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Abstract 

Motivation. Selective inhibition of cyclooxygenase–2 (COX–2) is an important strategy in design of potent 
anti–inflammatory compounds with significantly reduced side effects. We selected ester and amide derivatives 
of indomethacin to explore the structural requirement of these analogues necessary for selective COX–2 
inhibition. 
Method. In the present investigation, a QSAR study was performed using 66 ester and amide derivatives using 
Dragon 3.0 structural descriptors. Cluster analysis technique was applied to generate training and test sets. The 
relationship between inhibitory activity and various descriptors is established by step–wise multiple regression 
analysis using SYSTAT 10.2 and VALSTAT. 
Results. The analyses have produced good predictive and statistically significant QSAR models. These models 
were cross–validated with the leave–one–out (LOO) method. The values of statistical data are: R = 0.908, F = 
37.45, SEE = 0.317 and R2

CV = 0.765 for COX–2 inhibition; R = 0.958, F = 45.00, SEE = 0.312 and R2
CV = 0.836 

for COX–1 inhibition; and R = 0.949, F = 39.7, SEE = 0.392 and R2
CV = 0.711 for selectivity. The predicted 

activity shows a linear relationship with the observed activity. 
Conclusions. The present study suggests that hydrogen bonding from amide nitrogen to a protein acceptor is an 
important determinant of the receptor binding. Lipophilicity and topological distance indices are important for 
COX–2 inhibition. Also, the Geary autocorrelation and eigenvalue descriptors modulate COX–1 and COX–2 
inhibition and selectivity. These studies are promising for the development of novel compounds, which may 
have potent anti–inflammatory activity devoid of side effects like gastric ulcer and renal failures. 
Keywords. QSAR; quantitative structure–activity relationships; cyclooxygenase–2; COX–2; COX–2 inhibitors; 
NSAIDs; nonsteroidal anti–inflammatory drugs. 

1 INTRODUCTION 
The biosynthesis of prostaglandins (PGs) involves conversion of arachidonic acid to PGG2 and 

then to PGH2, a reaction catalyzed by sequential action of prostaglandin H2 endoperoxide synthase 
(PGHS) or cyclooxygenase (COX) [1]. COX enzyme exists as two related but distinct isoforms 
designated as COX–1 and COX–2 [2]. Distinct genes on separate chromosomes encode these 
enzymes [3–4]. COX–1 is found in most tissues, such as gastric mucosa, kidneys, platelets, and 
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many other tissues, as a constitutive enzyme. It is responsible for the production of “housekeeping” 
prostaglandins critical to the maintenance of normal renal function, gastric mucosal integrity, 
vascular hemostasis and the autocrine response to circulating hormones. The COX–2 isoform is the 
inducible form, expressed in response to inflammatory stimulus. It is upregulated 20–fold in 
macrophages, monocytes, synoviocytes, chondrocytes, fibroblasts, osteoblasts and endothelial cells 
in response of various inflammatory stimuli [5]. This knowledge led to the hypothesis that side 
effects such as ulcers, renal failure associated with clinically useful NSAIDs are caused by 
homeostatic COX–1 enzyme inhibition, whereas the anti–inflammatory properties result from 
inhibition of the inducible COX–2 [6]. Selective inhibition of COX–2 provides a new class of anti–
inflammatory compounds and analgesic drugs with significantly reduced side effects. Researchers 
suggest that the inhibition of COX–2 may suppress carcinogenesis by affecting a number of 
pathways: inhibiting angiogenesis, invasiveness of tumors and promoting apoptosis [7]. References 
estimate that highly selective COX–2 inhibitors may get a role in the treatment of cancer [8] as an 
adjuvant therapy or as a co–chemotherapeutic agent [9]. 

Sustained efforts have been made regarding the identification of COX–2 inhibitors with an 
attractive pharmacological profile: NS–398, N(2–cyclohexyloxy–4–nitrophenyl) methane–
sulphonamide; Dup–697, 5–bromo–2–(4–flurophenyl)–3–(4–methylulphonylphenyl)thiophene; 
SC–58635 (celecoxib), 4–[5–(4–methylphenyl)–3–trifluoromethyl–1H–1–pyrozolyl]–1–benzene–
sulphonamide), 2–acetoxyphenyl alkyl sulphides and diarylisoxazoles, have been developed as 
highly selective COX–2 inhibitors [10–14]. QSAR studies of meclofenamic acid analogues, 
oxazoles, pyrazoles, imidazole, thiophenes and furanones as selective COX–2 inhibitors, have also 
been reported [15–17]. 

