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Abstract

Artificial immune systems (AIS) represent a new class of machine learning procedures that simulate several 
mechanisms and functions of the biological immune system, such as pattern recognition, learning, memory, and
optimization. In this paper we present the first application of the artificial immune recognition system (AIRS) to
the recognition of the substrates of the multidrug resistance (MDR) ATP–binding cassette (ABC) transporter
permeability glycoprotein (P–glycoprotein, P–gp). We evaluated the AIRS algorithm for a dataset of 201
chemicals, consisting of 116 P–gp substrates and 85 P–gp nonsubstrates. The classifiers were computed from
159 structural descriptors from five classes, namely constitutional descriptors, topological indices, 
electrotopological state indices, quantum descriptors, and geometrical indices. The AIRS algorithm is controlled
by eight user defined parameters: affinity threshold scalar, clonal rate, hypermutation rate, number of nearest
neighbors, initial memory cell pool size, number of instances to compute the affinity threshold, stimulation
threshold, and total resources. The AIRS sensitivity to these parameters was investigated with leave–20%–out 
(five–fold) cross–validation predictions performed over a wide range of values for the eight AIRS parameters.
The AIRS algorithm (best predictions: selectivity 0.793, specificity 0.577, accuracy 0.702, and Matthews 
correlation coefficient 0.380) was compared with 13 well–established machine learning algorithms. The AIRS
predictions are better than those of five of these algorithms (alternating decision tree, Bayesian network, logistic
regression with ridge estimator, random tree, and fast decision tree learner), showing that P–gp substrates may be 
successfully recognized with AIRS. In conclusion, classifiers based on artificial immune systems are valuable
tools for structure–activity relationships (SAR), quantitative structure–activity relationships (QSAR), drug
design, and virtual screening of chemical libraries.
Keywords. Artificial immune system; AIS; artificial immune recognition system; AIRS; pattern recognition;
machine learning; P–glycoprotein; P–gp; quantitative structure–activity relationships; QSAR. 

Abbreviations and notations 
AIRS, artificial immune recognition system IMPS, initial memory cell pool size 
ATS, affinity threshold scalar NIAT, number of instances to compute the affinity threshold
CR, clonal rate ST, stimulation threshold
HR, hypermutation rate TR, total resources 
kNN, number of nearest neighbors P–gp, P–glycoprotein
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1 INTRODUCTION 

Biological mechanisms, processes, and functions are the source of inspiration for many artificial
intelligence algorithms, such as particle swarm optimization, ant colony optimization, bee colony 
optimization, artificial neural networks, genetic algorithms, DNA computing, and artificial immune
systems. Artificial immune systems (AIS) [1–9] use the learning and memory capabilities of the 
immune system to develop computational algorithms for pattern recognition, function optimization,
classification, process control, intrusion detection, medical diagnosis, and drug design [10–17]. 
Watkins, Timmis, and Boggess developed an efficient machine learning algorithm, the artificial 
immune recognition system (AIRS), which encodes several principles and mechanisms of the 
immune system [18–20]. Brownlee used AIRS for a wide range of classification problems [21], 
confirming its utility as a supervised learning classifier.

We recently published the first application of the AIRS algorithm in modeling structure–activity 
relationships for drug design [16] namely to discriminate between drugs that induce torsade de 
pointes and drugs that do not induce torsade de pointes. In a subsequent study we showed that AIRS 
is successful in separating drugs that penetrate the human intestine from those that do not penetrate 
the intestine [17]. In this paper we present the first application of the artificial immune recognition 
system (AIRS) to the recognition of the substrates of the multidrug resistance (MDR) ATP–binding 
cassette (ABC) transporter permeability glycoprotein (P–glycoprotein, P–gp). Using a dataset of 
201 drugs and 159 structural descriptors [22], AIRS is trained to discriminate between a subset of 
116 P–gp substrates and a subset of 85 P–gp nonsubstrates. 

2 THE ARTIFICIAL IMMUNE RECOGNITION SYSTEM 

In the AIRS classification algorithm, an antigen is represented as an n–dimensional vector X = 
{x1, x2, …, xn; xi R for i = 1, 2, …, n } and an associated class Y = {+1, –1}. For quantitative 
structure–activity relationships (QSAR), the X vector contains the structural descriptors for a 
molecule, whereas for the class variable Y, +1 encodes the presence of a property (P–gp substrate, 
in the present study) and –1 encodes the absence of that property (not a P–gp substrate). An 
identical {X, Y} encoding is used for antibodies (the solutions for the classification problem). In the 
AIRS procedure a B–cell is represented by an artificial recognition ball (ARB). An ARB contains 
an antibody, a number of resources, and a stimulation value. The stimulation value measures the 
similarity between an ARB and an antigen. Each AIRS model has a limited number of resources, 
and ARBs compete for their allocation. Resources are removed from the least stimulated ARBs, and 
ARBs without resources are eliminated from the cell population. The ARB population is trained 
during several cycles of competition for limited resources. In each cycle of ARB training, the best 
ARB classifiers generate mutated clones that enhance the antigen recognition process, whereas the 
ARBs with insufficient resources are removed from the population. After training, the top ARB 
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classifiers are selected as memory cells. Finally, the memory cells are used to classify novel 
antigens (patterns). The steps of the AIRS algorithm are summarized in Figure 1. 

