
Internet Electronic Journal of Molecular Design 2002, 1, 80–93 ISSN 1538–6414 
BioChem Press http://www.biochempress.com

Copyright  ©  2002 BioChem Press

Internet Electronic  Journal  of 
Molecular Design

February 2002, Volume 1, Number 2, Pages 80–93 

Editor: Ovidiu Ivanciuc 

Special issue dedicated to Professor Alexandru T. Balaban on the occasion of the 70th birthday 
Part 2 

Guest Editor: Mircea V. Diudea 

Neural Network Modeling of Melting Temperatures for 
Sulfur–Containing Organic Compounds 

Julian Kozio
Department of Physical Chemistry, Rzeszów University of Technology, Powsta ców Warszawy 

Ave. 6, P.O. Box 85, 35–041 Rzeszow, Poland 

Received: December 5, 2001; Revised: January 31, 2002; Accepted: February 15, 2002; Published: February 28, 2002 

Citation of the article: 
J. Kozio , Neural Network Modeling of Melting Temperatures for Sulfur–Containing Organic 
Compounds, Internet Electron. J. Mol. Des. 2002, 1, 80–93, http://www.biochempress.com. 



J. Kozio
Internet Electronic Journal of Molecular Design 2002, 1, 80–93 

80
BioChem Press http://www.biochempress.com

Internet Electronic Journal
of Molecular Design

BioChem Press
http://www.biochempress.com

Neural Network Modeling of Melting Temperatures for 
Sulfur–Containing Organic Compounds#

Julian Kozio *
Department of Physical Chemistry, Rzeszów University of Technology, Powsta ców Warszawy 

Ave. 6, P.O. Box 85, 35–041 Rzeszow, Poland 

Received: December 5, 2001; Revised: January 31, 2002; Accepted: February 15, 2002; Published: February 28, 2002 

Internet Electron. J. Mol. Des. 2002, 1 (2), 80–93 
Abstract 

Motivation. Searching for a comprehensive numerical description of the chemical structure and for methods that 
enable to develop effective and credible QSPR (quantitative structure–property relationships) models represent 
significant challenges for the contemporary theoretical chemistry. Among these methods artificial neural 
networks (ANN) appears to be very promising in obtaining models that convert structural features into different 
properties of chemical compounds. 
Method. Two different models relating structural descriptors to melting temperatures of sulfur containing 
organic compounds are developed using ANN. A new set of molecular descriptors is evaluated to determine their 
suitability for QSPR studies. Using two data sets containing 150 sulfides and 226 sulfones, ANN trained with the 
back propagation and conjugated gradient algorithms are able to predict the melting temperatures with good 
accuracy.
Results. The results obtained show a good predictive ability for the ANN models, giving R2

cv equal to 0.880 and 
0.794 for the sulfides and sulfones, respectively. 
Conclusions. The QSPR studies described in this paper provide strong evidence that the tested structural 
descriptors are useful and effective for the ANN modeling of the melting temperatures of sulfides and sulfones. 
Keywords. QSPR; molecular descriptors; artificial neural networks; melting temperature; sulfide; sulfone. 

Abbreviations and notations 
ANN, artificial neural network QSPR, quantitative structure–property relationships 
IPS, intelligent problem solver SA, sensitivity analysis 
tm, melting temperature SNN, Statistica Neural Networks 
PER, prediction error  

1 INTRODUCTION 

The numerical description of the molecular structure using structural invariants with the aim of 
modeling the physicochemical properties of chemical compounds has gained increased importance 
over last decade, became one of most explored areas of research in computational chemistry [1]. 

                                                          
# Dedicated on the occasion of the 70th birthday to Professor Alexandru T. Balaban. 
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Special interest in obtaining reliable models able to estimate different properties of known 
structures of not yet synthesized chemical molecules is connected with wide application of 
combinatorial chemistry tools. Also experimental determination of properties of newly synthesized 
chemical compounds may be sometimes not cost effective or even impossible due to a lack or 
instability of available material. 

Recently, besides traditional methods of computing the properties of chemical compounds, 
various statistical methods such as multiply linear regression, cluster analysis, principal component 
analysis and partial least–squares regression have been applied to the QSPR studies [2–4]. For the 
prediction of physical properties, high–quality models, usually based on predictive equations 
obtained using linear regression techniques, were used to correlate structural parameters with 
observed properties [5–7]. Currently, neural networks, representing general nonlinear methods, 
were used with encouraging success in development of various QSPR models [8–25]. Artificial 
neural networks (ANN) are well–suited to describe structure–property models. Moreover, ANN is 
able to consider not only particular structure characteristics, but also interrelations and 
interdependences between mutually influencing structural features. Therefore, they can be easily 
adapted for processing larger vectors of structural data formed by a set of descriptors. 

