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Abstract 

Support vector machines were developed by Vapnik as an effective algorithm for determining an optimal 
hyperplane to separate two classes of patterns. Comparative studies showed that support vector classification 
(SVC) usually gives better predictions than other classification methods. In a short period of time SVC found 
significant applications in bioinformatics and computational biology, such as cancer diagnosis, prediction of 
protein fold, secondary structure, protein–protein interactions, and subcellular localization. Using various loss 
functions, the support vector method was extended for regression (support vector regression, SVR). SVR can 
have significant applications in QSAR (quantitative structure–activity relationships) if it is able to predict better 
than other well–established QSAR models. In this study we compare QSAR models obtained with multiple 
linear regression (MLR) and SVR for the benzodiazepine receptor affinity using a set of 52 pyrazolo[4,3–
c]quinolin–3–ones. Both models were developed with five structural descriptors, namely the Hammett electronic 
parameter R', the molar refractivity MRR8, the Sterimol parameter LR'4', an indicator variable I (1/0) for 7–
substituted compounds, and the Sterimol parameter B5R. Extensive simulations using the dot, polynomial, radial 
basis function, neural, and anova kernels show that the best predictions are obtained with the neural kernel. The 
prediction power of the QSAR models was tested with complete cross–validation: leave–one–out, leave–5%–
out, leave–10%–out, leave–20%–out, and leave–25%–out. While for the leave–one–out test SVR is better than 
MLR (q2

LOO,MLR = 0.481, RMSELOO,MLR = 0.82; q2
LOO,SVR = 0.511, RMSELOO,SVR = 0.80), in the more difficult 

test of leave–25%–out, MLR is better than SVR (q2
L25%O,MLR = 0.470, RMSEL25%O,MLR = 0.83; q2

L25%O,SVR = 
0.432, RMSEL25%O,SVR = 0.86). The results obtained in the present study indicate that SVR applications in QSAR 
must be compared with other models, in order to determine if their use brings any prediction improvement. 
Despite many over–optimistic expectations, support vector regression can overfit the data, and SVR predictions 
may be worse than those obtained with linear models. 
Keywords. Support vector machines; support vector regression; benzodiazepine receptor; quantitative structure–
activity relationships; QSAR. 

1 INTRODUCTION 

Benzodiazepine receptor (BzR) ligands (either benzodiazepines or structurally unrelated 
chemical compounds) act as modulators of the –aminobutyric acid (GABA) binding to its receptor, 
by altering the transmembrane chloride ion conductance [1–4]. The interest for developing new 
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BzR ligands is stimulated by their ability to induce a wide spectrum of central effects, from full 
agonism through antagonism to inverse agonism. Full agonists have anticonvulsant, sedative, 
anxiolytic, amnesic effects. Full inverse agonists have proconvulsant, anxiogenic, cognition 
enhancement, reversal of alcohol effects. Antagonists have a selective blockade of the effects of 
both agonists and inverse agonists. 
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Figure 1. General formula for the pyrazolo[4,3–c]quinolin–3–ones 1–52.

The search for BzR specific ligands resulted in the synthesis of a wide diversity of compounds, 
many of them structurally not related to benzodiazepine. A recent review presents quantitative 
structure–activity relationships (QSAR) derived from 66 sets of non–benzodiazepine BzR ligands 
[1]. From these data sets, we have selected a group of 52 pyrazolo[4,3–c]quinolin–3–ones [2] 
(Figure 1, Table 1) to compare multiple linear regression (MLR) with a new multivariate procedure, 
support vector regression (SVR). 

Support vector machines were introduced by Vapnik [5–7] as a powerful tool for pattern 
classification in two classes by determining an optimal hyperplane that separates the classes [8–15]. 
The SVM algorithm generates a separating hypersurface in the input space that optimally separates 
two classes of patterns. In the first step, using various kernels that perform a nonlinear mapping, the 
input space is transformed into a higher dimensional feature space. Then, a maximal margin 
hyperplane (MMH) is computed in the feature space. MMH maximizes the distance to the 
hyperplane of the closest patterns from the two classes. While initially support vector machines 
were developed for data classification, the algorithm was extended to regression by defining 
alternative loss functions (quadratic, Laplace, Huber, or –insensitive) [16–21]. SVM found 
interesting applications in bioinformatics and computational biology, such as for the classification 
of protein domain–architecture [22], brain tumor [23], cancer [24], protein class [25], cysteines 
[26], viral proteins [27], enzyme class [28], protein–protein interaction [29], subcellular localization 
[30], subcellular localization [31], membrane protein [32], and transmembrane segments [33]. The 
SVM applications is cheminformatics and computational chemistry are also mainly related to 
classification of various chemical species: odor of pyrazines [34], urine samples [35], toxicants 
[36], carcinogenic polycyclic aromatic hydrocarbons [37], cancer biomarkers [38], mutagenic 
compounds [39], drug–like substances [40], tea [41], fragrance [42], organophosphate nerve agents 
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[43], mechanism of toxic action [44–46]. 