(1) Initialization. The training data are normalized between 0 and 1. The Euclidean distance is 
computed for all pairs of antigens, and then the affinity is determined as the ratio between the 
distance and the maximum distance. The affinity threshold AT is computed as the average affinity 
for all antigens in the training set. The memory cell pool is populated with randomly selected 
antigens. At the end of the AIRS algorithm, the memory cell pool represents the recognition ARBs 
used as classifiers. 
(2) Train for all Antigens 

(2.1) Antigen Presentation. Each training antigen is presented to the memory cell pool, and 
each memory cell receives a stimulation value, Stimulation = 1 – Affinity. The memory cells 
with the highest stimulation are selected, and a number of mutated clones are created and added 
to the ARB pool. The number of clones generated is computed with the formula:

NumberClones = Stimulation×CR×HR (1)

where CR (clonal rate) and HR (hypermutation rate) are user defined parameters.
(2.2) Competition for Limited Resources. The scope of this process is to select those ARBs 
that have the best recognition capabilities, while optimally allocating the resources to the best 
ARBs.

(2.2.1) Perform Competition for Resources 
(2.2.1.1) Stimulate the ARB Pool with Antigen 
(2.2.1.2) Normalize the ARB Stimulation Values 
(2.2.1.3) Allocate Limited Resources Based on Stimulation. The amount of 
resources allocated to each ARB is: 

Resources = NormalizedStimulation×CR (2)

(2.2.1.4) Remove ARBs with Insufficient Resources 
(2.2.2) Continue with (2.3) if the Stop Condition is Satisfied. The stop condition for the 
ARB refinement is met when the average normalized stimulation is higher than a user 
defined stimulation threshold.
(2.2.3) Generate Mutated Clones of Surviving ARBs. The number of clones generated is: 

NumberClones = Stimulation×CR (3)

(2.2.4) Go to (2.2.1) 
(2.3) Memory Cell Selection. In this step, new ARB classifiers are evaluated for inclusion in the 
memory cell pool. An ARB is inserted in the memory cell pool if its stimulation value is better 
than that of the existing best matching memory cell. The existing best matching memory cell is 
then removed if the affinity between the candidate ARB and the existing memory cell is less than 
a CutOff value: 

CutOff = AT×ATS (4)

where the affinity threshold AT was computed during the Initialization phase, and ATS (affinity
threshold scalar) is a user defined parameter.

(3) Classification. The memory cell pool represents the AIRS classifier. The classification is 
performed with a k–nearest neighbor method, in which the k best matches to a prediction pattern are 
identified and the predicted class is determined with a majority vote.

Figure 1. The AIRS algorithm.
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3 MATERIALS AND METHODS 

P–glycoprotein is responsible for the low cellular accumulation of anticancer drugs, for reduced 
oral absorption, for low blood–brain barrier penetration, and in hepatic, renal, or intestinal 
elimination of drugs. Computational methods for the identification of P–gp substrates are useful 
drug design tools for the early elimination of potential P–gp substrates. Gombar et al. used 95 
compounds and 27 structural descriptors to develop a linear discriminant model that had a 
prediction accuracy of 86.2% was obtained on a test set of 58 compounds [23]. Xue et al. developed 
a support vector machines (SVM) classifier for P–gp substrates [24] for a dataset of 201 molecules
and 159 structural descriptors, with a leave–20%–out cross–validation accuracy of 0.683 and 
Matthews correlation coefficient of 0.37 [22]. The P–gp substrate models developed by de 
Cerqueira Lima et al. [25] with k–nearest neighbors classification, decision tree, binary QSAR, and 
support vector machines show that the best predictions are obtained with SVM trained with atom
pair or VolSurf descriptors. Crivori et al. used partial least squares discriminant (PLSD) analysis 
with VolSurf descriptors to train a P–gp substrate classifier with data for 53 diverse drugs [26]. The 
PLSD classifier made 72% correct predictions for an external set of 272 compounds.