Indomethacin is a nonselective inhibitor of both COX–1 and COX–2, but its ester, amide and 
thiazole analogues are selective COX–2 inhibitors [18–20]. In view of the above and to explore the 
necessary structural requirement of indomethacin analogues for selective COX–2 inhibition, 
quantitative structure activity relationship (QSAR) studies have been performed and are presented 
in this paper. 

2 MATERIALS AND METHODS 

2.1 Data Set
The COX–1 and COX–2 inhibition of indomethacin ester and amides have been reported [20] in 

terms of inhibitory concentration 50% of enzyme (IC50 in micromoles). The enzyme inhibition data 
were converted to negative logarithmic values (concentration in moles) and selectivity (COX–
1/COX–2 enzyme inhibition ratio) was converted to logarithmic value. These values were used for 
subsequent QSAR analyses as response variable. The structures of all indomethacin analogues with 
their COX–2, COX–1 inhibitory activity and selectivity are presented in Table 1. 
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Table 1. Structural features of all the indomethacin analogues studied and their observed COX–2, COX–1 inhibitory 
activity and selectivity 

N

R2

R1

O

1–66
COX–2 a COX–1 aNo R1 R2 IC50 (µM) pC2

b IC50 (µM) pC1
b Selectivity c

1 COOH COC6H4Cl 0.75 6.12 0.05 7.30 –1.18 
2 COOCH3 COC6H4Cl 0.25 6.60 33.00 4.48 2.12 
3 COOC2H5 COC6H4Cl 0.10 7.00 # # # 
4 COOC3H7 COC6H4Cl 0.10 7.00 # # # 
5 COO–i–C3H7 COC6H4Cl 0.25 6.60 37.00 4.43 2.17 
6 COOC4H9 COC6H4Cl 0.05 7.30 # # # 
7 COOC5H11 COC6H4Cl 0.05 7.30 # # # 
8 COOC6H13 COC6H4Cl 0.06 7.22 # # # 
9 COO–cycC6H11 COC6H4Cl 0.12 6.92 # # # 

10 COO(CH2)2–cycC6H11 COC6H4Cl 1.00 6.00 # # # 
11 COOC7H15 COC6H4Cl 0.04 7.40 # # # 
12 COO(CH2)2O(CH2)3 CH3 COC6H4Cl 0.06 7.22 # # # 
13 COO–trans–CH2CHCH(CH2)3CH3 COC6H4Cl 0.05 7.30 # # # 
14 COOCH2C C(CH2)3CH3 COC6H4Cl 0.25 6.60 # # # 
15 COOCH(CH3)CH2C CCH2CH3 COC6H4Cl 0.12 6.92 # # # 
16 COOC8H17 COC6H4Cl 0.09 7.05 # # # 

17 N OCOO(H2C)2 COC6H4Cl 0.68 6.17 # # # 

18 COO(CH2)2NHCOOC(CH3)3 COC6H4Cl 0.05 7.35 # # # 
19 COOC6H5 COC6H4Cl 0.40 6.40 # # # 
20 COO– –C10H7 COC6H4Cl 5.00 5.30 # # # 
21 COO(CH2)2C6H5 COC6H4Cl 0.04 7.40 # # # 
22 COOC6H4(4–SCH3) COC6H4Cl 0.30 6.52 3.00 5.52 1.00 
23 COOC6H4(2–SCH3) COC6H4Cl 0.06 7.22 # # # 
24 COOC6H4(4–OCH3) COC6H4Cl 0.04 7.40 # # # 
25 COOC6H4(4–NHCOCH3) COC6H4Cl 0.05 7.30 66.00 4.18 3.12 
26 COOC6H4(4–F) COC6H4Cl 0.08 7.12 # # # 
27 COO[3–pyridyl] COC6H4Cl 0.05 7.30 2.50 5.60 1.70 
28 CONHCH3 COC6H4Cl 0.70 6.15 # # # 
29 CON(CH3)2 COC6H4Cl 18.00 4.74 # # # 
30 CON(C2H5)2 COC6H4Cl 25.00 4.60 # # # 
31 CONHC8H17 COC6H4Cl 0.04 7.40 66.00 4.18 3.22 
32 CONHC9H19 COC6H4Cl 0.04 7.40 17.00 4.77 2.63 
33 CONH(CH2)3Cl COC6H4Cl 0.05 7.30 45.00 4.35 2.95 
34 CONH(CH2)2OH COC6H4Cl 0.25 6.60 # # # 