A set of indices converting structural features into a multicomponent vector of numerical values, 
scaled in the range of 0.1 to 0.9, was proposed recently [25]. The basic assumption of this coding 
scheme is the treatment of each molecule as a linear structure with linear, branched, or cyclic 
substituents. The described method is useful for estimating the boiling temperatures of 
hydrocarbons, nitrogen and oxygen containing compounds [22,25] and melting temperatures of 
amides [25]. However, it was not applied to compounds with other types of heteroatoms. The work 
presented here extends this model for sulfur containing compounds. In this study two sets of 
sulfides and sulfones have been investigated, obtaining ANN models with good predictive 
performance in modeling their melting temperatures. 

2 MATERIALS AND METHODS 

2.1 Chemical Data 
Chemical structures and melting temperatures of 150 sulfides and 226 sulfones were selected 

from [26]. The data sets contain different types of structures: aliphatic (linear and branched), cyclic 
and/or aromatic. The melting temperatures used in this study were expressed in units of °C. Some 
of the selected compounds had only a single reported value, while others had melting temperature 
ranges. For the purposes of this work, it was necessary to obtain a single value for each compound. 
In such cases, only compounds with temperature range limited to 3 °C were selected and the mean 
of the melting range was then used as the melting temperature. 
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2.2 Generation of Structural Descriptors 
Structural descriptors encode the constitutional, topological and geometrical characteristics of 

the molecular structure of investigated compounds. For the present study it has been decided to 
complete the existing set of descriptors with equation transforming polycyclic substructures into 
numerical values. At the beginning it was assumed that newly introduced descriptor should 
characterize the size of the rings forming the polycyclic fragments in a molecule, mutual 
dislocation, number of bonds between carbon–carbon atoms and carbon–heteroatoms, unsaturation 
degree and aromaticity. The basic concept applied in the formulation of the new descriptor comes 
from the idea of distance–based topological indices introduced by Wiener [27], Hosoya [28] 
Trinajsti  [29] and Balaban [30–34]. 

The starting point in calculating the polycyclic substructure index is summation of neighborhood 
matrix elements. This matrix is formed on the base of a polycyclic graph. The polycyclic graphs are 
the graph representations of linear, branched or cyclic chains of rings, including poliphenylenes, 
spiranes, bridged ring systems and condensed polycyclic fragments of the molecule. The polycyclic 
index is defined as the sum of distances (neighborhoods) between all pairs of vertices of the 
respective polycyclic graph G modified in the following manner. Let G be the polycyclic graph 
representation of the ring skeleton of the substructure of an organic molecule. Let G possess k
vertices (rings) labeled by v1, v2, ..., vk and l edges labeled by e1, e2, ... , el. The distance between 
vertices vi and vj, called neighborhood Nij, is: 

i

ij

ij

ij
ijij nar

nca
nb

nb
nrN (1)

where nrij is the neighborhood range between the considered rings i and j, nbij is the difference 
between numbers of bonds connecting via two different and shortest paths the pair of considered 
rings (i,j), nbij is the sum of bonds connecting the pair of rings (i,j), ncaij is the number of atoms 
common for rings (i,j), and nari is the total number of atoms in i–th ring. In Figure 1, the calculation 
of Nij is demonstrated for the hydrogen–depleted graphs of anthracyl and fenanthryl substituents. 
Diagonal elements of the created matrices show the number of atoms NA forming consecutive rings 
in the polycyclic system. 

The special treatment was applied according to biphenyl fragment where bond connecting 
phenylene rings is formally attributed as two–membered ring. Other examples of polycyclic 
fragments have been passed over because they do not appear in the collected sets of chemicals. The 
main component of the proposed index is the sum S of matrix elements: neighborhoods Nij between 
all pairs of vertices of the underlying polycyclic substructure graph and membership NA of all 
cycles forming this molecular fragment: 
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The following element of the elaborated index is the unsaturation degree UI of the multi–ring 
substituent:

IIIIIV nnnUI 12
2
1

(3)

where nI, nIII, nIV represent the number of mono–, three–, and four–valent atoms forming the 
polycyclic fragment of the molecule. The comparative analysis of bonds longitude (singular, 
aromatic, double and triple) in different types of polycyclic compounds shows that the mean 
relative bonds shrinkage from single into double bond is –0.122. For this reason the sum of matrix 
graph elements is diminished according to this coefficient: 

UISSU 122.0 (4)
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Figure 1. The calculation of Nij for different types of polycyclic substituents. 