We demonstrate here the AIRS application to the recognition of P–glycoprotein substrates for a 
dataset of 201 chemicals, consisting of 116 P–gp substrates (P–gpS) and 85 P–gp nonsubstrates (P–
gpNS). The classifiers were computed from 159 structural descriptors from five classes, namely 18 
constitutional descriptors, 28 topological indices, 84 electrotopological state indices, 13 quantum
descriptors, and 16 geometrical indices [22]. The classification performance of the AIRS algorithm
is afected by eight user defined parameters: affinity threshold scalar, clonal rate, hypermutation rate, 
number of nearest neighbors, initial memory cell pool size, number of instances to compute the 
affinity threshold, stimulation threshold, and total resources. In order to explore the AIRS 
sensitivity to these parameters, leave–20%–out (five–fold) cross–validation predictions were 
performed over a wide range of values for all eight parameters. All computations were performed
with the AIRS2 implementation of Brownlee [21] using Weka 3.5.4 [27]. 

4 RESULTS AND DISCUSSION 

For each AIRS model we report the following statistical indices: TPc, true positive in calibration 
(number of P–gpS compounds classified as P–gpS); FNc, false negative in calibration (number of 
P–gpS drugs classified as P–gpNS); TNc, true negative in calibration (number of P–gpNS drugs 
classified as P–gpNS); FPc, false positive in calibration (number of P–gpNS drugs classified as P–
gpS); Sec, calibration selectivity; Spc, calibration specificity; Acc, calibration accuracy; MCCc,
calibration Matthews correlation coefficient [28]; TPp, true positive in prediction; FNp, false 
negative in prediction; TNp, true negative in prediction; FPp, false positive in prediction; Sep,
prediction selectivity; Spp, prediction specificity; Acp, prediction accuracy; MCCp, prediction 
Matthews correlation coefficient. 
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Table 1. AIRS Calibration and Prediction Statistics for Various Values of ATS (Affinity Threshold Scalar)
Exp ATS TPc FNc TNc FPc Sec Spc Acc MCCc

1 0.01 98 18 55 30 0.8448 0.6471 0.7612 0.5053
2 0.02 98 18 55 30 0.8448 0.6471 0.7612 0.5053
3 0.03 98 18 55 30 0.8448 0.6471 0.7612 0.5053
4 0.04 98 18 55 30 0.8448 0.6471 0.7612 0.5053
5 0.05 101 15 56 29 0.8707 0.6588 0.7811 0.5473
6 0.06 101 15 56 29 0.8707 0.6588 0.7811 0.5473
7 0.07 102 14 53 32 0.8793 0.6235 0.7711 0.5270
8 0.08 102 14 53 32 0.8793 0.6235 0.7711 0.5270
9 0.09 102 14 53 32 0.8793 0.6235 0.7711 0.5270

10 0.10 101 15 52 33 0.8707 0.6118 0.7612 0.5056
11 0.15 107 9 54 31 0.9224 0.6353 0.8010 0.5939
12 0.20 98 18 54 31 0.8448 0.6353 0.7562 0.4947
13 0.25 99 17 43 42 0.8534 0.5059 0.7065 0.3879
14 0.30 101 15 38 47 0.8707 0.4471 0.6915 0.3562
15 0.35 101 15 38 47 0.8707 0.4471 0.6915 0.3562
16 0.40 101 15 35 50 0.8707 0.4118 0.6766 0.3228
17 0.45 102 14 33 52 0.8793 0.3882 0.6716 0.3123
18 0.50 102 14 33 52 0.8793 0.3882 0.6716 0.3123
19 0.55 102 14 33 52 0.8793 0.3882 0.6716 0.3123
20 0.60 102 14 33 52 0.8793 0.3882 0.6716 0.3123
21 0.65 102 14 33 52 0.8793 0.3882 0.6716 0.3123
22 0.70 102 14 33 52 0.8793 0.3882 0.6716 0.3123
23 0.75 102 14 33 52 0.8793 0.3882 0.6716 0.3123
24 0.80 102 14 33 52 0.8793 0.3882 0.6716 0.3123
25 0.85 102 14 33 52 0.8793 0.3882 0.6716 0.3123
26 0.90 102 14 33 52 0.8793 0.3882 0.6716 0.3123
27 0.95 102 14 33 52 0.8793 0.3882 0.6716 0.3123

Exp ATS TPp FNp TNp FPp Sep Spp Acp MCCp
1 0.01 85 31 45 40 0.7328 0.5294 0.6468 0.2671
2 0.02 85 31 47 38 0.7328 0.5529 0.6567 0.2896
3 0.03 85 31 48 37 0.7328 0.5647 0.6617 0.3009
4 0.04 84 32 48 37 0.7241 0.5647 0.6567 0.2915
5 0.05 83 33 46 39 0.7155 0.5412 0.6418 0.2596
6 0.06 82 34 46 39 0.7069 0.5412 0.6368 0.2504
7 0.07 80 36 46 39 0.6897 0.5412 0.6269 0.2320
8 0.08 80 36 45 40 0.6897 0.5294 0.6219 0.2206
9 0.09 79 37 45 40 0.6810 0.5294 0.6169 0.2115