The quantitative modeling and prediction of physical, chemical and biological properties of 
chemical compounds is usually made with regression methods, and several support vector 
regression applications in cheminformatics are reported [47–49]. While SVR seems attractive for 
QSAR applications, the method is relatively new and few comparative studies provide support for 
support vector regression, in comparison with other well–established QSAR models. In this study 
we compare QSAR models obtained with MLR and SVR for the benzodiazepine receptor affinity 
using a set of 52 pyrazolo[4,3–c]quinolin–3–ones [1,2]. 

2 MATERIALS AND METHODS 

2.1 Chemical Data 
In a recent study, a series of 2–aryl(heteroaryl)–2,5–dihydropyrazolo[4,3–c]quinolin–3–(3H)–

ones were tested as benzodiazepine receptor ligands [2]. A Hansch–type QSAR was developed for 
52 compounds from this series [1], using as descriptors the following substituent indices: the 
Hammett electronic parameter for the substituent R', R'; the molar refractivity for the R8

substituent, MRR8; the Sterimol parameter L for the R'4' substituent, LR'4'; an indicator variable I
(1/0) for 7–substituted compounds; the Sterimol B5 parameter for the R substituent, B5R. From the 
large number of QSAR models for BzR ligands reported in [1] we selected this data set because it 
has a fairly large number of compounds, and the MLR correlation coefficient (rcal = 0.798) is not 
too high and might be improved by non–linear regressions if the relationship between structural 
descriptors and the biological activity is non–linear. The compounds from Table 1 were tested for 
their ability to displace [3H]–flunitrazepam binding from rate brain membranes. The structure of the 
chemical compounds, values for the five theoretical descriptors, and the biological activity (log 
1/IC50) are presented in Table 1. 

2.2 Support Vector Regression 
All SVR models from the present paper were obtained with mySVM [50], which is freely 

available for download. Before computing the SVM model, the input vectors were scaled to zero 
mean and unit variance. The prediction power of the QSAR models (MLR and SVR) was tested 
with complete cross–validation: leave–one–out (LOO), leave–5%–out (L5%O), leave–10%–out 
(L10%O), leave–20%–out (L20%O), and leave–25%–out (L25%O). The capacity parameter C was 
optimized for each SVM model. The influence of the kernel type on the SVM performances was 
extensively explored using various kernels, namely the dot, polynomial, radial basis function, 
neural, and anova kernels. We present below the kernels and their parameters used in this study. 
The SVR performance is greatly influenced by the kernel type and parameters. 
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Table 1. Structure of the chemical compounds (see Figure 1), theoretical descriptors (the Hammett electronic parameter 
R', the molar refractivity MRR8; the Sterimol parameter LR'4'; an indicator variable I (1/0) for 7–substituted compounds; 

the Sterimol parameter B5R), and binding data for the displacement of [3H]–flunitrazepam, log 1/IC50 [1]. 
No R R' R' MRR8 LR'4' I B5R log 1/IC50

1 H H 0 0.103 2.06 0 1 9.35 
2 H 4–Cl 0.23 0.103 3.52 0 1 9.00 
3 H 4–OCH3 –0.27 0.103 3.98 0 1 9.17 
4 6–F H 0 0.103 2.06 0 1.35 8.16 
5 6–CF3 H 0 0.103 2.06 0 3.07 5.73 
6 6–OCH3 H 0 0.103 2.06 0 1 5.66 
7 8–F H 0 0.092 2.06 0 1 9.54 
8 8–F 3–NH2 –0.16 0.092 2.06 0 1 9.26 
9 8–F 4–OCH3 –0.27 0.092 3.98 0 1 9.48 