In order to identify the aromatic rings system, the algorithm described in [35] has been applied. 
The set of rings fulfilling the preliminary aromaticity condition are preprocessed with the aim of 
revealing the combination(s) of aromatic rings possessing a maximal number of common atoms. If 
the obtained combination is a singular ring or a condensed system and the total number of 
delocalized electrons attributed to all atoms forming such combination fulfils the Hückel’s rule (is 
4n+2, where n = 0, 1, 2, ...) then this combination of rings is aromatic. The aromaticity degree AD
is:

nb
nabeanAD (5)

where n ea is the number of  electrons in aromatic part of the polycyclic substituent, nab is the 
number of aromatic bonds, and nb is the total number of bonds in the polycyclic fragment. 
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The aromatic character of a chemical compound reduces the molecular volume. A comparison of 
the calculated molar volume for different types of aromatic and non–aromatic polycyclic 
compounds shows a relative decreasing of this property with a coefficient of –0.18. The aromaticity 
degree was used as a third component of the polycyclic index reducing the sum of matrix graph 
elements S:

ADSS AD 18.0 (6)

Finally, the elaborated components of the polycyclic index PI converts the considered structural 
features into numerical values scaled in the range 0.1 to 0.9, with S scaled down with the coefficient 
0.01. Additionally, in order to differentiate the values obtained with the novel descriptor in relation 
to previously introduced indices describing monocyclic fragments, the shifted value of 0.3 was 
added:

k

i

l

jiij
ij ADUINNAPI

,
18.0122.001.03.0 (7)

Table 1. Structural Features (Descriptors) Set 
No. Descriptor No. Descriptor 
1
2
3–8 
9
10
11
12
13
14–19 
20

21–24 

25–28 

29

30

31

Number of C atoms in a molecule 
Number of C atoms in the main chain 
Number of heteroatoms: N, O, S, P, F, Cl 
Polycyclic index 
Total number of atoms in the molecule (without H) 
Geometric isomerism (E/Z) in the main chain 
Number of cyclic fragments 
Number of substitutents connected to main chain 
Type of substituents composed by C and H atoms 
Average distance between tertiary and quaternary C 
atoms in aliphatic part of compounds (measured in 
number of bonds) 
Number and location of tertiary and quaternary C 
atoms in the main chain 
Number and location of double and triple bonds in the 
molecule structure 
Location of cyclic substituents connected to the main 
chain
Number and location of double bonds in cyclic 
substituent 
Location of substituents connected to cyclic 
fragments of molecule (cyclic substituents) 

32

33

34

35

36
37
38
39–40

41–42

43

44–46

47–56

Type, number and location of saturated side 
substituents connected to the ring 
Type, number and location of unsaturated side 
substituents connected to the ring 
Type, number and location of side substituents 
with heteroatoms connected to the ring 
Indicators of cumulated, coupled or aromatic 
unsaturated bonds systems 
Unsaturation index of cyclic fragments 
Number and location of S atoms in the main chain,
Location of heteroatoms in the main chain 
Number and location of S atoms as a branches of 
the main chain (–S–) 
Number and location of S atoms as a branches of 
the main chain connected via carbon atoms  
(–CH2–S–, –CH2–SO2–, etc.) 
Average distance between carbon atoms with 
multiple bonds and S atoms 
Number and location of S atoms in a substituents 
of the cyclic fragments 
Structural descriptors representing molecular 
features analogous to 37–46, describing the 
presence of oxygen atoms 

In Table 1 the whole pool of selected features is presented, grouped under three main headings, 
namely elementary composition (1–8, 10), construction of molecule (9, 11–36) and the way of 
connection of heteroatoms, i.e. sulphur (37–46) and oxygen (47–56). Using the equations described 
in [25] and the newly elaborated polycyclic index, the structures of the investigated compounds 
were coded into a 46–component vector of numerical values for sulfides and a 56–component 
vector for sulfones. The melting temperature tm was scaled with the formula: 
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tm sc = (tm + 200)/1000 (8)

Two examples of numerical representation for heptyl–2–naphtyl sulfide and 2–naphthylvinyl 
sulfone together with scaled value of the melting temperature are presented in Figure 2. 

S CH2 CH36

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17
0.27 0.17 0 0 0.1 0 0 0 0.406 0.28 0 0.1 0.1 0 0 0 0 

x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 x30 x31 x32 x33 x34
0 0 0 0 0 0 0 0 0 0 0 0.225 0.1584 0 0 0 0 

x35 x36 x37 x38 x39 x40 x41 x42 x43 x44 x45 x46 y 
0.3 0.5 0.1 0.2125 0 0 0 0 0.16 0 0 0 0.234 

S

O

CH CH2

O

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19
0.22 0.12 0 0.2 0.1 0 0 0 0.406 0.25 0.5 0.1 0.1 0 0 0 0 0 0 

x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 x30 x31 x32 x33 x34 x35 x36 x37 x38
0 0 0 0 0 0 0 0.1 0.102 0.433 0.1564 0 0 0 0 0.3 0.5 0.1 0.3 

x39 x40 x41 x42 x43 x44 x45 x46 x47 x48 x49 x50 x51 x52 x53 x54 x55 x56 y 
0 0 0 0 0.136 0 0 0 0 0 0.2 0.1389 0 0 0.1962 0 0 0 0.294 

Figure 2. Numerical representation of heptyl-2-naphtyl sulfide and 2-naphthylvinyl sulfone. 