10 0.10 81 35 46 39 0.6983 0.5412 0.6318 0.2412
11 0.15 78 38 51 34 0.6724 0.6000 0.6418 0.2709
12 0.20 83 33 43 42 0.7155 0.5059 0.6269 0.2256
13 0.25 82 34 47 38 0.7069 0.5529 0.6418 0.2617
14 0.30 80 36 42 43 0.6897 0.4941 0.6070 0.1863
15 0.35 76 40 46 39 0.6552 0.5412 0.6070 0.1961
16 0.40 78 38 44 41 0.6724 0.5176 0.6070 0.1911
17 0.45 78 38 44 41 0.6724 0.5176 0.6070 0.1911
18 0.50 80 36 44 41 0.6897 0.5176 0.6169 0.2092
19 0.55 80 36 44 41 0.6897 0.5176 0.6169 0.2092
20 0.60 80 36 43 42 0.6897 0.5059 0.6119 0.1978
21 0.65 80 36 43 42 0.6897 0.5059 0.6119 0.1978
22 0.70 80 36 43 42 0.6897 0.5059 0.6119 0.1978
23 0.75 80 36 43 42 0.6897 0.5059 0.6119 0.1978
24 0.80 80 36 43 42 0.6897 0.5059 0.6119 0.1978
25 0.85 80 36 43 42 0.6897 0.5059 0.6119 0.1978
26 0.90 80 36 43 42 0.6897 0.5059 0.6119 0.1978
27 0.95 80 36 43 42 0.6897 0.5059 0.6119 0.1978
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Affinity Threshold Scalar (ATS). This parameter is used in Eq. (4) to compute a cut–off value 
for memory cell replacement, and takes values between 0 and 1. A candidate ARB replaces a 
memory cell if the affinity between a candidate ARB and the best matching memory cell is lower 
that the threshold computed with Eq. (4). A low ATS value results in a low replacement rate, 
whereas a high ATS value corresponds to a high replacement rate. In order to identify the optimum
replacement regimen we varied the ATS value between 0.01 and 0.95 (Table 1, experiments 1–27).
The initial values for the remaining parameters are: clonal rate = 10, hypermutation rate = 2, 
number of nearest neighbors = 3, initial memory cell pool size = 50, number of instances to 
compute the affinity threshold = all, stimulation threshold = 0.5, and total resources = 150. These 
parameters are optimized in the above order, and the optimum value is used in all subsequent 
experiments. The highest prediction MCC = 0.3009 is obtained for ATS = 0.03, indicating that for 
the P–gp classification problem a low memory cell replacement rate is beneficial. The prediction 
statistics decrease significantly when ATS increases, suggesting that a high memory cell 
replacement rate results in poor AIRS models.

Clonal Rate (CR). The clonal rate is used in ARB resource allocation and in controlling the 
clonal mutation for the memory cells. In Eq (1), CR is used to determine the number of mutated
clones generated from each memory cell and then added to the ARB pool. In Eq. (2), CR is 
multiplied with the normalized stimulation of an ARB to determine the number of resources 
allocated to that ARB. The number of resources allocated to each ARB is in the range [0, CR]. CR 
is used in Eq. (3) to determine the number of clones generated from each ARB during the ARB 
refinement process. Therefore, the number of ARB clones generated is in the range [0, CR]. 

Table 2. AIRS Calibration and Prediction Statistics for Various Values of CR (Clonal Rate); (ATS = 0.03)
Exp CR TPc FNc TNc FPc Sec Spc Acc MCCc
28 3 106 10 50 35 0.9138 0.5882 0.7761 0.5420
29 5 92 24 56 29 0.7931 0.6588 0.7363 0.4561
30 8 95 21 54 31 0.8190 0.6353 0.7413 0.4640
31 9 92 24 57 28 0.7931 0.6706 0.7413 0.4670
32 10 98 18 55 30 0.8448 0.6471 0.7612 0.5053
33 11 97 19 54 31 0.8362 0.6353 0.7512 0.4843
34 12 99 17 55 30 0.8534 0.6471 0.7662 0.5157
35 15 94 22 56 29 0.8103 0.6588 0.7463 0.4756
36 17 98 18 56 29 0.8448 0.6588 0.7662 0.5159
37 20 98 18 56 29 0.8448 0.6588 0.7662 0.5159

Exp CR TPp FNp TNp FPp Sep Spp Acp MCCp
28 3 80 36 48 37 0.6897 0.5647 0.6368 0.2548
29 5 84 32 50 35 0.7241 0.5882 0.6667 0.3140
30 8 82 34 48 37 0.7069 0.5647 0.6468 0.2730
31 9 78 38 47 38 0.6724 0.5529 0.6219 0.2254
32 10 85 31 48 37 0.7328 0.5647 0.6617 0.3009
33 11 79 37 48 37 0.6810 0.5647 0.6318 0.2457
34 12 84 32 49 36 0.7241 0.5765 0.6617 0.3028
35 15 83 33 48 37 0.7155 0.5647 0.6517 0.2822
36 17 84 32 47 38 0.7241 0.5529 0.6517 0.2803
37 20 80 36 48 37 0.6897 0.5647 0.6368 0.2548
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The AIRS predictions obtained when the clonal rate was varied between 3 and 20 (Table 2, 
experiments 28–37) show that there is no apparent trend for the MCC values when CR increases. 
The best result, MCC = 0.3140, is obtained with CR = 5, with a modest improvement over the best 
value obtained in the ATS experiments.

