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Abstract 

Motivation. We present a simple conceptual scheme whereby changes in molecular quantum state appear as 
Franck–Condon–like transitions driven by geometrical rearrangements of a background of positive charges. The 
model is based upon two basic ingredients that combine notions from quantum– and classical mechanics. First, 
we construct a complete set of diabatic electronic wave functions, each of which is associated with a labeled 
three–dimensional chemical graph. Secondly, we represent any electronic quantum state for the molecular 
system as a superposition of these functions such that the coefficients for the linear combination depend on the 
geometry of the set of positive charges. In contrast to the standard Born–Oppenheimer approach, only the 
quantum state depends on the location of these positive charges (and not the basis for the Hilbert space used to 
describe any transition). 
Results. The ideas are illustrated using a simple trans cis transition. 
Conclusions. The procedure can be applied in general to expose the fundamental electronic processes that 
accompany real–space motion in more complicated molecular dynamics processes. 
Keywords. Diabatic states; conformational transitions; Frank–Condon; vertical tunneling. 

Abbreviations and notations 
GEDA, generalized electronic diabatic approximation TS, transition state 

1 INTRODUCTION 

Professor Trinajsti  has pioneered the use of chemical graph theory as a tool to rationalize 
qualitative trends in some molecular properties [1,2]. In this conceptual framework, any property 
that can be related to the topology of the chemical graph should remain invariant over a range of 
deformations that exclude bond breaking and bond formation. This chemically–intuitive notion 
stands in contrast, however, with the manner in which calculations are performed when using the 
                                                          
# Dedicated to Professor Nenad Trinajsti  on the occasion of the 65th birthday. 
* Correspondence author; phone: 46–18–471–3659; fax: 46–18–471–3654; E–mail: orlando.tapia@fki.uu.se. 



Generalized Electronic Diabatic Theory and Chemical Topology 
Internet Electronic Journal of Molecular Design 2003, 2, 454–474 

455 
BioChem Press http://www.biochempress.com

Born–Oppenheimer (BO) approximation. In the latter scheme, the electronic wave function changes 
as one move the nodes of the chemical graph (commonly identified with the nuclei); in fact, the 
approach can produce a description where the graph edges would appear to be formed or broken in 
a continuous manner. This antinomy is eliminated if molecular states are described using a basis set 
of electronic wave functions that are independent from the “external potential” generated by an 
arbitrary spatial distribution of positive charges [3]. Using this approach, chemical graphs can 
recover their powerful role as labels for distinct chemical species. In this paper, we develop further 
these ideas in an attempt to describe conformational changes between chemical species as a 
quantum process. 

In molecular quantum mechanics, the standard procedure is to specify first the spatial 
coordinates of the nuclear species involved, and then to calculate energy levels and electronic wave 
functions. But an inverse point of view is also theoretically possible and conceptually attractive: one 
can prescribe an electronic structure (e.g., an all–electron density function) and then determine the 
“nuclear configuration” consistent with it. Note that such an approach would be more consistent 
with the picture of a molecule revealed by available experimental techniques: one does not see fixed 
nuclei in space but rather assigns a continuum of reasonable locations to a background of positive 
charges that would account for scattering by the electron density or nuclear spin interactions. In 
solid state physics, a similar approach has been employed to design atomic lattice configurations 
with desired electronic or optical properties [4]. Using this point of view, one of us has proposed the 
hypothesis that it is the stationary electronic wave function that determines the stationary geometry
of the set of external positive charges [5]. These wave functions depend only on electron 
coordinates and can be labeled by the stationary geometry of the positive–charge background; yet, 
these electronic functions do not change if the positive charges are moved around. We refer to these 
as diabatic functions. It should be noted that a number of competing definitions for diabatic 
functions exist in the literature (see Refs. [6] and [7] for a discussion). For example, approximate 
diabatic states can be extracted from the diagonalization of the molecular electronic hamiltonian (in 
the standard BO approximation), and they have been used to study atom–atom and atom–molecule 
collision [8-11]. (See also details in Pacher et al. [12].) Despite the alternative approaches, a 
commonly desired property is that diabatic functions be associated with a single electronic 
configuration, instead of interpolating between different configurations as it is the usual case with 
adiabatic functions. The electronic functions used in this work are diabatic in this sense: they 
represent the states of an isolated molecular system. Each of the present diabatic functions will be 
associated with a single chemical species, regardless of the geometry of the background of positive 
charges. To avoid confusion, we shall use the term generalized electronic diabatic (GED) approach
when referring to our method. 

Within the present GED approach, a molecular system with an electronic ground state need only 
be characterized by two entities: (a) a quantum one, in the form of a wave function in Hilbert space 
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that depends on electron coordinates {qi}, (q1,...qn), and (b) a classical one, in the form of a three–
dimensional array for a background of m positive charges, 3. The standard molecular model 
appears as the limit case where the nuclei are taken as classical (not quantum) massive point 
charges.

Conceptually, we proceed as follows. First, we define a fixed–point electronic hamiltonian, 
He(q, 0), with 0 the stationary ground–state geometry for the positive–charge background. (Each 
diabatic state will be characterized, in general, by a distinct attractor, denoted by k for the k–state.)
From this hamiltonian, we derive the complete set of diabatic functions. Chemical graphs and 
topological properties arise from these latter functions. A key notion in the GED approach is that 
any k attractor can be used as to defined a fixed–point hamiltonian He(q, k), from where the same
spectrum of diabatic eigenstates emerges. General electronic states can then be represented as linear 
superpositions in the basis of diabatic states, and their quantum evolution followed as a function of 
the positive–charge configuration . (We assume that the system is subject to external conditions 
that permit changing the background, as would be done in atomic–force microscopy. We would 
then calculate the effects of such changes on the electronic quantum states). The central notion in 
the present approach is that the stationary configuration of the “external background” reflects a 
quantum electronic property, not the other way round, as it would be in the BO scheme. 