Other vectors of descriptors representing the structures of all investigated compounds together 
with the scaled values of melting temperatures are placed in the file Sulfid_D.txt for sulfides and 
file Sulfon_D.txt for sulfones (see the supplementary material). 

2.3 Computer Software 
All computations were performed on an IBM PC–type microcomputer, running under the 

Windows 98 operating system. The artificial neural networks computations were carried out with 
the network simulation program Statistica Neural Network [36]. Data manipulation and 
interpretation of the obtained results was carried out by means of Microsoft Excel v. 97. 

2.4 Neural Networks 
In this study multilayer feedforward networks were used. The architecture of multilayer 

networks consists of an input layer, one hidden layer and an output layer. The input layer contains 
one node for each structural index. The output layer has one node generating the scaled estimated 
value of the melting temperature. It is known that in the hidden layer learning and approximation 
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occurs. The number of hidden neurons needs to be sufficient to ensure that the information 
contained in the data utilized for training the network is adequately represented. On the other hand 
the small number of collected examples (possible to select from available data sources) limited the 
complexity of the networks. For this reason only networks with two processing layers and two 
nodes in hidden layer were considered. The starting networks architectures were determined 
applying the automatic optimization procedure available in Statistica Neural Network v 4.0 package 
programs, named Intelligent Problem Solver (IPS) [36]. The IPS program was forced to search 
optimal networks according to the above limits. The candidate networks architectures (with best 
performance characteristics) generated by IPS were retained for further learning and testing of their 
predictive ability: 40:2:1 for sulfides, and 44:2:1 for sulfones. In both networks, the dimensionality 
of the input layer corresponds to the number of descriptors having non–zero values for all 
compounds. These descriptors were chosen as valid input variables. The sigmoid function was used 
for the processing neurons in the hidden layer and the linear one in output neuron. The networks 
were preliminary trained for a period of 50 epochs by the standard back propagation procedure and 
then the learning process was continued over a dozen cycles with a conjugated gradient algorithm. 

2.5 Reduction of Structural Descriptors 
The next experiment on the sulfides and sulfones compounds was to determine whether a 

reduced set of descriptors could provide similarly effective or better models. The selection of the 
optimal set of input variables for both types of investigated compounds has been carried out on the 
base of sensitivity analysis SA available in Statistica Neural Network. 

To perform the selection of variables new sets of networks (five 40:2:1 for sulfides and five 
44:2:1 for sulfones) were trained using the IPS procedure and applying random subdivision of the 
entire sets of examples (in proportion 4:1) into training and verification set. All the multilayer 
neural networks (with linear output neuron) were examined separately. Comparing the sets of 
unimportant variables proposed by the SA procedure twenty input variables common for all five 
sets generated for sulfides were removed. The second half of input variables (considered as 
important for melting temperature prediction) was retained for further processing. These highly 
important variables for sulfides are: 2, 5, 9, 10, 12, 13, 14, 16, 17, 21, 25, 26, 30, 31, 32, 35, 38, 39, 
and 43 (see Table 1). In the same way twenty–two descriptors were selected from the pool of 
indices applied for the sulfones processing: 1, 2, 4, 5, 9, 11, 12, 13, 15, 21, 27, 28, 30, 35, 36, 37, 
38, 39, 40, 49, 50, and 53 (see Table 1). 

The reduced data sets, containing a 20 components vector of numerical values for sulfides and 
22 components for sulfones, were used for the final selection of the optimal network, which was 
performed applying the IPS procedure once again. Because of the collected sets of examples are 
relatively small according to the size of input vectors the cases were reassigned randomly to only 
training and cross–validation sets in the proportion of 4:1. The best networks from the preliminary 
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test optimized by the IPS automatic procedure (with the lower training and verification mean square 
errors figures) were retained for further optimization: 20:2:1 for sulfides and 22:2:1 for sulfones, 
respectively. 