10 8–F 4–OH –0.37 0.092 2.74 0 1 9.34 
11 8–Cl H 0 0.600 2.06 0 1 9.37 
12 8–OCH3 H 0 0.787 2.06 0 1 9.17 
13 8–OC2H5 H 0 1.247 2.06 0 1 8.85 
14 8–C4H9 H 0 1.959 2.06 0 1 9.00 
15 8–C4H9 4–COOH 0.45 1.959 3.91 0 1 5.93 
16 8–cyC6H11 H 0 2.669 3.91 0 1 8.35 
17 8–cyC6H11 4–COOH 0.45 2.669 3.91 0 1 5.55 
18 8–OCH2C6H5 H 0 3.219 2.06 0 1 7.75 
19 8–OCF3 H 0 0.786 2.06 0 1 9.15 
20 8–OCF3 2–F 0.06 0.786 2.06 0 1 9.40 
21 8–OCF3 2–Cl 0.23 0.786 2.06 0 1 8.60 
22 8–OCF3 2–CH3 –0.17 0.786 2.06 0 1 8.47 
23 8–OCF3 3–Br 0.39 0.786 3.82 0 1 7.46 
24 8–OCF3 3–CH3 –0.07 0.786 2.87 0 1 8.20 
25 8–OCF3 3–Cl 0.37 0.786 3.52 0 1 7.62 
26 8–OCF3 3–NO2 0.71 0.786 3.44 0 1 7.20 
27 8–OCF3 3–NH2 –0.16 0.786 2.78 0 1 9.62 
28 8–OCF3 4–Br 0.23 0.786 3.82 0 1 7.82 
29 8–OCF3 4–CH3 –0.17 0.786 2.87 0 1 8.79 
30 8–OCF3 4–Cl 0.23 0.786 3.52 0 1 7.90 
31 8–OCF3 4–F 0.06 0.786 2.65 0 1 9.00 
32 8–OCF3 4–NO2 0.78 0.786 3.44 0 1 7.40 
33 8–OCF3 4–OCH3 –0.27 0.786 3.98 0 1 9.22 
34 8–OCF3 4–OH –0.37 0.786 2.74 0 1 9.63 
35 9–OH H 0 0.103 2.06 0 1 9.62 
36 9–OCH3 H 0 0.103 2.06 0 1 8.84 
37 6,8–F H 0 0.092 2.06 0 1.35 7.87 
38 6,8–F 3–F 0.34 0.092 2.06 0 1.35 8.02 
39 6,8–F 4–Br 0.23 0.092 3.82 0 1.35 6.79 
40 6,8–F 4–OCH3 –0.27 0.092 3.98 0 1.35 8.12 
41 6,8–F 2–pyridyl–2 –yl 0.17 0.092 2.06 0 1.35 7.82 
42 6,8–F 2–pyrimidyl–2 –yl 0.53 0.092 2.06 0 1.35 6.47 
43 7,9–Cl H 0 0.103 2.06 1 1 8.43 
44 6,7,8–F H 0 0.092 2.06 1 1.35 7.70 
45 6,7,8–F 4–CH3 –0.17 0.092 2.87 1 1.35 7.15 
46 6,7,8–F 4–Cl 0.23 0.092 3.52 1 1.35 7.13 
47 6,7,8–F 4–F 0.06 0.092 2.65 1 1.35 7.68 
48 6,7,8–F 4–OCH3 –0.27 0.092 3.98 1 1.35 8.14 
49 7,8,9–OCH3 H 0 0.787 2.06 1 1 8.90 
50 7,8,9–OCH3 4–COOH 0.45 0.787 3.91 1 1 5.52 
51 7,8,9–OCH3 2–pyridyl–2 –yl 0.17 0.787 2.06 1 1 8.50 
52 7,8,9–OCH3 2–pyrimidyl–2–yl 0.53 0.787 2.06 1 1 7.24 
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The dot kernel. The inner product of x and y defines the dot kernel: 

yxyxK ),( (1)

The polynomial kernel. The polynomial of degree d (values 2, 3, 4, and 5) in the variables x and 
y defines the polynomial kernel: 

dyxyxK )1(),( (2)

The radial kernel. The following exponential function in the variables x and y defines the radial 
basis function kernel, with the shape controlled by the parameter  (values 0.25, 0.5, 1.0, 1.5, and 
2.0):