In developing these ideas, our goal is not to do away with the standard quantum–chemical 
computations but rather to build an approach where chemists can think of reaction processes in 
terms of quantum states and chemical topology. We believe that, by using chemical graphs related 
to diabatic quantum states, it might be possible to get simple insights on chemical behavior, while 
making quantum chemistry consistent with the tenets of time–dependent quantum mechanics. In 
doing so, we would have taken chemical graph theory a step further along the road initiated by 
Trinajsti  and his co–workers [1]. 

2 THE DIABATIC ELECTRONIC BASIS SET

Within the present conceptual framework, we visualize a molecular system as it was done, for 
example, in the original formulation of density functional theory: a system of n electrons 
embedding a background of m “external” positive charges. Without a major loss of generality, we 
focus on the case where the background neutralizes the total electronic charge. This system will be 
modeled by a set of electronic quantum states, to be determined as described below. The set should 
include the quantum states required to recover all the relevant physical processes that are accessible 
to the system, including the formation of both neutral and ionized chemical species. The latter 
would be handled by specific asymptotic states. In describing this molecular model, we adopt both a 
classical and quantum viewpoint: the electrons provide the quantum system, whereas the 
background of positive charges is treated classically. Even though we invoke a natural separability 
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between electrons and nuclei, the GED approach differs from the BO approximation in several 
ways. First, note that we treat classically the background of m positive charges, not the nuclear 
particles. The background is a set of point charges that one can, formally, manipulate externally; it 
has no information on nuclear masses. Secondly, this charge background affects only the potential 
energy of an isolated molecule and not the function describing its electronic state. There is also a 
difference in the way we handle the coordinate system. The original BO theory is based on an 
internal hamiltonian where nuclei and electrons appear as particles evolving with respect to a body–
fixed moving coordinate frame, with origin at the center of mass of the nuclei. In the GED 
approach, in contrast, molecules are described entirely with complete sets of diabatic functions. The 
geometry of the positive–charge background is characterized using a single inertial frame 
throughout (i.e., the coordinate frame does not accelerate or rotate with the molecule). 

The “external potential” is defined by two vectors, denoted by  = ( m) and  = ( m), 
corresponding to the value and physical location of the m positive charges. (Charges are measures 
in units of e, the absolute value of the electron charge.) We assume that the position of these 
charges can be changed at will by some mechanism external to the system. This assumption is 
consistent with the ability for single–atom and single–molecule manipulation achieved in modern 
techniques. As a result, even without considering particles masses, the background of positive 
charges is an object intrinsically different from that of the electrons. It is thus reasonable to adopt a 
quantum/classical model to deal with the set of negative/positive charges. Note, however, that the 
fundamental reason for the separation between the two charge sets is different from that used in the 
common molecular models based on the BO approximation. We make no starting assumption on 
whether nuclei are heavier or “slower” than electrons, nor do we impose any particular relation 
between nuclear motion and the electronic state. The two models could nevertheless be related in 
particular cases by identifying a posteriori a proper mapping between electronic states. 

Let | > denote an abstract quantum state for an n–electron system embedding the background of 
m positive, “classical” test point charges in configuration . This state is considered to be 
completely represented by a function (q ,..., qn), defined in a 3n–dimensional configurational 
space with vectors q = (q ,..., qn); the spin component is treated separately. The complete
hamiltonian for such an electronic system is: 

e(q, ) = Ke(q) + VC(q, ) , (1)

where Ke(q) is the electronic kinetic energy operator and VC(q, ) is the complete Coulomb 
interaction, including the self–repulsion of the positive background. (Note that this term is often left 
out in the standard BO electronic hamiltonian.) As mentioned before, we consider a cartesian 
inertial frame; no particular test charge is privileged as being an origin (see Ref. [13]). Nevertheless, 
the Coulomb operator is invariant under rotations or translations of the laboratory frame. 
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Let us assume that the system has an electronic ground state, represented by the function 
(q , ..., qn). The hamiltonian (1) will then have an expectation value U :

U ( U( ]) (q) | e(q, ) (q) >q , (2)

that is a function of and a functional of . Note that U  will change if the positive charge 
background is rearranged as a consequence of the Coulomb operator VC(q, ) being modified, not
because the wave function (q) is modified. Indeed, since (q) does not depend on , the change 
in U  satisfies trivially the Hellmann–Feyman theorem: 

q
eHU

00
0 |   (3)

Note that the reason for the validity of the Hellmann–Feynman theorem is not the same used in 
the standard BO approach, because the adiabatic functions are written as functions of the 
instantaneous nuclear configuration. For the GED theory, we require that the energy functional (2) 
be stationary with respect to any displacement with respect to a background configuration denoted 
by

0)(
0

|0U
(4)

Now, we define a fixed–point hamiltonian e(q, ) at the stationary configuration . Since is
the ground state of the system and is obtained from  as in Eqs. (3)–(5), then the electronic 
operator e(q, ) is bounded from below. From the homogeneity properties of the Coulomb 
potential and a fundamental theorem for Schrödinger operators in Hilbert space [14,15], it follows 
also that the electronic operator e(q, ) is essentially self–adjoint, i.e., it has a complete set of 
(discrete or continuous) eigenfunctions. This property that is in fact independent on the detailed 
form of VC(q, ) [14], e.g., the configuration for the background charges. Given this, we choose 
construct the complete set of electronic states using the fixed–point operator e(q, ). By following 
this approach, the stationary configuration  and the electronic state (q) are the central entities 
that define a chemical species and its associated molecular graph. 