For the final optimization the conjugated gradient algorithm was used applying the leave–20%–
out procedure. In this procedure 20% of the objects were selected out one after another, whereas for 
every selection the model was build up with remaining 80% examples. Next, this model was used to 
predict the melting temperature for selected molecules. Joined results of the melting temperature 
estimation gave information on the prediction ability and on model quality for the selected training 
and prediction sets. Each time the training was stopped when the root mean square error averaged 
over the training set had reached minimum value. Depending on particular network structure and 
training set, this occurred after about 380 epochs for sulfides and 400 epochs for sulfones. To avoid 
over–training of the neural network, the output error between the seen and those expected values 
has been calculated as well as for training and cross–validation set examples. Training was stopped 
(before the training error has reached mentioned above value) when the RMS error obtained for the 
control data was lowest. According to earlier experience [22,25], where the best ANN models were 
developed applying sigmoid function in all processing neurons, the final attempts of improvement 
was carried out replacing the linear activation function with sigmoid in the output neuron. The 
weights optimization of the modified ANN was performed using previous assignment of 
investigated cases into training and cross–validation sets and applying conjugate gradients learning 
algorithm. The learning process was continued over period of about 200 epochs for sulfides and 220 
for sulfones. The linear networks generated by IPS, as a least squares linear model [36], have been 
retained for comparison purposes, with the structure 40:1 for sulfides and 44:1 for sulfones. These 
and the multilayer final network structures are presented in Tables 2 and 3. 

2.6 Statistical Parameters 
When the optimization process of all investigated models was completed, the output data 

obtained for both sets of examples has been decoded to their normal values expressed in °C: 

tm = tm sc×1000–200 (9)

In the next step we have evaluated the ANN models generated with the pool of elaborated 
structure descriptors. The statistical quality of the ANN results for both training and cross–
validation sets was evaluated using the following parameters: squared correlation coefficient R2:

n
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average recognition and prediction errors AER:
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average absolute error AAE:

i
c
i yy

n
AAE 1

(12)

and standard deviation SD:
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In these equations yi represents the experimental target value (tm) for the i-th compound, y0

denotes the associated mean and yi
c represents the calculated melting temperature using the ANN 

model, and n indicates number of examples in training and cross–validation sets. 

3 RESULTS AND DISCUSSION 

The goal of this paper was to investigate whether previously elaborated structural parameters, 
completed with newly proposed polycyclic index would be useful to predict the melting 
temperature of sulfur containing organic compounds. The structures of investigated sulfides and 
sulfones are stored as ISIS Draw files deposited in the supplementary material, in the archive files 
Sulfide.zip and Sulfone.zip, respectively. Numerical representations (vectors of structural indices) 
obtained in the coding phase are collected in the files Sulfid_D.txt and Sulfon_D.txt also deposited 
in the supplement to this article. The cross–validation set examples labeled by the numbers 
identifying each compound together with experimental and predicted melting temperatures are 
placed in the files SulfidPR.txt and SulfonPR.txt. The statistical results of the ANN modeling of 
sulfides and sulfones melting temperatures are presented in Tables 2 and 3. 

Table 2. Statistics of ANN for Sulfides: Linear and Two-Layers for Calculating Melting Temperatures of 
Sulfides, with Linear Output Neuron (lon) and Sigmoid Activation Function for the Output Neuron (sfon) 

40:1 20:2:1 (lon) 20:2:1 (sfon) 
Statistics training cross-valid. training cross-valid. training cross-valid. 

AER
AAE
SD
R2

0
17.84 
26.41 
0.843 

2.36 
24.90 
40.11 
0.589 

-0.14 
16.22 
24.32 
0.852 

-5.87 
21.69 
28.11 
0.807 

0.21 
14.80 
21.57 
0.883 

0.072 
15.20 
21.93 
0.880 

Linear regression of the melting temperature against 40 structural features describing sulfides 
molecules, using linear network, is summarized by the respective statistics in the first pair of 
columns in Table 2. The acceptable performance of the linear model obtained for training set 
examples is opposed to a poor prediction results which is seen by lower R2 (0.589 vs. 0.843) as well 
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as greater AAE (24.9 vs. 17.84 °C), and the standard deviation 40.11 vs. 26.41 °C. This result 
reveals that coded structural functionalities of the sulfides correlate with their melting temperatures 
in a nonlinear way. 

y = 0.892x + 5.661
R2 = 0.880
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Figure 3. Predicted melting temperatures of sulfides versus experimental data. 