Hypermutation Rate (HR). The hypermutation rate is an integer parameter used in Eq. (1) to 
determine the number of clones for each memory cell, which is in the range [0, CR×HR]. The P–gp 
substrate classification was investigated for HR between 1 and 10 (Table 3, experiments 38–47),
and the best results (HR = 2) show no improvement compared to the best results obtained in the CR 
experiments.

Table 3. AIRS Calibration and Prediction Statistics for Various Values of HR (Hypermutation Rate); (CR = 5)
Exp HR TPc FNc TNc FPc Sec Spc Acc MCCc
38 1 96 20 54 31 0.8276 0.6353 0.7463 0.4741
39 2 92 24 56 29 0.7931 0.6588 0.7363 0.4561
40 3 96 20 55 30 0.8276 0.6471 0.7512 0.4848
41 4 98 18 54 31 0.8448 0.6353 0.7562 0.4947
42 5 100 16 54 31 0.8621 0.6353 0.7662 0.5157
43 6 94 22 60 25 0.8103 0.7059 0.7662 0.5189
44 7 99 17 54 31 0.8534 0.6353 0.7612 0.5051
45 8 102 14 53 32 0.8793 0.6235 0.7711 0.5270
46 9 98 18 55 30 0.8448 0.6471 0.7612 0.5053
47 10 94 22 57 28 0.8103 0.6706 0.7512 0.4864

Exp HR TPp FNp TNp FPp Sep Spp Acp MCCp
38 1 81 35 47 38 0.6983 0.5529 0.6368 0.2525
39 2 84 32 50 35 0.7241 0.5882 0.6667 0.3140
40 3 78 38 47 38 0.6724 0.5529 0.6219 0.2254
41 4 83 33 46 39 0.7155 0.5412 0.6418 0.2596
42 5 81 35 49 36 0.6983 0.5765 0.6468 0.2752
43 6 81 35 49 36 0.6983 0.5765 0.6468 0.2752
44 7 81 35 46 39 0.6983 0.5412 0.6318 0.2412
45 8 80 36 48 37 0.6897 0.5647 0.6368 0.2548
46 9 78 38 48 37 0.6724 0.5647 0.6269 0.2368
47 10 81 35 47 38 0.6983 0.5529 0.6368 0.2525

Number of Nearest Neighbors (kNN). During the classification process (Figure 1, step 3), 
AIRS selects kNN memory cells that have the highest stimulation relative to an antigen, and then 
that antigen is classified (P–gpS or P–gpNS) based on the vote of those kNN memory cells. 

Table 4. AIRS Calibration and Prediction Statistics for Various kNN (Number of Nearest Neighbors); (HR = 2) 
Exp kNN TPc FNc TNc FPc Sec Spc Acc MCCc
48 1 96 20 56 29 0.8276 0.6588 0.7562 0.4955
49 3 92 24 56 29 0.7931 0.6588 0.7363 0.4561
50 5 96 20 59 26 0.8276 0.6941 0.7711 0.5277
51 7 95 21 55 30 0.8190 0.6471 0.7463 0.4748
52 9 95 21 49 36 0.8190 0.5765 0.7164 0.4100
53 11 93 23 38 47 0.8017 0.4471 0.6517 0.2673
54 13 97 19 35 50 0.8362 0.4118 0.6567 0.2764
55 15 100 16 30 55 0.8621 0.3529 0.6468 0.2528
56 17 101 15 31 54 0.8707 0.3647 0.6567 0.2768
57 19 102 14 31 54 0.8793 0.3647 0.6617 0.2892
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Table 4. (Continued)
Exp kNN TPp FNp TNp FPp Sep Spp Acp MCCp
48 1 78 38 45 40 0.6724 0.5294 0.6119 0.2025
49 3 84 32 50 35 0.7241 0.5882 0.6667 0.3140
50 5 82 34 50 35 0.7069 0.5882 0.6567 0.2956
51 7 77 39 50 35 0.6638 0.5882 0.6318 0.2507
52 9 84 32 46 39 0.7241 0.5412 0.6468 0.2690
53 11 87 29 40 45 0.7500 0.4706 0.6318 0.2295
54 13 85 31 41 44 0.7328 0.4824 0.6269 0.2216
55 15 83 33 42 43 0.7155 0.4941 0.6219 0.2141
56 17 83 33 42 43 0.7155 0.4941 0.6219 0.2141
57 19 85 31 40 45 0.7328 0.4706 0.6219 0.2102

Although we investigated the effect of kNN for values between 1 and 19 (Table 4, experiments
48–57), the best prediction is obtained for kNN = 3, with no improvement over the HR experiments.