A complete set of normalized electronic diabatic functions { k} is obtained by applying the 
variational principle in wave function space to the functional U( 0; [ ] , that is, we impose the 
condition {< q | e(q, 0) (q) q . The result is an Euler–Lagrange equation: 

e(q, 0) k(q) k( 0) k(q) (5)

where the eigenvalues are functionals of k: k( 0) U( 0 [ k] ) Uk( 0). The Eqs. (4)–(5) ensure 
that U ( 0 is the global minimum of U( ; both in configurational space ( 3m) and in Hilbert 
space. Note that Eq. (5) is, in principle, iterative: { k} are eigenfunctions of e(q, 0), a operator 
which is built by knowing the ground state 0. In general, these excited states k>0 may not have 
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the same stationary positive charge background geometry as the ground state . We denote these 
stationary background configurations by k; their associated energies k( k) = U( k [ k]) would be 
lower than U( [ k]). In the present formulation, these stationary points are still related to : the 
configurations k (with k > 0) are stationary points of the functionals U( ; [ k]), which in turn are
built with the diabatic eigenfunctions k of e(q, ). Finally, it should be noted that the electronic 
diabatic functions, and their stationary points k, are defined with a single fixed laboratory frame. 
Without any loss of generality, the complete set { k} can be taken as orthogonal [14]. 

We work under an assumption of “universality” for the electronic wave functions [5], i.e., that all 
electronic states k do not depend upon the configuration space  and that only the function k

determines the stationary configuration k. This assumption implies that any fixed–point 
Hamiltonian e(q, s), with s the stationary point of the functional 
U( s]) s(q) | e(q, ) s(q)>q, produces the same set of diabatic eigenfunctions { k},
including the bound–state function s which determines the fixed point for the hamiltonian: 

e(q, s) k(q) k(
s) k(q) (6)

Note that the eigenfunctions are the same as in Eq. (5), but not the eigenvalue spectrum. As a 
result of the –independence, it is understood that all U( ; s]) functionals (with s a bound state) 
can only produce one { k} set, that is, U must be a single–minimum attractor (i.e., a confining 
function in terms of ). In the section below, we will use the –independence to represent each k

electronic state, and its corresponding stationary configuration k, with specific chemical graphs. 

In closing this section, let us summarize some important differences between the present 
generalized diabatic functions and other approaches in the literature. First, the present { k(q)} 
functions are the only set of eigenfunctions obtained from any fixed–point hamiltonian, e(q, s), 
defined at a stationary point s; the k(q)–functions have no parametric dependence on .
Moreover, the { k(q)} functions are, by construction, the exact description for the states of an 
isolated molecules (once we accept the hypothesis for the quantum/classical separability of nuclei 
and electrons). These GED functions also differ from the type of (quasi–)diabatic functions used in 
the literature, which are commonly just limiting cases of adiabatic functions whenever adiabatic 
states are not close to each other [6,7]. The latter quasi–diabatic functions are known to provide 
poor (although simpler) descriptions for many ground–state properties. In contrast, the present 
{ k(q)} functions have to provide, by design, the correct vibrational properties once nuclear masses 
are brought into the description. Basic properties of the Coulomb potential ensure also that a correct 
description of each attractor s will emerge from any of a number of approximate methods for 
solving Schrödinger–like equations such as Eq. (6) [16]. 
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3 CHEMICAL TOPOLOGY AND DIABATIC QUANTUM MECHANICS

We associate a colored graph (i.e., a graph with labeled vertices) to the stationary configuration 
k corresponding to the wave function k. For the sake of simplicity, we will define vertices and 

edges for the moment in the conventional way of chemical graph theory: vertices correspond to 
“atoms” and edges to “chemical bonds.” The present approach will thus lead to multigraphs, as 
more than one edge is possible between connected vertices (corresponding to double and triple 
bonds). Since we focus in this work on conformational transitions, we assume that all nodes are 
pathwise–connected on the graph. Moreover, we shall assume that the relevant transformations do 
not involve the formation of bonds or complete breaking of bonds. Yet, we allow for a reduction in 
the number of edges between two connected vertices, as long as they remain connected (e.g.,
transforming a double bond into a single bond is permitted). This condition will allow us to 
accommodate graphs corresponding to some relevant excited electronic states of a chemical species. 
In this sense, all k configurations for our molecular system share the same connectivity pattern at 
the level of single edges; however, they can be represented by different graphs given two variations: 
(a) more than one edge occurs between connected vertices, and (b) a k–dependent coloring scheme 
is introduced for the vertices, as discussed later below. 

Let us clarify the topological nature of the present chemical graphs. A chemical graph is, as 
always, a code for an equivalence class of configurations which transform homeomorphically 
amongst each other. Here, this corresponds to transformations in 3m where the test charges 
preserve their connectivity and coloring. It is easy to see that a k–graph is invariant to any such 
change in 3m. By construction, the k–graph is determined by a –independent electronic state k

which produces a confining attractor represented by the single–minimum functional U( k]).
Accordingly, any rearrangement of the background charges on the isolated system cannot change 
the diabatic quantum state and therefore leaves the molecule in the same k–graph. Changes in state 
require an external mediation (e.g., a radiation field); whenever this phenomenon is excluded, the 
graph topology will be preserved over 3m.

We can cast the above ideas in a more quantitative way. First, let us give the configuration space 
3m a topological structure with the standard (Euclidean) metric d( , ') = || '||. Consider now the 

system at a state k and an arbitrary configuration a. Let us then deform the vertices of its local 
graph to a new configuration b; this procedure defines a continuous path in 3m which we take, for 
simplicity, as the segment a b  = a + ( b a), with 0 . (In all these transformations, 
we use the same, fixed inertial frame.) The a b path traces a curve Gk(

a b ) on the potential 
energy hypersurface U( [ k]), which is an attractor with a single stationary point k associated 
with a unique electronic function k. We can now introduce a trivial k–homotopy which makes 
two paths a b  and a b  topologically equivalent by the simple reason that Gk(

a b ) and 
Gk(

a b ) can be deformed continuously into each other while remaining on the everywhere–
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smooth hypersurface U( [ k]). Finally, these paths can be crumpled into the stationary point, 
a k , thus making the entire 3m space k–homotopically equivalent to the k configuration, and 

characterizing it by the single k–graph.

We close this section by returning to the issue of graph–coloring, which is essential to 
characterize completely the diabatic functions { k}. Our proposal is that the symmetries of the 
system, understood broadly, can be used for vertex labeling. 