35
N(CH3)2

O

O
COHN COC6H4Cl 0.19 6.72 # # # 

36 CONHCH2COOCH3 COC6H4Cl 4.00 5.40 # # # 
37 CO–(D)–NHCH(CH3)COOCH3 COC6H4Cl 0.40 6.40 # # # 
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Table 1. (Continued) 
COX–2 a COX–1 aNo R1 R2 IC50 (µM) pC2

b IC50 (µM) pC1
b Selectivity c

38 CO–(L)–NHCH(CH3)COOCH3 COC6H4Cl 0.19 6.72 # # # 
39 CONH(CH2)2C6H5 COC6H4Cl 0.06 7.22 # # # 
40 CONH2 COC6H4Cl 0.70 6.15 # # # 
41 CONHCH2C6H4(2–CH3) COC6H4Cl 0.15 6.82 # # # 
42 CONHCH2C6H4(4–CH3) COC6H4Cl 0.06 7.22 8.00 5.10 2.12 

43 N
H

O

COC6H4Cl 0.06 7.22 4.00 5.40 1.82 

44 N
H

O

COC6H4Cl 0.20 6.70 4.00 5.40 1.30 

45 CONHCH2C6H4(4–COCH3) COC6H4Cl 0.08 7.10 # # # 
46 CONHC6H4(4–F) COC6H4Cl 0.06 7.22 # # # 
47 CONHC6H4(4–Cl) COC6H4Cl 0.06 7.26 # # # 
48 CONHC6H4(4–SCH3) COC6H4Cl 0.12 6.92 # # # 
49 CONHC6H4(3–SCH3) COC6H4Cl 0.22 6.66 # # # 
50 CONHC6H4(4–OCH3) COC6H4Cl 0.06 7.25 # # # 
51 CONHC6H4(3–OC2H5) COC6H4Cl 0.65 6.19 53.00 4.28 1.91 
52 CONHC6H4(4–NHCOCH3) COC6H4Cl 0.12 6.92 # # # 
53 CONHC6H4(4–CH2COOCH3) COC6H4Cl 0.06 7.24 # # # 
54 CONHC6H4(4–CONH2) COC6H4Cl 0.14 6.85 # # # 

55 H
N

H
N

OCH3

O

O

COC6H4Cl 0.60 6.22 17.00 4.77 1.45 

56 CONHC6H4(4–C6H5) COC6H4Cl 0.50 6.30 # # # 
57 CONH(3–Pyridyl) COC6H4Cl 0.05 7.28 # # # 
58 CONH(5–Chloro–3–Pyridyl) COC6H4Cl 0.05 7.33 # # # 
59 CONH(2–Chloro–3–Pyridyl) COC6H4Cl 0.05 7.30 45.00 4.35 2.95 

60
N

N
H
N

O
COC6H4Cl 4.00 5.40 # # # 

61
N

N

H
N

O COC6H4Cl 0.70 6.15 # # # 

62
N

S

H
N

O COC6H4Cl 4.00 5.40 # # # 

63 CONHOCH2C6H5 COC6H4Cl 0.05 7.30 0.06 7.22 0.08 
64 CONHOCH2C6H4(4–NO2) COC6H4Cl 0.06 7.22 4.00 5.40 1.82 
65 CONHNHCH2C6H5 COC6H4Cl 2.50 5.60 # # # 
66 COOH CH2C6H4Br 2.50 5.60 # # # 

a IC50 values were determined by incubating several concentration of inhibitors in DMSO with human COX–2 or ovine 
COX–1 (ref. 20).  
b Negative logarithmic value of IC50 (in moles)[pC1 = –log10IC50 (for COX–1) and pC2 = –log10IC50 (for COX–2)] 
c Log10[IC50(COX–1)/IC50(COX–2)] 
# Not available 

COX–2 inhibitory data have been available for 66 compounds. This compounds set was first 

divided into two subsets based on hierarchical clustering: one training set composed of 49 

compounds and one test set composed of 17 compounds. Models for COX–2 inhibition were 

constructed based on the training set and the generated models were then validated: internally 

(using the leave one out technique) and externally (predicting the activities of the test set). The 
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models for COX-1 inhibition and selectivity were constructed based on available biological data 

and the models thus generated were internally validated using the leave one out technique. 