)||||exp(),( 2yxyxK (3)

The neural kernel. The hyperbolic tangent function in the variables x and y defines the neural 
kernel, with the shape controlled by the parameters a (values 0.5, 1.0, and 2.0) and b (values 0, 1, 
and 2): 

)tanh(),( byaxyxK (4)

The anova kernel. The sum of exponential functions in x and y defines the anova kernel, with 
the shape controlled by the parameters  (values 0.25, 0.5, 1.0, 1.5, and 2.0) and d (values 1, 2, and 
3):

d

i
ii yxyxK ))(exp(),( (5)

3 RESULTS AND DISCUSSION 
3.1 Multiple Linear Regression QSAR 

The calibration and cross–validation results for the MLR QSAR model are presented in Eq. (6). 
The values in parenthesis represent the confidence interval for the MLR parameters at the 95% 
level. For each cross–validation experiment we present the correlation coefficient r, q2, and root 
mean square error RMSE. 

log 1/IC50 = 11.538(±2.869) –2.320(±0.577) R' –0.294(±0.073) MRR8 –0.326(±0.081) LR'4'
–0.560(±0.139) I –1.795(±0.446) B5R

n = 52 rcal = 0.798    RMSEcal = 0.69 scal = 0.73    Fcal = 16.18 
rLOO = 0.721 q2

LOO = 0.481    RMSELOO = 0.82 
rL5%O = 0.716 q2

L5%O = 0.458    RMSEL5%O = 0.84 
rL10%O = 0.711 q2

L10%O = 0.448    RMSEL10%O = 0.85 
rL20%O = 0.733 q2

L20%O = 0.502    RMSEL20%O = 0.81 
rL25%O = 0.712 q2

L25%O = 0.470    RMSEL25%O = 0.83 

(6)

The partial correlation coefficients are: r( R') = –0.587, r(MRR8) = –0.146, r(LR'4') = –0.262, r(I)
= –0.221, r(B5R) = –0.403. These values show that the Hammett electronic substituent is the most 
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important descriptor, followed by B5 for R. All five descriptors have significant inverse correlation 
with log 1/IC50, and the intercorrellation between descriptors is small, as one can see from the 
following matrix of intercorrellation coefficients: 

R' MRR8 LR'4' I B5R

R' 1 0.20 0.13 0.05 –0.04 
MRR8 0.20 1 0.16 –0.18 –0.30 
LR'4' 0.13 0.16 1 –0.02 –0.11 

I 0.05 –0.18 –0.02 1 0.09 
B5R –0.04 –0.30 –0.11 0.09 1 

The prediction statistics will be compared with those obtained from SVR. RMSE increases from 
0.69 in calibration to 0.82 for LOO, to 0.84 in L5%O, and to 0.85 in L10%O. For L20%O RMSE 
decreases to 0.81 and then increases to 0.83 for L25%O. 

Theoretically, we expect RMSE to increase and q2 to decrease for the sequence of cross–
validation experiments: LOO, L5%O, L10%O, L20%O, and L25%O. The unexpected RMSE 
decrease for the cross–validation experiments that have the largest perturbation of the MLR model 
(L20%O and L25%O) can be a result of a random improvement in the prediction for a particular set 
of calibration data. 

3.2 Support Vector Regression QSAR 
Support vector regression gives calibration results that greatly improve those obtained with MLR 

(Table 2). The highest SVR calibration correlation coefficient (0.896 vs. 0.798 for MLR) is obtained 
with the anova kernel in experiments 29 and 31–34. Overall, high calibration r is obtained with the 
anova, radial basis and polynomial (degrees 4 and 5) kernels. As expected, the dot kernel has 
statistics close to those of the MLR model. The neural kernel has low calibration statistics, with r
between 0.699 and 0.055. 