Consider the example of the simple trans cis transformation in 1,2–difluoroethene, HFC=CHF. 
Both conformers have the same bond connectivity, therefore the corresponding graphs can only be 
distinguished by using node coloring. Intuitively, we could profit from the fact that the trans–
conformer (with C2h symmetry at its stationary configuration t) has a distinct symmetry operation, 
and thus use the inversion î to label the trans–conformer and the C2–rotation to label the cis–
conformer (with C2v symmetry at configuration c). If we retain the essential part of the graph 
F C=C F, we can then label the vertices with “±” signs depending on how the atoms transform 
under the symmetry operations. In this approach, colored graph for the trans–conformer would 
become F(+) C( )=C(+) F( ) to indicate how the atoms transform under the inversion (i.e., î F(+) 
= F( ), etc.), whereas in cis–conformer would be F(+) C(+)=C(+) F(+), to indicate how the atoms 
transform under the rotation (i.e., C2 F(+) = F(+), etc.). Proceeding this way, the diabatic electronic 
wave functions for the ground states of the cis– and the trans–conformers ( c and t, respectively) 
are characterized by different graphs. These graphs remain invariant even if we force the nuclear 
charges in the electronic state t to adopt the configuration c, and vice versa. (In the latter case, the 
resulting energy U( c [ t]) will be much higher than both U( c [ c]) and U( t [ t]).) In other 
words, a continuous transformation between the graphs F(+) C( )=C(+) F( ) and 
F(+) C(+)=C(+) F(+) is topologically forbidden at both diabatic and adiabatic levels. 

The above approach, although conceptually simple, cannot easily be extended to other molecular 
states and symmetries. For a more general alternative, we must pay closer attention to the actual 
rearrangement leading from the trans– to the cis–conformer. As discussed before, transformations 
in 3m must all be described in the same inertial frame used to derive the diabatic wave functions. 
This implies that the z–axis for the trans–conformer (conventionally identified with the highest–
symmetry rotational C2 axis) must remain as the z–axis for the cis–conformer (also coincident with 
a C2 axis). Accordingly, the motion connecting t and c must be a disrotatory displacement, as 
indicated in Figure 1. This displacement has an important implication on the orbital basis set for 
diabatic states. In Figure 1, the –system for the trans–conformer is sustained by the pz–orbitals of 
a minimal basis set. In contrast, the –system for the cis–conformer becomes sustained by either the 
px– or py– or a combination of the two. (Only one case is displayed in Figure 1.) In this description, 
a deformation of t into c would be seen as follows. If we start at t, the t state provides the 
lowest energy U( ), one where the z–orbitals are doubly occupied. These orbitals have lower 
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energy than the x– or y– in Eq. (6) computed with either e(q, t) or e(q, c). Yet, as we move 
towards c, one would eventually obtain a lower U( ) value by using the doubly–occupied x– or 

y– in Eq. (6) with e(q, c), i.e., by using the c wave function for configurations near c. This 
change in electronic state, however, cannot be triggered by only driving the positive charges; the 
quantum process must rather be mediated by an external field. 

z C

yx

2

z

z C

yx

2

x

Conformational change
with invariant inertial frame

Trans :
tqt

Cis :
cqc

Figure 1. Representation of a trans–to–cis conformational change when using an invariant inertial frame. The inertial 
frame maintains the z–axis aligned with the C2 rotational axes of both the trans and cis conformers. As a result, the 
motion in real space leading from trans to cis is disrotatory (indicated by the curved arrows on the top diagram). The 
invariance in C2 causes that different p–orbitals are used in building the –bonds in the conformers: pz are used for the 
trans, and px (or equivalently py) for the cis.
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By applying these ideas, we could label distinctly the two conformers with the angular 
momentum quantum number m for the atomic orbitals pm used in the double bonds. Thus, the trans–
graph becomes F C(0)=C(0) F, because of using pz = p0, and the cis–graph becomes 
F C(±1)=C(±1) F because of using p±1  px ± i py. Other molecules could be treated similarly by 
considering the required angular functions. 

4 DIABATIC BASIS AND QUANTUM TRANSFORMATIONS

The central tenet of the diabatic theory represented by Eq. (5) (or, in general, Eq. (6)) lays in the 
invariance of the electronic basis set { k} with respect to the geometry of the positive–charge 
background. By using the k–graphs, this invariance translates into a topological impossibility for 
transforming one graph into another. Two things do change though when moving the charges in real 
space 3m. First, one modifies the potential energy U( [ k]) for a diabatic k state. Secondly, 
since an actual quantum state |  is a linear superposition of the { k}–functions, the former will 
evolve in Hilbert space if its amplitudes in the basis states change with .

Let us consider the simple two–state trans–cis transition introduced previously. An 
instantaneous quantum state for this system can be represented by a function (q):

(q) = Ct t(q) + Cc c (q) , (7)

in terms of the trans and cis diabatic functions t(q) and c(q), respectively. Given that the 
electronic hamiltonian e(q, ) is diagonal in the { k}–functions, the time evolution of the 
quantum state |  (and any change in molecular energy) depends on coupling the molecular system
to an external energy source or sink [17]. 

We can now introduce the potential for the interaction between an electronic system and the 
standard energy bath, i.e., a radiation field: Ve–rad =A pe, where A is the electromagnetic field 
vector–operator and pe is the total electronic linear momentum operator. Since the positive–charge 
background is taken to be externally–controlled, we can omit its dynamics for the moment. 
Accordingly, the total hamiltonian becomes: H = He + Ve–rad + Hrad, where Hrad is the radiation–
only operator. In the standard semi–classical approach for Hrad, only the first two terms are required 
when searching for variational solutions for the general quantum–state functions :

( e(q, ) + Ve–rad) (q) ( ) (q) (8)

It is important to note the difference between Eq. (8) for the functions and Eq. (6) for the 
{ k}–functions. The latter (and their associated energies {Ek( s)}) are properties of the isolated
molecule and thus independent of . In contrast, the ( ) energies for instantaneous quantum state 

