to be less than or equal to 5930. This method is based on the assumption that the DNA sequences coding for proteins in the 1st class ORFs have similar statistical properties to those coding for proteins in the 2nd-6th class ORFs. The prediction is examined by self-consistency test and cross-validation test. As a result, the averages of the average absolute error δ and the variance σ^2 through the self-consistency test are 0.0084 and 0.0077, respectively, which indicates that the neural network has strong ability of self-organizing and self-adaptability. As can be obtained through cross-validation test, the accuracy of the prediction, 96.0%, is higher than that reported by Zhang et al. [9,10]. In a word, the successful rates of both self-consistency and cross-validation tests are quite high. Worthy of mentioning is that both the training set and the test set in this paper do not exclude the intron-containing genes. This fact may imply that the current artificial neural network method is a useful computer technique for predicting protein-coding genes, and can be extended to recognize genes with more complicated structures.

Acknowledgment

We thank Dr. Ovidiu Ivanciuc for sending us some references. This work is supported in part by the National Natural Science Foundation of China.

5 REFERENCES

- [1] C. Mathe, M. F. Sagot, T. Schiex and P. Rouze, Survey and Summary: Current methods of gene prediction, their strengths and weaknesses, *Nucleic Acids Res.* 2002, *30*, 4103–4117.
- [2] J. Besemer, A. Lomsadze, and M. Borodovsky, GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions, *Nucleic Acids Res.* 2001, 29, 2607–2618.
- [3] R. J. Carter, I. Dubchak and S. R. Holbrook, A computational approach to identify genes for functional RNAs in genomic sequences, *Nucleic Acids Res.* 2001, *29*, 3928–3938.
- [4] R. Guigo, Computational gene identification: an open problem, Comput. Chem. 1997, 21, 215–222.
- [5] T. A. Thanaraj, Positional characterization of false positives from computational prediction of human splice sites, *Nucleic Acids Res.* **2000**, *28*, 744–754.
- [6] W. Li, P. Bernaola–Galvan, F. Haghighi, and I. Grosse, Applications of recursive segmentation to the analysis of DNA sequences, *Comput. Chem.* **2002**, *26*, 491–510.
- [7] Y. D. Cai and P. Bork, Homology–Based Gene Prediction Using Neural Nets, *Analytical Biochem.* 1998, 265, 269–274.
- [8] C. Burge and S. Karlin, Prediction of complete gene structures in human genomic DNA, *J. Mol. Biol.* **1997**, *268*, 78–94.
- [9] C. T. Zhang and J. Wang, Recognition of protein coding genes in the yeast genome at better than 95% accuracy based on the Z curve, *Nucleic Acids Res.* **2000**, *28*, 2804–2814.
- [10] C. T. Zhang, J. Wang, and R. Zhang, Using a Euclid distance discriminant method to find protein coding genes in the yeast genome, *Comput. Chem.* 2002, 26, 195–206.
- [11] F. B. Guo, H. Y. Ou, and C. T. Zhang, ZCURVE: a new system for recognizing protein-coding genes in bacterial and archaeal genomes, *Nucleic Acids Res.* 2003, 31, 1780–1789.
- [12] Q. Liu, Y.S. Zhu, B. H. Wang and Y. X. Li, A HMM-based method to predict the transmembrane regions of β barrel membrane proteins, *Computational Biol. Chem.* **2003**, *27*, 69–76.
- [13] S. L. Salzberg, M. Pertea, A. L. Delcher, M. J. Gardner, and H. Tettelin, Interpolated Markov models for eukaryotic gene finding, *Genomics* 1999, 59, 24–31.
- [14] A. Goffeau, B. G. Barrel, H. Bussey, R. W. Davis, B. Dujon, H Feldmann, F Galibert, J. D. Hoheisel, C. Jacq, M. Johnston, E. J. Louis, H. W. Mewes, Y. Murakami, P. Philippsen, H. Tettlin, and S. G. Oliver, *Science* 1996, 274, 546.
- [15] E. A. Winzeler, and R. W. Davis, Functional analysis of the yeast genome, Curr. Opin. Genet. Dev. 1997, 7, 771– 776.
- [16] H. W. Mewes, K. Albermann, M. Bahr, D. Frishman, A. Gleissner, J. Hani, K. Heumann, K. Kleine, A. Maierl, S. G. Oliver, F. Pfeiffer and A. Zollner, Overview of the yeast genome, *Nature*. 1997, 387, 7–8.
- [17] P. Mackiewicz, M. Kowalczuk, A. Gierlik, M.R. Dudek, S. Cebrat, Origin and properties of non-coding ORFs in the yeast genome, *Nucleic Acids Res.* 1999, 27, 3503–3509.
- [18] J. W. Fickett, Recognition of protein coding regions in DNA sequences, *Nucleic Acids Res.* 1982, 10, 5303–5318.
- [19] R. Staden, Measurements of the effects that coding for a protein has on a DNA sequence and their use for finding genes, *Nucleic Acids Res.* **1984**, *12*, 551–567.
- [20] S. Guiasu, Information Theory with Application, *McGraw–Hill*. 1997.
- [21] Z. Y. Fu, Information Theory: Elementary Theory and Application, *Publishing House of Electronics Industry*. 2001. (in Chinese).
- [22] C. H. Wu, Artificial neural networks for molecular sequence analysis, Comput. Chem. 1997, 21, 237–256.
- [23] Y. D. Cai, J. Hu, Y. X. Li, and K. C. Chou, Prediction of Protein Structural Classes by a Neural Network Method, Internet Electron. J. Mol. Des. 2002, 1, 332–338, <u>http://www.biochempress.com</u>.
- [24] Y. D. Cai, X. J. Liu, X. Xu, and K. C. Chou, Support Vector Machines for Predicting Membrane Protein Types by Incorporating Quasi-Sequence-Order Effect, *Internet Electron. J. Mol. Des.* 2002, 1, 219–226, <u>http://www.biochempress.com</u>.
- [25] Y. D. Cai, X. J. Liu, X. Xu, and K. C. Chou, Short Communication: Prediction of protein structural classes by support vector machines, *Comput. Chem.*, 2002, 26, 293–296.
- [26] Y. D. Cai, X. J. Liu, X. Xu, and K. C. Chou, Artificial neural network method for predicting protein secondary

structure content, Comput. Chem. 2002, 26, 347-350.

- [27] Z. H. Chen and Z. Z. Yan, Artificial neural networks applications for genome informatics, *Foreign medical: Biomedical engineering fascicle* **2002**, *25*, 145–149, (in Chinese).
- [28] Z. R. Yuan, Artificial Neural Networks with Application, *Tsinghua University Press*, 1999, (in Chinese).
- [29] S. Haykin, Neural Networks: A Comprehensive Foundation, Second Edition. Tsinghua University Press, 2001.
- [30] M. Burset and R. Guigo, Evaluation of Gene Structure Prediction Programs, Genomics 1996, 34, 353-367.

Biographies

Chun Li is a M.S student of Applied Mathematics at the Dalian University of Technology. His main research interests include combinatorics, information theory and bioinformatics.

Ping-an He is a PhD student of Applied Mathematics at the Dalian University of Technology. His main research interests include combinatorics, graph theory and bioinformatics.

Jun Wang is a Professor of Applied Mathematics at the Dalian University of Technology, the advisor of the first author.