The comparison of the statistical parameters obtained for melting temperature calibration and 
prediction, using the linear regression model developed for sulfones, is presented in Table 3. The 
calibration melting temperature for sulfones gave far worse statistical parameters then those 
obtained for sulfides. First of all, the higher AAE value (20.36 °C) has shown the worse adaptability 
of linear regression model for sulfones structure–property relationship modeling task. The 
predictions for the sulfones melting temperatures for cross–validation set examples gave the 
following statistics: AER –1.72 °C, AAE 30.27 °C, SD 39.47 °C and R2 0.469, demonstrating the 
overall inaccuracy of the liner model. 
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Figure 4. Distribution of the prediction error (PER) versus experimental melting temperatures for sulfides. 
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The statistical results of the multilayer ANN listed in Tables 2 and 3 show that significant 
improvement is obtained by using nonlinear models in comparison with the linear network. The 
final network architectures with best performance used for estimation of the melting temperatures 
for sulfides have 20 inputs and 2 neurons in the hidden layer. Therefore, the nonlinear models have 
a comparable number of adjustable parameters (connections between neurons) with the linear one. 
The statistics presented in the Table 2 for the network with sigmoid activation function in the output 
neuron indicate noticeable better predictive ability than for the network with linear output neuron. 

The predicted versus observed melting temperatures for the sulfides cross–validation examples 
are displayed in Figure 3. The distribution of points along the regression line is quite good and no 
extreme outliers are seen. Obtained predictions for investigated groups of compound fit well to 
experimental data with the high correlation coefficient of R = 0.938. The calculated parameters of 
the regression equation in Figure 3 has a slope equal to 0.892 and an intersect of 5.66. 

Table 3. Statistics of ANN for Sulfones: Linear and Two-Layers for Calculating Melting Temperatures of 
Sulfides, with Linear Output Neuron (lon) and Sigmoid Activation Function for the Output Neuron (sfon) 

44:1 22:2:1(lon) 22:2:1(sfon) 
Statistics training cross-valid. training cross-valid. training cross-valid. 

AER
AAE
SD
R2

-1.71 
20.36 
25.39 
0.763 

-1.72 
30.27 
39.47 
0.469 

-7.74 
22.03 
25.98 
0.752 

-0.65 
21.63 
26.80 
0.735 

-0.25 
18.63 
23.26 
0.800 

-1.43 
18.93 
23.66 
0.794 

The distribution of prediction errors PER for sulfides, over the experimental value range, is 
shown in Figure 4. The error for each tested compound was calculated as PER = tm pr – tm exp where 
tm pr is the estimated melting temperature and tm exp the experimental value. The greatest 
overestimation of melting point is observed for the tested compounds (see the file SulfidPR.txt): 96
tetrakis(methylthio) methane, 203 2,2–bis(tolyl–4–thio)–1,1–di–4–tolyl ethene, 219 3–methylbut–
2–enylphenyl sulfide, and greatest underestimation for the 230 tetrakis(tolyl–4–thio) ethene, 139
tetrakis(phenylthio) methane, and 120 methylphenyl sulfide. All enumerated compounds (except the 
last one) were predicted with considerable errors by the remaining ANN models. Most of them 
contain two or four sulfur atoms placed symmetrically in the structure. This list of outliers suggests 
that compounds with symmetrically located substituents connected with sulfur atoms to the central 
part of a molecule need more elaborated structural descriptors. 

As can be seen from the Table 3, the main statistics characterizing modeling results for sulfones 
are slightly inferior to those obtained for sulfides. The statistical indices show that the networks 
with sigmoid activation function in the output neuron (last column of Table 3) behave better then 
the networks with a linear output neuron. 

The correlation of the experimental and estimated melting temperatures using this network 
model is presented in Figure 5. Compared to the results obtained for sulfides, we have obtained a 
poorer fit for predictions to experimental data, as can be seen from smaller correlation factor R = 
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0.891 as well as greater SD equal to 23.66 °C. 

y = 0.809x + 18.452
R2 = 0.794
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Figure 5. Predicted melting temperatures of sulfones versus experimental data. 
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Figure 6. Distribution of the prediction error PER versus experimental melting temperatures for sulfones. 

The calculated prediction error PER against experimental melting temperature of sulfones is 
plotted in Figure 6. The largest error of melting temperature are observed for 176 tris(tolyl–4–
sulfonyl) ethane (60.79 °C), 61 methylsulfonylphenylsulfonyltolyl–4–sulfonyl methane (51.71 °C), 
29 phenyl–1,1–dimethylpropyl sulfone (49.45 °C), 230 divinyl sulfone (47.95 °C), 22 
ethylsulfonylmethyl–sulfonylphenylsulfonyl methane (–52.42 °C), 34 2–methylsulfonylethyl–2–
phenylsulfonylethyl sulfone (–51.08 °C), 220 methyl–2,4,6–trimethylphenyl sulfone (–49.58 °C) 82
1–naphthyl–2–sulfonyl–2–tolyl–4–sulfonyl ethane (–48.96 °C) (see the file SulfonPR.txt). A visual 
inspection revealed no structural explanation for the reason why these compounds were not fit well 
with the rest of the sulfones. Five of them are highly sulfonated compounds containing two and 
three sulfonyl groups in the molecule. 
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4 CONCLUSIONS 