(q) reflect how the diabatic states { k} are coupled at the configuration in the presence of the
radiation field; the energies ( ) are not intrinsic to the molecule but instead describe the molecule 
in an environment. 
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Let us now study the transition between trans– and cis–conformers (Eq. (7)) by using first–order 
perturbation theory with Ve–rad for the transition moments T:

Tt c = < t | pe c >q .  (9)

As in standard electronic spectroscopy, a transition i j is allowed if the transition moment Ti j

is not zero. We can analyze the element Tt c by remembering that all functions and operators in Eq. 
(9) are written in the same inertial frame. If P̂  denotes the parity operator (i.e., P̂ x = x, etc.), then 
P̂ pe = pe. Moreover, since both the cis and trans conformers have closed–shell electronic 
structure, we have P̂ s(q) = s(q), with s = t,c. As a result, we obtain from Eq. (9): 
P̂ Tt c = Tt c. Yet, Tt c and P̂ Tt c differ only on the axes’ labeling, an artifact that cannot 
change the physical transition. Accordingly, we conclude that P̂ Tt c = Tt c = Tt c, that is 
Tt c = 0. In other words, the trans cis transition is forbidden, up to first–order perturbation theory. 

This result implies that a transition state (TS) is required for a general reaction between closed–
shell quantum states. We must therefore extend the minimal model needed for general quantum 
states (q) to three basis functions, by including the TS: 

(q; ) = Ct( ) t(q) + Cc( ) c(q) + CTS( ) TS(q) , (10)

where we explicitly indicate that the variational solution for fixed  produces linear coefficients 
{Cs} that depend on the specific positive–charge configuration. For an allowed transition (i.e.,
nonzero Tt,TS and TTS,c), the electronic function TS must have opposite parity, P̂ TS(q) = 

TS(q), at least along one axis. Note that TS will not be among the solutions of Eq. (6) if the 
latter are prescribed to be closed shell. Obtaining this state, and its stationary configuration TS, will 
require an open–shell computation. 

The diagonalization of the –dependent hamiltonian (8) yields the quantum amplitudes 
{Cs; s = t,c,TS} for each configuration . The present model makes it now possible to change 
quantum states in the electronic Hilbert space by manipulating the background of positive charges. 
In the next section, we discuss a concrete example by examining the minimal electronic wave 
functions for ethylene. 

5 ETHYLENE BASIS FUNCTIONS

The trans cis transition in ethylene (CH2=CH2) is the simplest example of the process depicted 
in Figure 1. The atomic p–orbitals required to describe the molecular –orbitals for the trans– and 
cis–conformers are also indicated in Figure 1. Let us seek now the basis functions required to 
describe the transition state minimally. If (pxi, pyi, pzi) denote standard 2p–orbitals on a carbon atom 
(i = 1,2), then we introduce two new pairs of orbitals for each of the carbon atoms in Figure 1, 
denoted by p  and p :

p 1 = (px1 + pz1)/ 2 , p 1 = ( px1 pz1)/ 2 , (11a)
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p 2 = ( px2 pz2)/ 2 ,  p 2 = (px2 + pz2)/ 2 .  (11b)

The {p ,p } orbitals are adapted to the disrotatory motions in Figure 1, where rotations by + /4
and /4 affect the centers “1” and “2”, respectively. These orbitals are independent from the atoms 
attached to the carbons. In particular, the functions p 1 and p 2 play the role of new “ –orbitals” 
because they represent normal vectors to the local planes defined by three sequentially bonded 
atoms. Since these orbitals are degenerate, we employ the symmetrized combinations  = p 1  p 2.
Consequently, the triplet wave function for the diradical becomes (up to a normalization constant): 

(S=1,MS=+1) = { +(1) (2) (1) +(2)} (1) (2), (12a)

(S=1,MS= 1) = { +(1) (2) (1) +(2)} (1) (2), (12b)

(S=1, MS=0) = { +(1) (2) (1) +(2)} { (1) (2) + (1) (2)}, (12c)

and the singlet diradical is characterized as: 

TS(S=0, MS=0) = { +(1) (2) (1) +(2)} { (1) (2) (1) (2)}. (13)

These two functions would be obtained in open–shell Hartree–Fock calculations, and they are 
associated with –configurations in 3m space with minimum U( ) value. In particular, Eq. (13) 
represents the transition state with symmetry C2. It is worth insisting on this distinct point: in the 
present analysis, the relevant “TS” entity is not a saddle point but a minimum. The “TS” emerges 
therefore as a proper “state” of the system rather than a “transition structure.” 

In addition, there is also a closed–shell electronic wave function: 

(S=0,MS=0) = { +(1) (2) (1) (2)} { (1) (2) (1) (2)} (14)

corresponding to a polarized state. The  function would be obtained with a closed–shell Hartree–
Fock calculation, and it is associated with a –configurations that is a type–1 saddle point in 3m. It 
is clear that Eq. (13) and (14) represent functions with opposite parity (respectively, –1 and +1). 

A general multi–configurational solution to Eq. (6) will provide all the states required for the 
analysis of the trans cis transition, i.e., the standard closed–shell states and the diradical states. In 
other types of reactions whose quantum dynamics involves asymptotic fragments, the latter will 
have to be incorporated into the analysis by correlating them properly to diabatic states derived 
from the ground state attractor. 

6 CONFORMATIONAL TRANSITION AS A FRANK–CONDON–LIKE
PROCESS

We apply now the previous ideas to the simplified trans cis transition depicted in Figure 2. The 
left–hand–side curve represents the potential energy for the trans–conformer, U( [ t]), i.e., the 
ground state solution of Eq. (5). The right–hand–side curve, U( [ c]), is a different attractor 
associated with the cis–conformer. These two diabatic curves (associated with closed–shell species) 
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cross at an energy that is below that of the stationary configuration for the singlet diradical 
transition state, U( [ TS]) (thin line). These three curves are characterized by different k–graphs;
the corresponding k–states are basis functions of the electronic Hilbert space and also invariant to 
changes in geometry of the positive–charge background. The  coordinate relates the conformer 
geometries (cf. the disrotatory displacement in Figure 1). 