All of the molecular modeling studies reported here used structural descriptors computed with 
Dragon 3.0 (Milano Chemometrics) [21]. Molecular structures were generated with ChemDraw 
Ultra 6.0 and optimized in CS Chem3D Ultra (Cambridge soft) [22], first by molecular mechanics 
(MM2) and re–optimized by MOPAC–AM1 until the root mean square (RMS) gradient value 
becomes smaller than 0.0001 kcal/mol. Å. [23–24]. Energy minimized molecules were saved as 
MDL MolFiles for computing various molecular descriptors using Dragon 3.0 [21]. 

Constitutional descriptors, functional groups, atom centered fragments, empirical descriptors, 
properties, topological descriptors, molecular walk counts, BCUT descriptors, Galvez topological 
charge indices, 2D autocorrelations were computed and variable exclusion was done for constant 
variable and near–constant variable at paired correlation. As the total number of descriptors 
involved in the study is high for each set of compounds, only significant descriptors are presented in 
the discussion. The descriptors considered in this study along with their definitions are presented in 
Table 2. Physicochemical descriptors and COX–2 inhibition for compounds of the training set and 
test set are presented in Table 3 and Table 4, respectively. COX–1 inhibitory/selectivity data have 
been available for 17 compounds which are presented along with descriptors in Table 5. 

Table 2. Molecular descriptors selected that significantly influence COX–2, COX–1 inhibition and selectivity 
Descriptors Definition Class 
nCONR2 number of tertiary amides (aliphatic) Functional groups 
BEHm2 highest eigenvalue n. 2 of Burden matrix / weighted by atomic masses BCUT descriptors 
MLOGP Moriguchi octanol–water partition coeff. (logP) Properties 
T(Cl..Cl) Sum of topological distances between Cl..Cl Topological descriptors 
GATS7v Geary autocorrelation – lag 7 / weighted by atomic van der Waal volume 2D autocorrelation 
BELm6 lowest eigenvalue n. 6 of Burden matrix / weighted by atomic masses BCUT descriptors 

GATS1e Geary autocorrelation – lag 1 / weighted by atomic Sanderson 
electronegativities 2D autocorrelations 

GATS7e Geary autocorrelation – lag 7 / weighted by atomic Sanderson 
electronegativities 2D autocorrelations 

GATS8e Geary autocorrelation – lag 8 / weighted by atomic Sanderson 
electronegativities 2D autocorrelations 

2.2 Statistical Computation
The relationship between response variable (as a dependent variable) and various 

physicochemical as well as structural descriptors (as independent variables), were established by 
step–wise linear multiple regression analysis using SYSTAT 10.2 [26] and VALSTAT [27] running 
on a Pentium 4 processor (CPU 3.00 GHz HT). Significant descriptors were chosen on the basis of 
statistical data of analysis. The intercorrelation (Pearson correlation) between these descriptors was 
checked for independence of the variables. 
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Table 3. Descriptors, observed, calculated and predicted COX–2 inhibition of compounds of training set 
Descriptors pC2No nCONR2 BEHm2 MLOGP T(Cl..Cl) GATS7v Obs a Cal b LOO b