The QSPR studies described in this paper provide strong evidence that the tested structural 
descriptors are useful and effective for this goal. They are representing particular structural features 
that can be related to the melting temperatures of sulfur containing chemicals. The melting 
temperatures of sulfides and sulfones, comprising various types of structures (aliphatic: linear and 
branched, cyclic: alicyclic and aromatic) have been successfully predicted using artificial neural 
networks. The results of this work show that a feed–forward multilayer neural network can be easily 
trained to model the melting temperatures of sulfides and sulfones. The ANN models are highly 
empirical, but well adapted to dealing with complicated relationships which are observed between 
structure and chemicals properties. 
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Supplementary Material 
The molecular files containing the structure for all sulfides and sulfones used in the QSPR models are deposited as 

an archive in the files Sulfide.zip and Sulfone.zip, respectively. The structural descriptors are collected in the files 
Sulfid_D.txt and Sulfon_D.txt. The prediction results obtained for cross–validation using the best neural models are 
placed in the files SulfidPR.txt and SulfonPR.txt. 

5 REFERENCES 

[1] A. R. Katritzky, M. Karelson, and V. S. Lobanov, QSPR as a Means of Predicting and Understanding Chemical 
and Physical Properties in Terms of Structure, Pure Appl. Chem. 1997, 69, 245–249. 

[2] R. E. Aries, D. P. Lidiard, and R. A. Spragg, Principal Component Analysis, Chem. Br. 1991, pp. 821–824. 
[3] S. Wold, PLS for Multivariate Linear Modelling; in: Chemometric Methods in Molecular Design, Ed. H. van de 

Waterbeemd, VCH, Weinheim, Germany, 1995, pp.195–218. 
[4] S. Wold and M. Sjöström, Chemometrics, Present and Future Success, Chemom. Intell. Lab. Syst. 1998, 44, 3–14. 
[5] P. C. Jurs, S. L. Dixon, and L. M. Egolf in: Chemometric Methods in Molecular Design, Ed. H. van de 

Waterbeemd VCH, Weinheim, Germany, 1995, p. 15. 
[6] A. T. Balaban (Ed.), From Chemical Topology to Three-Dimensional Geometry, Plenum, New York, 1997. 
[7] A. R. Katritzky, Understanding How Chemical Structure Determines Physical Properties, http://ark2.chem.ufl. 

edu/research/qspr_2000/QSPR_files. 
[8] L. M. Egolf and P. C. Jurs, Prediction of Boiling Points of Organic Heterocyclic Compounds Using Regression 

and Neural Network Techniques, J. Chem. Inf. Comput. Sci. 1993, 33, 616–625. 
[9] M. E. Sigman and S. S. Rives, Prediction of Atomic Ionization Potentials I–III Using an Artificial Neural 

Network, J. Chem. Inf. Comput. Sci. 1994, 34, 617–620. 
[10] A. A. Gakh, E. G. Gakh, B. G. Sumpter, and D. W. Noid, Neural Network–Graph Theory Approach to the 

Prediction of Physical Properties of Organic Compounds, J. Chem. Inf. Comput. Sci. 1994, 34, 832–839. 
[11] A. T. Balaban, S. C. Basak, T. Colburn, and G. D. Grunwald, Correlation Between Structure and Normal Boiling 

Points of Haloalkanes C1–C4 Using Neural Networks, J. Chem. Inf. Comput. Sci., 34, 1118–1121. 
[12] D. Cherqaoui and D. Villemin, Use of a Neural Networks to Determine the Boiling Points of Alkanes, J. Chem.

Soc., Faraday Trans. 1994, 90, 97–102. 
[13] T. H. Fisher, W. P. Petersen, and H. P. Lüthi, A New Optimisation Technique for Artificial Neural Networks 

Applied to Prediction of Force Constants of Large Molecules, J. Comput. Chem. 1995 16, 923–936. 
[14] L. H. Hall and C. T. Story, Boiling Point and Critical Temperature of a Heterogeneous Data Set: QSAR with 

Atom Type Electrotopological State Indices Using Artificial Neural Networks, J. Chem. Inf. Comput. Sci. 1996;
36, 1004–1014. 