TS

U ( ;[   ])
TS

Trans

U ( ;[ ])
t

Cis

U ( ;[ ])
c

a

b
c

Figure 2. Simple model for the diabatic potential energy curves U( [ t]), U( [ c]), and U( [ TS]) corresponding 
to the trans–, cis–, and transition–states of ethylene, respectively. The –coordinate corresponds to the disrotatory 
displacement explained in Figure 1. In the diabatic scheme, each potential energy function is a single–minimum 
attractor. The curves U( [ t]) and U( [ c]) cross at = /4, measured from the stationary point t, or = /4
measured from c. The points denoted by a, b and c represent significantly different energy gaps, such as those reported 
in Table 1. (See text for further discussion.) 

The  coordinate can be used to control the “advance” of the reaction in real space. For the 
present analysis, it is more convenient to monitor the coefficients {Cs} (Eq. (10)) in terms of the 
three energy differences: U12 U( [ c]) U( [ t]), U13 U( [ TS]) U( [ t]), and 

U23 U( [ TS]) U( [ c]), that are implicit functions of . For example, large positive values 
for both U12 and U13 correspond to  values characteristic of the trans–conformer; similarly, the 
cis–conformer will appear at  values where both U23 and | U12| are large (with U12 being
negative).

We can understand the role of | TS> by exploring how the general function (10) changes as one 
varies the relative potential energy values and the coupling to the transition state. To this end, we 
compute the eigenvalues and eigenfunctions of the total hamiltonian (8) in a simple three–level 
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system 1, 2, and 3 mimicking the trans, cis, and TS species. First, we note that all diagonal 
elements of Ve–rad are zero, therefore Hii e ii U( [ i]) Ui. The nondiagonal elements can 
be taken as variable parameters. Furthermore, note that 1 and 2 are orthogonal and have zero 
transition moment (cf. Eq. (9)). From this and the fact that the Coulombic operator VC(q, ) (Eq. 
(1)) is symmetric under an inversion of electronic coordinates for all , we deduce H12  0. 
Similarly, we conclude that e 13 e 23  0, thus H13  V13 and H23  V23, because the 1 3 and 
2 3 transitions are allowed. For simplicity, we choose here V13 = V23. Finally, upon factorizing U1,
we get the following hamiltonian matrix: 

([He+Ve–rad]ij)

131313

1312

13

0
00

UVV
VU
V

. (15)

Table 1 shows the coefficients {Cs} for the eigenfunction corresponding to the lowest eigenvalue 
 of Eq. (15) (energies are in arbitrary units). The values chosen for U12 and U13 represent 

situations resembling the points a, b, and c in Figure 2. Thus, U12 = 5 can be taken as point “a” 
near the trans–conformer, while U12 = 0 corresponds to point “c” where the diabatic curves cross. 
In most cases, U3 is kept constant by setting U13 U12  3 as U1 and U2 vary. Only the last entry 
in Table 1 shows a transition state that is closer in energy to the lower–energy conformers. For a 
pair ( U12, U13), we tested various V13 values spanning the range from weak to strong inter–state 
couplings. These values reflect different radiation fields (e.g., lasers) that can be imposed on the 
molecular system. 

Using Table 1 and Figure 2, we can now discuss the mechanism underlying the conformational 
change 1 2. First of all, note that the amplitudes of the three states remain constant if we switch 
off the radiation field (V13  V23  0). In other words, in absence of Ve–rad, an initial state | t(q)>
will persist as such regardless of a displacement in the positive–charge background (represented 
here by ). Any change in state is quantum–mechanically determined by the matrix elements of Ve–

rad that couple “reactant” and “product” states to the transition state. Moreover, note that V13 and 
V23 are electronic transition integrals that are independent of , since both k(q) and Ve–rad do not 
depend on the geometry of the positive–charge background. In this sense, the 1 2 transitions can 
be regarded as Franck–Condon–like processes.

Let us now focus on the role of the positive–charge background as the driver for the trans cis
transition. In Table 1, the initial state (q; ) corresponds to large values of U12 and U13; the 
emerging amplitudes (|C1| = 1 and |C2| |C3| 0) indicate a state that is essentially trans–conformer 
(point “a” in Figure 2). This situation remains essentially unchanged for all V13 coupling strengths 
and U12 > 0.05 (where |C2| < 0.07). The point “b” in Figure 2 will fall in this category. However, 
as * (the point where the diabatic potential energy curves cross), the amplitude in 2 increases 
rapidly up to a maximum value. (In this model, this corresponds to |C1| = |C2|.) The region where 
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both cis/trans amplitudes are important appears as a narrow “bottleneck” about *; its actual size 
depends on V13 and V23, i.e., the strength of the couplings to the TS. (These couplings depend in 
turn on the external radiation field.) Note that the amplitude in 3 also maximizes at *. Yet, 
Table 1 shows that only a small amplitude |C3| in the transition state is necessary for the system to 
evolve from the trans– to the cis–conformer. (A similar reasoning will apply to the reverse 
cis trans transformation.) 

Table 1. Change in the wave function for the quantum state of a three–level model of the trans cis transition. The 
trans–, cis–, and transition state (TS) species are denoted by the subindices 1, 2, and 3, respectively. In this model, the 
TS–energy is constant, and thus both U1,2 and U1,3 decrease along the control coordinate  (cf. Figure 2). The 
coupling to the transition state is taken as a variable parameter (V13 V23); these values are representative of weak and 
strong interactions (0.001 and 0.1, respectively), and depend on the external field. The last columns give the lowest 
eigenvalue in Eq. (8) and its eigenfunction’s coefficients in Eq. (10). The amplitude in the cis–conformer increases as 

U1,2 decreases (see text). 