1 0 3.92 3.16 0 1.042 6.12 6.85 6.88 
2 0 3.92 3.38 0 1.137 6.60 6.57 6.57 
3 0 3.92 3.60 0 1.124 7.00 6.65 6.62 
5 0 3.92 3.81 0 1.114 6.60 6.72 6.73 
7 0 3.92 4.23 0 1.085 7.30 6.89 6.86 
9 0 3.92 4.44 0 1.018 6.92 7.15 7.17 
10 0 3.97 4.84 0 1.045 6.00 6.18 6.21 
12 0 3.92 3.66 0 1.062 7.22 6.87 6.86 
13 0 3.92 4.56 0 1.029 7.30 7.14 7.13 
14 0 3.92 4.56 0 1.043 6.60 7.09 7.12 
16 0 3.92 4.84 0 1.013 7.05 7.24 7.26 
17 0 3.92 2.91 0 1.149 6.17 6.45 6.49 
18 0 3.92 3.91 0 1.079 7.35 6.86 6.83 
19 0 3.92 2.22 0 0.986 6.40 6.87 6.95 
20 0 4.00 5.23 0 0.966 5.30 5.94 6.14 
21 0 3.92 4.62 0 1.061 7.40 7.04 7.01 
23 0 3.93 4.42 0 0.936 7.22 7.23 7.23 
24 0 3.92 3.65 0 0.956 7.40 7.22 7.20 
25 0 3.92 3.43 0 0.970 7.30 7.14 7.12 
26 0 3.92 4.32 0 0.993 7.12 7.21 7.22 
27 0 3.92 3.24 0 1.025 7.30 6.92 6.90 
28 0 3.92 2.97 0 1.121 6.15 6.55 6.59 
29 1 3.92 3.19 0 1.195 4.74 4.59 4.45 
30 1 3.92 3.62 0 1.172 4.60 4.75 4.89 
32 0 3.92 4.63 0 1.002 7.40 7.24 7.23 
33 0 3.92 3.62 15 1.061 7.30 7.36 7.38 
34 0 3.92 2.42 0 1.102 6.60 6.52 6.51 
35 0 3.92 3.53 0 1.113 6.72 6.68 6.67 
36 0 3.92 2.62 0 1.105 5.40 * * 
37 0 3.92 2.83 0 1.096 6.40 6.61 6.63 
42 0 3.92 4.21 0 0.964 7.22 7.29 7.30 
44 0 3.92 4.41 0 1.024 6.70 7.13 7.15 
45 0 3.92 3.53 0 1.043 7.10 6.91 6.90 
47 0 3.93 4.02 16 0.974 7.26 7.56 7.70 
49 0 3.97 4.02 0 0.964 6.66 6.31 6.27 
50 0 3.92 3.24 0 0.971 7.25 7.10 7.09 
51 0 3.92 3.44 0 0.966 6.19 * * 
53 0 3.92 3.62 0 0.994 7.24 7.09 7.08 
54 0 3.92 2.79 0 0.982 6.85 6.98 7.00 
56 0 3.97 4.74 0 0.955 6.30 6.46 6.48 
57 0 3.92 2.84 0 1.015 7.28 6.88 6.85 
58 0 3.93 3.04 15 1.041 7.33 7.14 7.07 
59 0 3.94 3.04 14 0.986 7.30 7.10 7.03 
61 0 3.92 1.28 0 1.028 6.15 6.56 6.71 
62 0 4.02 3.11 0 0.975 5.40 5.16 5.03 
63 0 3.92 4.06 0 1.005 7.30 7.13 7.12 
64 0 3.92 3.84 0 1.012 7.22 7.07 7.06 
65 0 3.92 3.84 0 1.012 5.60 * * 
66 0 4.02 3.50 0 0.932 5.60 5.37 5.26 
a Observed value
b Calculated (Cal.) and predicted (LOO) values of pC2 from Model 2. 
* Compounds removed as outliers 
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Table 4. Descriptors, observed and predicted COX–2 inhibition of compounds of test set 
S Descriptors pC2
No. nCONR2 BEHm2 MLOGP T(Cl..Cl) GATS7v Obs bEq. 2 
4 0 3.91 3.81 0 1.055 7.00 7.07 
6 0 3.92 4.02 0 1.073 7.30 6.86 
8 0 3.92 4.44 0 1.003 7.22 7.16 
11 0 3.92 4.64 0 1.018 7.40 7.15 
15 0 3.93 4.56 0 1.034 6.92 6.89 
22 0 3.95 4.42 0 0.938 6.52 6.83 
31 0 3.92 4.43 0 1.005 7.40 7.16 
38 0 3.92 2.83 0 0.996 6.72 6.90 
39 0 3.92 4.21 0 1.047 7.22 6.98 
40 0 3.92 2.75 0 1.030 6.15 6.80 
41 0 3.92 4.21 0 1.032 6.82 7.03 
43 0 3.92 4.41 0 1.024 7.22 7.09 
46 0 3.92 3.92 0 0.985 7.22 7.13 
48 0 3.97 5.02 0 0.852 6.92 6.87 
52 0 3.92 3.02 0 0.990 6.92 6.96 
55 0 3.96 3.35 0 0.881 6.22 6.68 
60 0 3.92 1.28 0 1.028 5.40 6.53 
aObserved value
bPredicted values of pC2 from Eq. (2). 