As Eq. (6) indicates, the MLR model is stable in the LOO cross–validation test (rcal = 0.798 and 
rLOO = 0.721), with a small decrease for r, as expected. The comparison between calibration and 
LOO statistics for SVR shows dramatic changes for the polynomial, radial, and anova kernels 
(Table 2). The LOO statistics for these kernels indicate that the corresponding SVR models are not 
able to make reliable predictions. To have a perception of the inability of these SVR models in 
prediction, we consider, for each of these kernels, the experiment with maximum rcal: polynomial 
kernel, experiment 5, rcal = 0.895 and rLOO = – 0.294; radial kernel, experiment 10, rcal = 0.894 and 
rLOO = 0.452; anova kernel, experiment 31, rcal = 0.896 and rLOO = 0.176. Compared with MLR 
LOO results, all these three kernels have very bad prediction statistics (rLOO, q2

LOO, and RMSELOO).
These results are important, because they indicate that the SVR models can easily overfit the data, 
and a significant effort should be invested in evaluating the prediction ability of different kernels. 
The LOO results for the dot kernel (rLOO = 0.668) are slightly worse than those obtained with MLR, 



O. Ivanciuc 
Internet Electronic Journal of Molecular Design 2005, 4, 181–193 

187 
BioChem Press http://www.biochempress.com

but they significantly outperform the polynomial, radial, and anova kernels. The LOO prediction 
results for the neural kernel are also worse than the MLR predictions, with the exception of those 
obtained in the experiment 11 (rLOO = 0.740, q2

LOO = 0.511, and RMSELOO = 0.80). These results 
are slightly better than those from MLR LOO (rLOO = 0.721, q2

LOO = 0.481, and RMSELOO = 0.82), 
but we have to consider that this SVR model is the only one, from the set of 34 experiments, that 
outperforms the MLR QSAR. 

Table 2. Kernel type and corresponding parameters for each experiment (Exp), calibration statistics (rcal and RMSEcal)
and leave–one–out statistics (rLOO, q2

LOO, and RMSELOO). Five kernels were tested: dot D; polynomial P (parameter: 
degree d); radial basis function R (parameter: ); neural N (parameters: a and b); anova A (parameters:  and d). 

Exp Kernel   rcal RMSEcal rLOO q2
LOO RMSELOO

1 D   0.793 0.72 0.668 0.275 0.97 
2 P 2  0.837 0.64 –0.267 <–100 >10 
3 P 3  0.876 0.58 –0.287 <–100 >10 
4 P 4  0.894 0.52 –0.295 <–100 >10 
5 P 5  0.895 0.52 –0.294 <–100 >10 
6 R 0.25  0.885 0.54 0.651 0.348 0.92 
7 R 0.5  0.889 0.53 0.609 0.302 0.95 
8 R 1.0  0.893 0.52 0.527 0.221 1.01 
9 R 1.5  0.894 0.52 0.497 0.214 1.01 

10 R 2.0  0.894 0.52 0.452 0.174 1.04 
11 N 0.5 0.0 0.690 0.85 0.740 0.511 0.80 
12 N 1.0 0.0 0.596 0.94 0.618 0.355 0.92 
13 N 2.0 0.0 0.654 0.90 0.636 0.379 0.90 
14 N 0.5 1.0 0.612 0.93 0.581 0.333 0.93 
15 N 1.0 1.0 0.676 0.86 0.678 0.413 0.87 
16 N 2.0 1.0 0.684 0.88 0.498 0.197 1.02 
17 N 0.5 2.0 0.236 1.11 0.453 0.197 1.02 
18 N 1.0 2.0 0.055 1.76 0.292 –0.062 1.17 
19 N 2.0 2.0 0.699 0.91 0.645 0.358 0.91 
20 A 0.25 1 0.822 0.66 0.656 0.389 0.89 
21 A 0.5 1 0.841 0.63 0.639 0.332 0.93 
22 A 1.0 1 0.861 0.59 0.699 0.428 0.86 
23 A 1.5 1 0.863 0.59 0.652 0.326 0.94 
24 A 2.0 1 0.868 0.58 0.635 0.286 0.96 
25 A 0.25 2 0.886 0.54 0.258 –2.017 1.98 
26 A 0.5 2 0.894 0.52 0.238 –1.728 1.88 
27 A 1.0 2 0.895 0.52 0.298 –0.672 1.47 
28 A 1.5 2 0.895 0.52 0.385 –0.285 1.29 
29 A 2.0 2 0.896 0.52 0.444 –0.098 1.19 
30 A 0.25 3 0.895 0.52 0.168 –3.567 2.44 
31 A 0.5 3 0.896 0.52 0.176 –1.466 1.79 
32 A 1.0 3 0.896 0.52 0.371 –0.127 1.21 
33 A 1.5 3 0.896 0.52 0.422 –0.010 1.15 
34 A 2.0 3 0.896 0.52 0.449 0.024 1.13 