Table 5. AIRS Calibration and Prediction Statistics for Various IMCPS (Initial Memory Cell Pool Size); (kNN = 3)
Exp IMCPS TPc FNc TNc FPc Sec Spc Acc MCCc
58 1 25 91 77 8 0.2155 0.9059 0.5075 0.1619
59 10 95 21 44 41 0.8190 0.5176 0.6915 0.3555
60 20 103 13 33 52 0.8879 0.3882 0.6766 0.3248
61 30 103 13 49 36 0.8879 0.5765 0.7562 0.4967
62 40 97 19 52 33 0.8362 0.6118 0.7413 0.4630
63 50 92 24 56 29 0.7931 0.6588 0.7363 0.4561
64 60 100 16 57 28 0.8621 0.6706 0.7811 0.5472
65 70 100 16 67 18 0.8621 0.7882 0.8308 0.6525
66 80 103 13 69 16 0.8879 0.8118 0.8557 0.7033
67 90 105 11 68 17 0.9052 0.8000 0.8607 0.7132
68 100 107 9 66 19 0.9224 0.7765 0.8607 0.7139
69 120 103 13 67 18 0.8879 0.7882 0.8458 0.6824
70 140 102 14 73 12 0.8793 0.8588 0.8706 0.7360
71 160 104 12 73 12 0.8966 0.8588 0.8806 0.7554
72 180 102 14 72 13 0.8793 0.8471 0.8657 0.7253
73 200 104 12 69 16 0.8966 0.8118 0.8607 0.7134

Exp IMCPS TPp FNp TNp FPp Sep Spp Acp MCCp
58 1 43 73 51 34 0.3707 0.6000 0.4677 –0.0298
59 10 63 53 48 37 0.5431 0.5647 0.5522 0.1065
60 20 68 48 48 37 0.5862 0.5647 0.5771 0.1493
61 30 70 46 43 42 0.6034 0.5059 0.5622 0.1087
62 40 75 41 49 36 0.6466 0.5765 0.6169 0.2216
63 50 84 32 50 35 0.7241 0.5882 0.6667 0.3140
64 60 83 33 43 42 0.7155 0.5059 0.6269 0.2256
65 70 81 35 45 40 0.6983 0.5294 0.6269 0.2298
66 80 81 35 43 42 0.6983 0.5059 0.6169 0.2070
67 90 83 33 51 34 0.7155 0.6000 0.6667 0.3160
68 100 85 31 48 37 0.7328 0.5647 0.6617 0.3009
69 120 88 28 49 36 0.7586 0.5765 0.6816 0.3405
70 140 87 29 46 39 0.7500 0.5412 0.6617 0.2974
71 160 80 36 45 40 0.6897 0.5294 0.6219 0.2206
72 180 85 31 47 38 0.7328 0.5529 0.6567 0.2896
73 200 85 31 47 38 0.7328 0.5529 0.6567 0.2896

Initial Memory Cell Pool Size (IMCPS). The number of initial memory cells was modified
between 1 and 200 (Table 5, experiments 58–73), and the classification results show that when 
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IMCPS < 40 the prediction statistics decrease significantly. The best prediction, MCC = 0.3405, is 
obtained for IMCPS = 120, with a small improvement over the kNN experiments.

Number of Instances to Compute the Affinity Threshold (NIAT). NIAT indicates the number
of antigens used to compute the affinity threshold in the AIRS initialization phase. In a series of 12 
experiments (NIAT between 20 and all antigens) we found no variation in the prediction MCC. For 
the remaining sets of experiments we used the same NIAT used in the previous sets (NIAT = all). 

Stimulation Threshold (ST). The stimulation threshold is a parameter in the range [0, 1] and is 
used to determine the stop condition for the process of refining the ARB pool for a specific antigen. 
The ARB refinement stops when the average normalized ARB stimulation is higher than ST. In 
order to determine how sensitive are the AIRS predictions to the stimulation threshold, ST was 
modified between 0.1 and 0.9 (Table 6, experiments 74–88). The results obtained in this series of 
experiments show that the P–gp AIRS models are not sensitive to ST, and good predictions are 
obtained for the entire range of values. For further experiments we selected ST = 0.53, because it 
gives the best predictions (MCC = 0.3796). 