Table 5. Descriptors and observed, calculated and predicted COX–1 inhibition and selectivity of compounds 
S  Descriptors pC1 Selectivity 
No. BELm6 GATS7e GATS8e GATS1e aObs. bCalc bLOO aObs. cCalc cLOO
1 1.19 0.63 0.83 0.73 7.30 7.12 6.53 –1.18 –0.70 0.08 
2 1.34 0.65 0.68 0.70 4.48 4.77 4.87 2.12 1.48 1.38 
5 1.39 0.64 0.72 0.69 4.43 4.32 4.29 2.17 2.28 2.30 
22 1.40 0.82 0.79 0.69 5.52 5.78 5.82 1.00 0.90 0.89 
25 1.45 0.57 0.90 0.70 4.18 4.05 3.95 3.12 3.51 3.67 
27 1.40 0.67 0.72 0.70 5.60 * * 1.70 1.94 1.96 
31 1.54 0.78 0.92 0.68 4.18 4.57 4.72 3.22 2.98 2.93 
32 1.59 0.85 0.91 0.68 4.77 4.40 4.20 2.63 3.07 3.27 
33 1.41 0.64 0.73 0.67 4.35 4.21 4.18 2.95 2.64 2.58 
42 1.44 0.81 0.78 0.67 5.10 5.24 5.26 2.12 1.57 1.53 
43 1.45 0.80 0.77 0.67 5.40 5.02 4.99 1.82 1.77 1.76 
44 1.45 0.80 0.77 0.67 5.40 5.02 4.99 1.30 1.77 1.80 
51 1.46 0.74 0.85 0.72 4.28 4.84 4.90 1.91 1.94 1.94 
55 1.48 0.83 0.75 0.72 4.77 4.75 4.74 1.45 1.50 1.52 
59 1.41 0.64 0.76 0.68 4.35 4.33 4.33 2.95 2.55 2.49 
63 1.42 1.00 0.86 0.65 7.22 7.16 7.10 0.08 –0.07 –0.19 
64 1.42 0.88 0.69 0.53 5.40 5.52 5.56 1.82 2.09 3.16 
aObserved value
bCalculated (Cal.) and predicted (LOO) values of pC2 from Eq. (2). 
*Compound removed as outliers 

The statistical quality of the developed equations was judged by the parameters like correlation 
coefficient (R), explained variance (%EV), standard error of estimate (SEE), variance ratio (F) at 
specified degrees of freedom (df), 95% confidence intervals of the regression coefficients. The 
predictive power of equations were validated by leave one out (LOO) cross–validation method 
(R2

CV values), standard deviation based on predicted residual sum of squares (SPRESS) and standard 
deviation of error of prediction (SDEP).
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3 RESULTS AND DISCUSSION 
The number of developed equations was high, so further analysis was based on statistically 

significant parameters, namely R, R2
CV, F, SEE and inter–correlation among parameters. Here we 

report the results for the QSAR study for COX–1 and COX–2 inhibition and selectivity. 

3.1 COX–2 Inhibition
Regression analysis of training set generated model 1 that contain NCONR2, BEHM2, MLOGP, 

T(Cl..Cl) and GATS7v descriptors, which is able to explain 69.2% of variance of COX2 inhibition. 

pC2 = [78.724 (±22.993)] + NCONR2 [–1.695 (±0.727)] + BEHM2 [–17.746 (±5.577)] + 
MLOGP [0.216 (±0.169)] + T(Cl..Cl) [0.039 (±0.030)] + GATS7v [–2.984 ( ± 2.502)] 

n = 49 R = 0.832 %EV = 69.2 p<0.001 F = 19.370 SEE = 0.432 
R2

CV = 0.625 SPRESS = 0.477 SDEP =0.447 

(1)