In Tables 3 and 4 we present the SVR cross–validation results obtained for the L5%O, L10%O, 
L20%O, and L25%O tests. The cross–validation sets of compounds are identical for MLR and 
SVR, which is convenient for the comparison of the statistical indices. For the L5%O test, the 
evaluation is made with the MLR results: rL5%O = 0.716, q2

L5%O = 0.458, and RMSEL5%O = 0.84. 
The results from Table 3 indicate that, by far, the predictions of the polynomial kernel are the worst. 
An uneven performance is identified for the anova kernel, with reasonable predictions for 
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experiments 20–24, and then with large errors for experiments 25–34. The best prediction with an 
anova kernel is obtained in experiment 22, with rL5%O = 0.689, q2

L5%O = 0.398, and RMSEL5%O = 
0.88. The results of the radial kernel show a decrease quality in going from experiment 6 to 
experiment 10, with the best prediction for experiment 6: rL5%O = 0.665, q2

L5%O = 0.368, and 
RMSEL5%O = 0.91. These results are slightly lower than those of the best anova kernel, but also 
slightly better than those of the dot kernel: rL5%O = 0.667, q2

L5%O = 0.261, and RMSEL5%O = 0.98. 
The predictions of the neural kernel span also a large range, with the best results obtained in 
experiment 11: rL5%O = 0.696, q2

L5%O = 0.453, and RMSEL5%O = 0.84. This is the best SVR 
prediction, and it is very close to the MLR results for the L5%O test. Despite the complexity of the 
SVR algorithm, its predictive power in the L5%O test is not even equal to the predictions obtained 
with the classical MLR model. The prediction quality varies widely with the kernel type and 
parameters, which makes very difficult and time consuming the identification of a best SVR model. 

Table 3. Support vector regression statistics for leave–5%–out (rL5%O, q2
L5%O, and RMSEL5%O) and leave–10%–out 

(rL10%O, q2
L10%O, and RMSEL10%O) cross–validation tests 

Exp Kernel rL5%O q2
L5%O RMSEL5%O rL10%O q2

L10%O RMSEL10%O
1 D 0.667 0.261 0.98 0.672 0.273 0.97 
2 P –0.270 <–100 >10 –0.265 <–100 >10 
3 P –0.290 <–100 >10 –0.291 <–100 >10 
4 P –0.297 <–100 >10 –0.300 <–100 >10 
5 P –0.301 <–100 >10 –0.300 <–100 >10 
6 R 0.665 0.368 0.91 0.676 0.370 0.91 
7 R 0.591 0.226 1.00 0.636 0.324 0.94 
8 R 0.538 0.221 1.01 0.590 0.310 0.95 
9 R 0.519 0.236 1.00 0.535 0.258 0.98 

10 R 0.483 0.208 1.01 0.481 0.205 1.02 
11 N 0.696 0.453 0.84 0.729 0.498 0.81 
12 N 0.665 0.416 0.87 0.659 0.411 0.87 
13 N 0.651 0.396 0.89 0.653 0.394 0.89 
14 N 0.391 0.070 1.10 0.446 0.120 1.07 
15 N 0.641 0.389 0.89 0.145 –21.114 5.36 
16 N 0.562 0.297 0.96 0.596 0.348 0.92 
17 N 0.236 –0.365 1.33 0.187 –0.405 1.35 
18 N 0.358 0.106 1.08 0.505 0.243 0.99 
19 N 0.634 0.345 0.92 0.649 0.376 0.90 
20 A 0.660 0.397 0.89 0.652 0.377 0.90 
21 A 0.635 0.324 0.94 0.644 0.331 0.93 
22 A 0.689 0.398 0.88 0.690 0.412 0.87 
23 A 0.645 0.299 0.95 0.670 0.374 0.90 
24 A 0.641 0.293 0.96 0.653 0.339 0.93 
25 A 0.305 –1.289 1.73 0.446 –0.921 1.58 
26 A 0.238 –1.375 1.76 0.367 –0.873 1.56 
27 A 0.304 –0.606 1.44 0.306 –0.465 1.38 
28 A 0.401 –0.241 1.27 0.385 –0.195 1.25 
29 A 0.455 –0.071 1.18 0.438 –0.060 1.17 
30 A 0.125 –2.998 2.28 0.238 –1.934 1.95 
31 A 0.181 –1.282 1.72 0.221 –0.983 1.61 
32 A 0.406 –0.060 1.17 0.375 –0.094 1.19 
33 A 0.447 0.060 1.11 0.356 –0.097 1.19 
34 A 0.434 –0.062 1.18 0.394 –0.073 1.18 
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Table 4. Support vector regression statistics for leave–20%–out (rL20%O, q2
L20%O, and RMSEL20%O) and leave–25%–out 