U1,2 U1,3 V13 V23 (lowest) |C1| |C2| |C3|
5.0000 8.0000 0.001 1.25 10 1 2.50 10  1.25 10

  0.010 1.25 10 1 2.50 10  1.25 10
  0.100 1.25 10 1 2.50 10 0.013 

0.1000 3.1000 0.001 3.2 10 1 3.23 10  3.23 10
  0.010 3.2 10 1 3.23 10  3.23 10
  0.100 2.5 10 0.999 0.032 0.033 

0.0500 3.0500 0.001 3.3 10 1 6.56 10  3.28 10
  0.010 3.3 10 1 6.56 10  3.28 10
  0.100 3.5 10 0.997 0.065 0.035 

0.0050 3.0050 0.001 3.3 10 1 6.56 10  3.33 10
  0.010 3.4 10 1 6.56 10  3.35 10
  0.100 4.9 10 0.894 0.446 0.045 

0.0005 3.0005 0.001 3.3 10 1 6.66 10  3.34 10
  0.010 3.5 10 0.998 0.066 3.55 10
  0.100 4.9 10 0.732 0.679 0.047 

0.0000 3.0000 0.001 6.7 10 0.707 0.707 4.71 10
  0.010 6.7 10 0.707 0.707 4.71 10
  0.100 4.9 10 0.706 0.706 0.047 

0.0001 1.0000 0.010 1.6 10 0.851 0.526 0.04 
  0.100 0.2 0.702 0.699 0.137 

We can now define an “effective” potential energy, t,c( ), associated with the trans/cis
subspace, upon the assumption that only | t(q)> and | c(q)> are accessible when using the 
frequencies supplied to the system by the external radiation bath: 

t,c( ) = |C1|2 < t(q)|H(q, ) t(q)>  |C2|2 < c(q)|H(q, ) c(q)> . (16)

Note that in our simulation, the transition state operates only in the Hilbert space; there is no 
actual “excitation” to | c(q)>, since energy appears to be supplied only until the crossing at *. Let 
us now suppose that we move the background of positive charges adiabatically, using the control 
coordinate . In the neighborhood of the attractor for the trans–conformer ( t), the energy t,c( )
follows the diabatic potential energy function U( [ t]) because |C2| . The fact that 
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|C3| > implies that t,c( ) becomes a lower bound to U( [ t]) when approaches the bottleneck 
from below (i.e., *). Loosely speaking, the TS appears to “push down” the energy of the 
system. After the bottleneck ( *), t,c( ) decreases until it overlaps the diabatic potential energy 
curve U( [ c]) for the cis–conformer. Since the external driving of the  coordinate is truly
adiabatic in the mechanical sense, the trans cis transition can appear in the resulting description 
as a thermodynamically reversible process where one fully recovers the work done on the system. 
Moreover, t,c( ) allows us to recover also the familiar double–well energy profile for the chemical 
process with a maximum at *. Note, however, that this profile does not appear as an adiabatic 
eigenvalue function of  but instead as an effective potential projected to the subspace defined by 
the diabatic functions for reactant and products. 

We can also discuss other aspects of the model by using the experimental concept of pump–
probe [18]. Imagine that we prepare an initial trans–state | t>, but we study the system with a 
probe specific to the electronic cis–state | t>. If we do work by pumping energy on the system but 
the latter does not reach an existing bottleneck threshold, then there will be no induced change in 
electronic state. Let us suppose now that energy is pumped so that we reach the bottleneck region 
with a level just below the diabatic energy crossing. If we now probe the signal intensity of the cis–
conformer, the latter will increase proportionally to |C2|2 from 0 up to a value just below 0.5 under 
the influence of the transition state. The emerging behavior of the pump/probe experiment can be 
described as a “tunneling effect,” but one that takes place vertically along the energy axis, instead of 
horizontally (as it would be along a conventional “reaction coordinate”  in the BO approach). 

We close this section by highlighting the different behavior of a single system as opposed to an 
ensemble. In the case of a single system [19], only a few fundamental properties can be stated if one 
excludes the details of the positive–charge dynamics. In summary, we know that a change in 
positive–charge geometry does not alter by itself the electronic state of a single quantum system. 
Once the required factors are included (i.e., the nonzero off–diagonal matrix elements of Ve–rad), the 
 geometry of the charge background can be used to control the changes of electronic state in 

Hilbert space. This is a most important insight that the present model offers, one that is relevant to 
understanding more complicated chemical processes. For instance, active sites of enzymes have the 
property to fix the geometry of reacting species [19]. The present approach provides a quantum–
mechanical rationale for their kinetic mechanism [20]. 

The behavior of an ensemble of molecular systems could also be addressed by generalizing the 
notion of “effective” potential energy of Eq. (16) from that of an expectation value to an average 
over independent copies of the system. In this case, it would be possible to estimate the frequency 
of measuring the system in the cis or trans–states, provided that the coefficients are normalized with 
respect to the number of times these states are detected in the laboratory. By proceeding this way, 
however, the quantum mechanism for the transition becomes hidden. 
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7 CONCLUSIONS AND FINAL REMARKS 

In this work, we have presented an electronic diabatic approach whereby a molecular system is 
treated as a model with both quantum and classical features. The classical part is a positive 
background of m discrete massless point charges in real space; these can be identified with the 
nuclear charges in a configuration . The quantum part corresponds to the configuration space of a 
system of n electrons. The diabatic basis functions { s(q)} are derived from a fixed–point 
electronic hamiltonian, He(q, k). This ansatz is supplemented with the hypothesis that each 
electronic diabatic state function k(q) for a molecular bound state determines the stationary 
coordinates k of a single confining attractor. A colored chemical multigraph is associated with each 

k(q) diabatic basis function and k attractor; the graph is topologically invariant because k(q) is 
independent from the configuration of the background charges. Quantum states for unbound states 
(i.e., those correlated with dissociated fragments) can also be incorporated into the present analysis 
if the asymptotic state along the corresponding coordinate has zero gradients at infinite separation. 
The shape of the diabatic potential curve along this coordinate will be repulsive. 