This model has three outliers (compounds 36, 51 and 65) because their residual values exceeded 
twice the standard error of estimate. When these outliers have been removed from the dataset, a 
highly significant Eq. (2) has been found which is able to explain 82.4% of variance of COX2 
inhibition. This equation has a high internal predictivity as shown by the good Q2 value of 0.765. 

pC2 = [84.506 (±17.254)] + NCONR2 [–1.748 (±0.542)] + BEHM2 [–19.065 (±4.169)] + 
MLOGP [0.175 (± 0.127)] + T(Cl..Cl) [0.033 (±0.023)] + GATS7v [–3.339 (±1.918)] 

n = 46 R = 0.908 %EV = 82.4 p<0.001 F = 37.450 SEE = 0.317 
R2

CV = 0.765 SPRESS = 0.367 SDEP = 0.342 

(2)

The parameters used in the equation are almost independent, which can be seen from the Pearson 
correlation matrix (Table 6). 

Table 6. Pearson correlation matrix for descriptors influencing COX–2 inhibition 
 NCONR2 BEHM2 MLOGP T(Cl..Cl) GATS7v 
NCONR2 1.00     
BEHM2 0.09 1.00    
MLOGP 0.07 0.19 1.00   
T(Cl..Cl) 0.07 0.01 0.09 1.00  
GATS7v 0.49 0.41 0.23 0.09 1.00 

The coefficient corresponding to the number of tertiary amide bears a negative sign in model 2 
which indicates that absence of it (tertiary amide) or that the presence of primary or secondary 
amide is favorable for COX–2 inhibition. This suggests that hydrogen bonding from amide nitrogen 
to a protein acceptor is an important determinant of receptor binding. This study supports and 
reconfirms previous SAR work reported by Kalgutkar et al. [20]. When atomic properties combine 
with the Burden matrix, the resultant eigenvalues encode global structure–property characteristics 
of a molecule. The coefficient the descriptor BEHM2 has a negative sign in model 2 which 
indicates that the lower is the highest eigenvalues the higher is the COX–2 inhibition. 

COX–2 enzyme is a membrane–based enzyme and entry of the inhibitor in the enzyme requires 
that molecule should be lipophilic in nature. Thus an increase in lipophilicity increases COX–2 
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inhibition as suggested by positive sign of MLOGP. The sum of topological distances between 
Cl..Cl measures the position of chlorine atoms with respect to each other. The coefficient the 
descriptor T(Cl..Cl) has a positive sign in model 2 which indicates that an increase in distance is 
favorable to COX–2 inhibition. GATS7v is the volume–weighted Geary graph spatial 
autocorrelation coefficient of the seventh lag. Strong autocorrelation produces low values of this 
index; moreover, positive autocorrelation translates into values between 0 and 1 whereas negative 
autocorrelation produces values larger than 1. The coefficient corresponding to the descriptor 
GATS7v has a negative sign in model 2 which indicates that low values for this descriptor are 
favorable for COX–2 inhibition. The model 2 was tested for 17 compounds as a test set (Table 4) 
and the predicted activity shows linear relationship (Figure 1) with observed activity in the test set 
(R = 0.88) showing the robustness of the model. 
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Figure 1. Observed versus Calculated pC2 from Eq (2) for COX–2 inhibition. 
Predicted pC2 = 0.297 (Observed pC2) + 4.909, R2 = 0.7714, R = 0.88. 

3.2 COX–1 Inhibition
Data set of all compounds having COX–1 inhibitory activity was chosen for regression analysis 

and model 1 has been obtained that contain BELm6, GATS7e and GATS8e descriptors, which is 
able to explain 84.7% of variance of COX–1 inhibition. 

pC1 = [13.126 (±3.948)] + BELm6 [–11.152 (±3.190)] + GATS7e [6.545 (±2.181)] + GATS8e 
[3.743 (±3.241)] 

n = 17 R = 0.920 %EV = 84.7 p<0.001 F = 24 SEE = 0.414 
R2

CV = 0.740 SPRESS = 0.540 SDEP = 0.473 

(3)

This equation has one outlier (compound 27) as its residual value exceeded twice the standard 
error of estimate. When this outlier has been removed from the dataset, a highly significant Eq. (4) 
has been found which is able to explain 91.8% of variance of COX–2 inhibition. This equation has 
high internal predictivity as shown by good Q2 value of 0.836, and the predicted activity showed 
linear relationship with the observed activity (Figure 2, R = 0.92). 