(rL25%O, q2
L25%O, and RMSEL25%O) cross–validation tests 

Exp Kernel rL20%O q2
L20%O RMSEL20%O rL25%O q2

L25%O RMSEL25%O
1 D 0.674 0.228 1.00 0.667 0.189 1.03 
2 P –0.277 <–100 >10 0.332 <–100 >10 
3 P –0.288 <–100 >10 –0.297 <–100 >10 
4 P –0.313 <–100 >10 0.289 <–100 >10 
5 P –0.302 <–100 >10 0.298 <–100 >10 
6 R 0.633 0.317 0.94 0.680 0.344 0.92 
7 R 0.568 0.188 1.03 0.638 0.282 0.97 
8 R 0.558 0.261 0.98 0.604 0.352 0.92 
9 R 0.529 0.249 0.99 0.516 0.259 0.98 

10 R 0.487 0.211 1.01 0.443 0.189 1.03 
11 N 0.695 0.450 0.85 0.666 0.431 0.86 
12 N 0.670 0.418 0.87 0.691 0.432 0.86 
13 N 0.644 0.386 0.89 0.644 0.396 0.89 
14 N 0.340 –0.019 1.15 0.548 0.292 0.96 
15 N 0.686 0.439 0.85 0.640 0.392 0.89 
16 N 0.598 0.355 0.92 0.497 0.210 1.01 
17 N –0.243 –123.006 12.70 0.408 0.107 1.08 
18 N 0.429 0.166 1.04 0.335 0.050 1.11 
19 N 0.634 0.363 0.91 0.636 0.368 0.91 
20 A 0.678 0.413 0.87 0.660 0.277 0.97 
21 A 0.678 0.390 0.89 0.641 0.116 1.07 
22 A 0.698 0.386 0.89 0.653 0.220 1.01 
23 A 0.646 0.195 1.02 0.656 0.340 0.93 
24 A 0.632 0.155 1.05 0.675 0.376 0.90 
25 A 0.415 –0.543 1.42 0.291 –2.497 2.13 
26 A 0.401 –0.509 1.40 0.321 –1.072 1.64 
27 A 0.444 –0.068 1.18 0.421 –0.311 1.31 
28 A 0.466 0.023 1.13 0.477 –0.032 1.16 
29 A 0.484 0.076 1.10 0.505 0.067 1.10 
30 A 0.415 –0.619 1.45 0.176 –3.121 2.31 
31 A 0.440 –0.149 1.22 0.297 –0.983 1.61 
32 A 0.302 –0.418 1.36 0.365 –0.555 1.42 
33 A 0.305 –0.368 1.33 0.419 –0.163 1.23 
34 A 0.315 –0.303 1.30 0.501 0.148 1.05 

The trend identified in the L5%O test is also apparent from the prediction results for the L10%O, 
L20%O, and L25%O tests (Tables 3 and 4). Consistently, the worst predictions are obtained with 
the polynomial kernel, while the dot kernel is more robust, with RMSE between 0.97 and 1.03. The 
anova kernel gives predictions with a large range of variation. Typically, experiments 20–24 have 
acceptable statistics, while the predictions from experiments 25–34 are bad. The SVR models with 
radial kernel show a constant decrease of prediction quality from experiment 6 to experiment 10. 
Similarly with the LOO and L5%O, experiment 11 (representing an SVR with neural kernel) has 
the best prediction statistics among all 34 SVR models for L10%O and L20%O, while for L25%O 
the best results are obtained in the experiment 12, also with a neural kernel. Overall, the predictions 
obtained with the neural kernel fluctuate, and some unexpected bad predictions are obtained 
(L10%O, experiment 15; L20%O, experiment 17). 