Table 6. AIRS Calibration and Prediction Statistics for Various Values of ST (Stimulation Threshold); (NIAT = all) 
Exp ST TPc FNc TNc FPc Sec Spc Acc MCCc
74 0.10 104 12 72 13 0.8966 0.8471 0.8756 0.7448
75 0.20 104 12 72 13 0.8966 0.8471 0.8756 0.7448
76 0.30 104 12 71 14 0.8966 0.8353 0.8706 0.7343
77 0.40 103 13 68 17 0.8879 0.8000 0.8507 0.6929
78 0.45 106 10 69 16 0.9138 0.8118 0.8706 0.7339
79 0.47 107 9 68 17 0.9224 0.8000 0.8706 0.7341
80 0.49 104 12 70 15 0.8966 0.8235 0.8657 0.7238
81 0.50 103 13 67 18 0.8879 0.7882 0.8458 0.6824
82 0.51 105 11 72 13 0.9052 0.8471 0.8806 0.7548
83 0.53 107 9 67 18 0.9224 0.7882 0.8657 0.7240
84 0.55 107 9 66 19 0.9224 0.7765 0.8607 0.7139
85 0.60 106 10 71 14 0.9138 0.8353 0.8806 0.7545
86 0.70 104 12 72 13 0.8966 0.8471 0.8756 0.7448
87 0.80 104 12 72 13 0.8966 0.8471 0.8756 0.7448
88 0.90 106 10 71 14 0.9138 0.8353 0.8806 0.7545

Exp ST TPp FNp TNp FPp Sep Spp Acp MCCp
74 0.10 87 29 48 37 0.7500 0.5647 0.6716 0.3198
75 0.20 87 29 48 37 0.7500 0.5647 0.6716 0.3198
76 0.30 90 26 49 36 0.7759 0.5765 0.6915 0.3599
77 0.40 90 26 47 38 0.7759 0.5529 0.6816 0.3378
78 0.45 87 29 47 38 0.7500 0.5529 0.6667 0.3086
79 0.47 91 25 47 38 0.7845 0.5529 0.6866 0.3477
80 0.49 90 26 46 39 0.7759 0.5412 0.6766 0.3267
81 0.50 88 28 49 36 0.7586 0.5765 0.6816 0.3405
82 0.51 90 26 47 38 0.7759 0.5529 0.6816 0.3378
83 0.53 92 24 49 36 0.7931 0.5765 0.7015 0.3796
84 0.55 90 26 47 38 0.7759 0.5529 0.6816 0.3378
85 0.60 91 25 49 36 0.7845 0.5765 0.6965 0.3697
86 0.70 89 27 47 38 0.7672 0.5529 0.6766 0.3280
87 0.80 86 30 51 34 0.7414 0.6000 0.6816 0.3438
88 0.90 87 29 49 36 0.7500 0.5765 0.6766 0.3310
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Total Resources (TR). The number of total resources of the AIRS model limits the number of
B–cells from the ARB pool. The amount of resources assigned to an ARB is calculated with Eq. (2) 
as a number in the range [0, CR]. Resources are allocated to the ARBs with high stimulation values, 
and taken from those with small stimulation values. ARBs without resources are removed from the 
cell population. We investigated AIRS classifiers with TR between 25 and 250, but the prediction 
MCC was constant in all experiments (MCC = 0.3796), with the exception of the first experiment
(TR = 25, MCC = 0.3103). Our results indicate that for the P–gp substrate classification, AIRS is 
not sensitive to TR. 

Table 7. Calibration and Prediction Statistics of Several Machine Learning Models
Exp Model TPc FNc TNc FPc Sec Spc Acc MCCc
89 BayesNet 98 18 54 31 0.8448 0.6353 0.7562 0.4947
90 NaiveBayes 74 42 74 11 0.6379 0.8706 0.7363 0.5085
91 NaiveBayesUpdateable 104 12 57 28 0.8966 0.6706 0.8010 0.5901
92 Logistic 116 0 85 0 1.0000 1.0000 1.0000 1.0000
93 RBFNetwork 103 13 60 25 0.8879 0.7059 0.8109 0.6100
94 KStar 116 0 85 0 1.0000 1.0000 1.0000 1.0000
95 ADTree 113 3 67 18 0.9741 0.7882 0.8955 0.7905
96 J48 113 3 82 3 0.9741 0.9647 0.9701 0.9388
97 LMT 99 17 66 19 0.8534 0.7765 0.8209 0.6320
98 NBTree 114 2 82 3 0.9828 0.9647 0.9751 0.9490
99 RandomForest 116 0 85 0 1.0000 1.0000 1.0000 1.0000