pC1 = [12.442 (±3.039)] + BELm6 [–11.416 (±2.434)] + GATS7e [6.946 (±1.681)] + GATS8e 
[4.622 (±2.535)] 

n = 16 R = 0.958 %EV = 91.8 p<0.001 F = 45.000 SEE = 0.312 
R2

CV = 0.836 SPRESS = 0.443 SDEP = 0.383 

(4)
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The parameters used in the equation are almost independent, as can be seen from the Pearson 
correlation matrix (Table 7). 
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Figure 2. Observed versus predicted (LOO) pC1 for COX–2 inhibition. 

Table 7. Pearson correlation matrix for descriptors influencing COX–1 inhibition 
BELm6 GATS7e GATS8e 

BELm6 1.00 
GATS7e 0.44 1.00 
GATS8e 0.39 0.16 1.00 

The lowest eigenvalue no. 6 of the Burden matrix is negatively correlated and the Geary 
autocorrelation lag 7 and lag 1 indices are positively correlated with the COX–1 inhibition. 

3.3 Selectivity 
Selectivity is important to increase the therapeutic effect and to decrease the side effects. In this 

context Eq (5) was developed. 

Selectivity = [–3.666 (±5.640)] + BELm6 [12.814 (±2.821)] + GATS7e [–8.542(±2.306)] + 
GATS1e [–9.340 (±5.476)] 

n = 17 R = 0.949 %EV = 90.1 p<0.001 F = 39.7 SEE = 0.392 
R2

CV = 0.711 SPRESS = 0.671 SDEP = 0.587 

(5)
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Figure 3. Observed versus predicted (LOO) selectivity for COX–2 inhibition. 
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Eq (5) is able to explain 90.1% of variance of COX2 inhibition. This equation has a high internal 
predictivity as shown by a good Q2 value of 0.711, and the predicted activity has a good linear 
relationship with the observed activity (Figure 3). The parameters used in the equation are almost 
independent, as can be seen from the Pearson correlation matrix (Table 8). 

Table 8. Pearson correlation matrix for descriptors influencing selectivity 
BELm6 GATS7e GATS1e 

BELm6 1.00 
GATS7e 0.44 1.00 
GATS1e 0.17 0.47 1.00 

The lowest eigenvalue no. 6 of the Burden matrix is positively correlated and the Geary 
autocorrelation lag 7 and lag 1 indices are negatively correlated with the selectivity. 

4 CONCLUSIONS 

Selective inhibition of cyclooxygenase–2 (COX–2) is an important strategy in the design of 

potent anti–inflammatory compounds with significantly reduced side effects. In view of this, ester 

and amide derivatives of indomethacin were selected to explore the necessary structural 

requirement of these analogues for selective COX–2 inhibition. 

In the present investigation, a QSAR study was performed using 66 ester and amide derivatives 

using Dragon 3.0. The cluster analysis technique was applied for the generation of training set and 

test set. The relationship between the inhibitory activity and various descriptors is established by 

step–wise multiple regression analysis using SYSTAT 10.2 and VALSTAT. The analyses have 

produced good predictive and statistically significant QSAR models. These models were cross–

validated with the leave–one–out (LOO) method. 

The values of statistical data are: R = 0.908, F = 37.45, SEE = 0.317 and R2
CV = 0.765 for COX–

2 inhibition; R = 0.958, F = 45.00, SEE = 0.312 and R2
CV = 0.836 for COX–1 inhibition; and R = 

0.949, F = 39.7, SEE = 0.392 and R2
CV = 0.711 for selectivity. The predicted activity shows linear 

relationship with observed activity. 

The present studies suggest that hydrogen bonding from amide nitrogen to a protein acceptor is 

an important determinant for receptor binding. Lipophilicity and topological distance indices are 

correlated to COX–2 inhibition. Also, Geary autocorrelation and eigenvalues indices modulate 

COX–1 and COX–2 inhibition and selectivity. These studies are promising for the development of 

novel compounds, which may have potent anti–inflammatory activity devoid of side effects like 

gastric ulcer and renal failures. 
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