It is interesting to compare the best SVR model with the corresponding MLR prediction. For 
L10%O, SVR has slightly better prediction statistics: MLR, rL10%O = 0.711, q2

L10%O = 0.448, and 
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RMSEL10%O = 0.85; SVR, neural kernel, experiment 11, rL10%O = 0.729, q2
L10%O = 0.498, and 

RMSEL10%O = 0.81. For L20%O, MLR has better prediction statistics: MLR, rL20%O = 0.733, 
q2

L20%O = 0.502, and RMSEL20%O = 0.81; SVR, neural kernel, experiment 11, rL20%O = 0.695, 
q2

L20%O = 0.450, and RMSEL20%O = 0.85. The same situation is found for the L25%O test: MLR, 
rL25%O = 0.712, q2

L25%O = 0.470, and RMSEL25%O = 0.83; SVR, neural kernel, experiment 12, rL25%O

= 0.691, q2
L25%O = 0.432, and RMSEL25%O = 0.86. 

The five prediction tests show that the SVR QSAR is not able to outperform the simple MLR 
model for the QSAR example considered in this study. SVR models with the neural kernel have 
slightly better predictions than MLR for LOO and L10%O, while MLR is better for L5%O, 
L20%O, and L25%O. Our results indicate that for more difficult prediction tests MLR is more 
reliable than SVR. 

4 CONCLUSIONS 

Considering the good performances of the support vector machines in classification, it is 
expected that support vector regression would be a reliable model for QSAR applications. While 
support vector classification was tested for a large number of bioinformatics and cheminformatics 
problems, SVR is relatively new and extensive comparative studies are necessary in order to 
evaluate this new QSAR model. In this study we compared MLR and SVR QSAR models for the 
benzodiazepine receptor affinity of 52 2–aryl(heteroaryl)–2,5–dihydropyrazolo[4,3–c]quinolin–3–
(3H)–ones [1,2]. Both models were developed with five structural descriptors, namely the Hammett 
electronic parameter R', the molar refractivity MRR8, the Sterimol parameter LR'4', an indicator 
variable I (1/0) for 7–substituted compounds, and the Sterimol parameter B5R.

The SVR prediction power depends on the kernel type and the parameters that control the kernel 
shape. For the moment there are no clear rules on selecting the most predictive kernel, and as a 
result we explored a group of 34 SVR experiments obtained with five kernels, namely the dot, 
polynomial, radial basis function, neural, and anova kernels. The QSAR models were tested with 
complete cross–validation: leave–one–out, leave–5%–out, leave–10%–out, leave–20%–out, and 
leave–25%–out.

The results obtained for the set of 52 benzodiazepine receptor ligands show that SVR QSAR 
models have lower prediction statistics than the MLR model, as measured in k–fold cross–
validation tests, especially for 5–fold (L20%O) and 4–fold (L25%O) cross–validation. While the 
calibration SVR models obtained with the polynomial, radial, and anova kernels are better than the 
MLR QSAR, the cross–validation statistics for these kernels are much lower than the corresponding 
MLR cross–validation statistics. As expected, the dot kernel gives prediction statistics slightly 
lower than the MLR results. The neural kernel has low calibration statistics (rcal= 0.690 and 
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RMSEcal = 0.85 for experiment 11) compared with MLR (rcal= 0.798 and RMSEcal = 0.69) and SVR 
QSAR with the polynomial, radial, and anova kernels (best calibration statistics obtained with an 
anova kernel in experiments 29 and 31–34, with rcal= 0.896 and RMSEcal = 0.52). However, the 
neural kernel (experiment 11 for all cross–validation tests, and experiment 12 for L25%O) has the 
best prediction statistics in the group of 34 SVR models computed for each cross–validation test. 

The extensive cross–validation tests performed in this study do not reveal any advantage of SVR 
over the classical MLR model. SVR models with the neural kernel have slightly better predictions 
than MLR for LOO and L10%O, while MLR is better for L5%O, L20%O, and L25%O. The five 
prediction tests show that SVR is not able to outperform the simple MLR model for the QSAR 
example considered in this study. The prediction quality of the SVR model varies widely with the 
kernel type and parameters, which makes very difficult and time consuming the identification of a 
best QSAR equation. The results obtained in the present study indicate that SVR applications in 
QSAR must be compared with other models, in order to determine if their use brings any prediction 
improvement. Despite many over–optimistic expectations, support vector regression can overfit the 
data, and SVR predictions may be worse than those obtained with linear models. 
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