[15] L. Vera, M. E. Guzman, and P. A. Ortega, Redes Neuronales y Semejanza Cuantica: Applicacion a Los Isomeros 



Neural Network Modeling of Melting Temperatures for Sulfur–Containing Organic Compounds 
Internet Electronic Journal of Molecular Design 2002, 1, 80–93 

93
BioChem Press http://www.biochempress.com

de Octano, Bol. Soc. Chil. Quim. 1997, 42, 341–348. 
[16] T. Suzuki, R–U. Ebert, and G. Schüürmann, Development of Both Linear and Nonlinear Method to Predict the 

Liquid Viscosity at 20 °C of Organic Compounds, J. Chem. Inf. Comput. Sci. 1997, 37, 1122–1128. 
[17] O. Ivanciuc, The Neural Network MolNet Prediction of Alkane Enthalpies, Anal. Chim. Acta 1999, 384, 271–284. 
[18] S. Arupjyoti and S. Iragavarapu, New Electrotopological Descriptor for Prediction of Boiling Points of Alkanes 

and Aliphatic Alcohols Through Artificial Neural Network and Multiple Linear Regression Analysis, Comput.
Chem. 1998, 22, 515–522. 

[19] R. C. Schweitzeri and J. B. Morris, The Development of a Quantitative Structure Property Relationship (QSPR) 
for the Prediction of Dielectric Constant Using Neural Networks, Anal. Chim. Acta 1999, 384, 285–303. 

[20] J. Tetteh, T. Suzuki, E. Metcalfe, and S. Howells, Quantitative Structure–Property Relationships for the 
Estimation of Boiling Point and Flash Point Using a Radial Basis Function Neural Network, J. Chem. Inf.
Comput. Sci. 1999, 39, 491–507. 

[21] E. S. Goll and P. C. Jurs, Prediction of the Normal Boiling Points of Organic Compounds from Molecular 
Structures with a Computational Neural Network Model, J. Chem. Inf. Comput. Sci. 1999, 39, 974–983. 

[22] J. Kozio , Application of Artificial Neural Networks for Prediction of Phase Transition Temperature of Organic 
Compounds, Proc. of Int. Conf.: Progress in Computing of Physical Properties, 18–20 Nov. Warsaw, Poland, 
1999. 

[23] G. Espinosa, D. Yaffe, Y. Cohen, A. Arenas, and F. Giralt, Neural Network Based Quantitative Structural 
Property Relations (QSPRs) for Predicting Boiling Points of Aliphatic Hydrocarbons, J. Chem. Inf. Comput. Sci.
2000, 40, 859–879. 

[24] I. V. Tetko, V. Yu. Tanchuk, and A. E. P. Villa, Prediction of n–Octanol/Water Partition Coefficients from 
PHYSPROP Database Using Artificial Neural Networks and E–State Indices, J. Chem. Inf. Comput. Sci. 2001, 41,
1407–1421. 

[25] J. Kozio , Neural Network Modeling of Physical Properties of Chemical Compounds, Int. J. Quantum Chem. 
2001, 84, 117–126. 

[26] Beilstein Handbuch der Organishen Chemie, Vierter Auflange, Springer–Verlag, Berlin, 1958. 
[27] H. Wiener, Structural Determination of Parafin Boiling Points, J. Am. Chem. Soc. 1947, 69, 17–20. 
[28] H. Hosoya, On Some Counting Polynomials in Chemistry, Discr. Appl. Math. 1988, 19, 239–257. 
[29] D. Plavši , S. Nikoli , N. Trinajsti , and Z. Mihali , On the Harary Index for the Characterization of Chemical 

Graphs, J. Match. Chem. 1993, 12, 235–250. 
[30] A. T. Balaban, Highly Discriminating Distance–Based Topological Index, Chem. Phys. Lett. 1982, 89, 399–404. 
[31] A. T. Balaban, Topological Indices Based on Topological Distances in Molecular Graphs, Pure Appl. Chem.

1983, 55, 199–206. 
[32] O. Ivanciuc, T.–S. Balaban, and A. T. Balaban, Design of Topological Indices. Part 4. Reciprocal Distance 

Matrix, Related Local Vertex Invariants and Topological Indices, J. Math. Chem. 1993, 12, 309–318. 
[33] O. Ivanciuc and A. T. Balaban, Design of Topological Indices. Part 8. Path Matrices and Derived Molecular 

Graph Invariants, MATCH (Commun. Math. Chem.) 1994, 30, 141–152. 
[34] O. Ivanciuc, T. Ivanciuc, D. J. Klein, W. A. Seitz, and A. T. Balaban, Wiener Index Extension by Counting 

Even/Odd Graph Distances, J. Chem. Inf. Comput. Sci. 2001, 41, 536–549. 
[35] Z. Hippe, Artificial Intelligence in Chemistry. Structure Elucidation and Simulation of Organic Reactions, 

PWN/Elsevier, Warsaw/Amsterdam, 1991, pp. 215–219. 
[36] Statistica Neural Networks v. 4.0, http://www.statsoft.com/stat_nn.html. 

Biographies
Julian Kozio  is assistant professor of Analytical Chemistry at the Department of Physical Chemistry, Rzeszów 

University of Technology, Poland. 