100 RandomTree 116 0 85 0 1.0000 1.0000 1.0000 1.0000
101 REPTree 114 2 59 26 0.9828 0.6941 0.8607 0.7273

Exp Model TPp FNp TNp FPp Sep Spp Acp MCCp
89 BayesNet 95 21 42 43 0.8190 0.4941 0.6816 0.3334
90 NaiveBayes 72 44 65 20 0.6207 0.7647 0.6816 0.3822
91 NaiveBayesUpdateable 93 23 54 31 0.8017 0.6353 0.7313 0.4441
92 Logistic 81 35 51 34 0.6983 0.6000 0.6567 0.2978
93 RBFNetwork 91 25 51 34 0.7845 0.6000 0.7065 0.3917
94 KStar 82 34 59 26 0.7069 0.6941 0.7015 0.3973
95 ADTree 87 29 52 33 0.7500 0.6118 0.6915 0.3644
96 J48 92 24 53 32 0.7931 0.6235 0.7214 0.4234
97 LMT 92 24 55 30 0.7931 0.6471 0.7313 0.4452
98 NBTree 94 22 56 29 0.8103 0.6588 0.7463 0.4756
99 RandomForest 101 15 57 28 0.8707 0.6706 0.7861 0.5577

100 RandomTree 84 32 48 37 0.7241 0.5647 0.6567 0.2915
101 REPTree 86 30 44 41 0.7414 0.5176 0.6468 0.2653

Comparison with other Machine Learning Algorithms. In order to compare the AIRS 
algorithm with other machine learning procedures, we investigated the same P–gpS/P–gpNS 
classification problem with 13 other machine learning algorithms (Table 7, experiments 100–112):
namely Bayesian network (BayesNet), naïve Bayes classifier (NaiveBayes), updateable naïve Bayes 
classifier with kernel estimator (NaiveBayesUpdateable), logistic regression with ridge estimator
(Logistic), Gaussian radial basis function network (RBFNetwork), K* instance–based classifier 
(KStar), alternating decision tree (ADTree), C4.5 decision tree (J48), logistic model trees (LMT), 
decision tree with naïve Bayes classifiers at the leaves (NBTree), random forest (RandomForest),
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random tree (RandomTree), fast decision tree learner (REPTree). All calculations were performed
with Weka 3.5.4 [27], using all descriptors. 

The AIRS model gives better predictions than five machine learning algorithms: ADTree, 
BayesNet, Logistic, RandomTree, and REPTree. On the other hand, the predictions obtained with 
RandomForest (MCC = 0.5577) are much better than those provided by AIRS and the other 
machine learning procedures, showing that RandomForest should be the preferred approach for the 
classification of P–gp substrates/nonsubstrates. Other seven machine learning algorithms are better 
than AIRS, namely NBTree, LMT, NaiveBayesUpdateable, J48, KStar, RBFNetwork, and 
NaiveBayes. We want also to emphasize that the AIRS predictions (Ac = 0.7015 and MCC = 
0.3796) are as good as the support vector machines reported by Xue et al. (Ac = 0.683 and MCC = 
0.37) [22]. 

5 CONCLUSIONS 

Artificial immune systems represent a new family of algorithms inspired by the functions,
mechanisms, and structure of biological systems. The artificial immune recognition system, AIRS, 
[18–20] combines several elements of the biological immune system, such as learning, pattern 
recognition, memory, optimization, and evolution of a population of cells (agents). We recently 
published two AIRS applications in drug design, namely for the recognition of drugs that induce 
torsade de pointes [16], and for the identification of the drugs that penetrate the human intestine 
[17]. In this report we demonstrated the first AIRS application for the recognition of P–glycoprotein 
substrates.

The AIRS algorithm was applied to the classification of a dataset of 201 chemicals, consisting of 
116 P–gp substrates and 85 P–gp nonsubstrates. The chemical structure of all molecules was 
represented by a set of 159 structural descriptors (18 constitutional descriptors, 28 topological 
indices, 84 electrotopological state indices, 13 quantum descriptors, and 16 geometrical indices) 
[22]. The calculations were performed with the AIRS2 algorithm [21] implemented in Weka [27], 
and the prediction ability was estimated with the leave–20%–out (five–fold) cross–validation. The 
classification performance of the AIRS2 algorithm was investigated for a wide range of values for 
the eight user defined parameters: affinity threshold scalar, clonal rate, hypermutation rate, number
of nearest neighbors, initial memory cell pool size, number of instances to compute the affinity 
threshold, stimulation threshold, and total resources. 

The AIRS algorithm (best predictions: selectivity 0.793, specificity 0.577, accuracy 0.702, and 
Matthews correlation coefficient 0.380) is as good as support vector machines [22] in predicting P–
gp substrates. We also compared AIRS with other 13 well–established machine learning algorithms,
and we found that AIRS surpasses five of them (alternating decision tree, Bayesian network, 
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logistic regression with ridge estimator, random tree, and fast decision tree learner). Other eight 
machine learning algorithms are better than AIRS, namely RandomForest, NBTree, LMT, 
NaiveBayesUpdateable, J48, KStar, RBFNetwork, and NaiveBayes. The results presented in this 
paper add new strong evidence to the previous results [16,17] that demonstrate the utility of AIRS 
classifiers in structure–activity relationships, drug design, and virtual screening of chemical
libraries.
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