A general quantum state |  for the entire system, including the classical background, is 
represented as a linear superposition in the diabatic basis. Note that it is the |  state that depends 
parametrically on the  configuration; the result can be regarded as a generalized 
multiconfigurational wave function. 

The model allows one to study the interplay between changes in real space coordinates ( ) and 
changes in the total electronic quantum state (| >). Real space displacements such as those in 
molecular motors can now be rationalized as being driven by Franck–Condon–like quantum 
electronic processes. An illustrative example of such a process appears in our analysis of a 
trans cis conformational change. For a fixed external field, this system exhibits Franck–Condon–
like transitions [17]. Given that the electronic ground states are spin closed shell, this transition is 
forbidden up to first order by parity conservation rules. However, transitions are still possible by a 
“vertical tunneling” mechanism where one “borrows” intensity from a transition state with singlet 
diradical electronic structure. (This state can be coupled to the closed–shell states depending on the 
external radiation field used.) The intensity borrowing can be modulated by an advance coordinate. 
By means of the vertical–tunneling effect, the electronic properties of the cis–conformer may be 
“prompted to appear”, so to speak, without a full mechanical shift of away from the trans–
conformation. In this sense, the present theory does not require the familiar argument of 
surmounting an intermediate barrier; the barrier can be seen as an apparent effect resulting from 
monitoring the potential energy projected only to amplitudes in reactants and products (cf. Eq. 
(16)). Note that the net result in the GED approach is a sharp transition in the total quantum state,
from a reactant–like state to a product–like state. In our case, the transition is mediated by the 
electromagnetic field. Standard adiabatic or diabatic approaches reach, of course, the same outcome 
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in absence of a field, but they do so by conveniently re–mixing the electronic configurations as the 
nuclear configuration changes. The two methodologies produce a similar final result, but their 
interpretations are fundamentally different. This above GED interpretation for the electronic 
transitions can be extended without difficulty to understanding transitions in a statistical sense. 
Here, the number of events classified on the k–reaction channel can be estimated from the 
amplitude |Ck|2 of the linear superposition in the diabatic basis function k(q). The actual relaxation 
path is thereafter controlled by the way the experiment is designed (e.g., how the positive–charge 
geometry is modulated externally in real space). 

Vertical–tunneling effects can be used for interpreting a number of effects observed, for instance, 
in experiments measuring the pH–dependence of physical observables or the environmental 
dependence of dissociation constants (pKa). Consider the case of a standard proton exchange, where 
reactants and products can be characterized by colored graphs where “B” denotes base and “A” 
denotes acid: 

X A H…. (:B)  (X A ) …. (H B)  . (17)

Experimentally, these graphs can describe the system at various pH values and the stability of 
the anion fragment is controlled by the group X. For simplicity, however, we shall denote the 
corresponding states as |A H…. B> and |A …. H B>; these are described respectively by the 
diabatic functions 1 and . Figure 3 shows a simple scheme where these states are associated 
with single–minima attractors, with their interconversion made possible by the presence of a 
transition state function TS. As before, the geometry of the positive–charge background is 
modulated externally and described by an “advance” coordinate. In the present case, however, it is 
more convenient to think of pH as a sort of control coordinate. At low pH values, the positive–
charge background is consistent with a continuum of  geometries, but it is biased towards the 
stationary configuration 1, denoted by “a” in Figure 3. As the pH increases, the system will be 
prompted to explore geometries farther from 1, e.g., those corresponding to “b” and “c” Figure 3. 
In this fashion, the “pH coordinate” allows the system to probe different energy gaps with 
U( ;[ 2]) and U( ;[ TS]).

In the presence of the proper couplings to the state | TS>, transitions may become possible. If we 
now probe the final |A …. H B> state, its corresponding amplitude |C2|2 will be found to increase 
as we approach the bottleneck region where the two diabatic closed–shell state cross. (At the 
crossing, the amplitudes should be equal and pH pKa.) Note, however, that the pH variable is not
consistent with a single –configuration but rather with a subset of in 3m. We use then <<|C2|2>>
to denote the amplitude of the |A …. H B> state averaged over the set of configurations accessible 
at a given pH value. The expected response of this function is indicated with the inset in Figure 3. 
The <<|C2|2>>  function increases as one moves from “a” to “c,” with a typical S–shape. This 
response is actually seen experimentally, where the chemical shift of the proton serves as probe for 
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one of the species. An interesting example of this phenomenon can be observed in the pH–
dependent cross–modulation of aglycones in dinucleosides by nearest–neighbor interaction of 
stacked states [21]. 

U ( ;[   ])
TS

pH
a

b c

U ( ;[ ])
1

U ( ;[ ])
2

pH
0

1

a
b

c

<<|C  |  >>2
2

|A H      B> |A      H B>É.É.

Figure 3. The diabatic potential energy model for a generic acid–base system. The function 1 describes the state 
|A H…. B> with graph “X A H…. (:B)”, whereas 2 stands for the state |A …. H B> with graph “(X A ) …. (H B) .”
The pH serves as a control. The inset indicates the expected response in the amplitude of the product state, <<|C2|2>> ,
averaged over the –configurations of the positive–charge background that are accessible (or probed) at a given pH. 
This curve resembles the pH–dependent behavior observed experimentally for the chemical shifts of dinucleoside 
monophosphates [21]. (See text for further comments.) 

The present GED model can be extended in order to study different molecular phenomena 
[3,22], including time–dependent ones [23]. Our approach allows one to recast as electronic 
transitions a host of processes previously viewed as ground–state phenomena within the BO model. 
The use of a diabatic basis set simplifies the physical picture and facilitates the straight use of the 
quantum–mechanical linear superposition principle. The two central notions that one must employ 
in all analyses are that: (a) conformational changes are described as Franck–Condon–like electronic 
processes, and (b) vertical–tunneling effects involve transition states that are parity–adapted excited 
electronic states. In the presence of proper couplings mediated by an external radiation field (or 
collisional environment), these excited states determine the interconversion rates of the lower 
energy states. These effects may be tested in the laboratory with time–resolved pump–probe 
experiments. 
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